Date: 09 Jul 2012

A Comparative Analysis of Dimension Reduction Techniques for Representing DTI Fibers as 2D/3D Points

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Dimension Reduction is the process of transfering high-dimensional data into lower dimensions while maintaining the original intrinsic structures. This technique of finding low-dimensional embedding from high-dimensional data is important for visualizing dense 3D DTI fibers because it is hard to visualize and analyze the fiber tracts with high geometric, spatial, and anatomical complexity. Color-mapping, selection, and abstraction are widely used in DTI fiber visualization to depict the properties of fiber models. Nonetheless, visual clutters and occlusion in 3D space make it hard to grasp even a few thousand fibers. In addition, real time interaction (exploring and navigating) on such complex 3D models consumes large amount of CPU/GPU power. Converting DTI fiber to 2D or 3D points with dimension reduction techniques provides a complimentary visualization for these fibers. This chapter analyzes and compares dimension reduction methods for DTI fiber models. An interaction interface augments the 3D visualization with a 2D representation that contains a low-dimensional embedding of the DTI fibers. To achieve real-time interaction, the framework is implemented with GPU programming.