Skip to main content

Hormonal Intermediates in the Protective Action of Exogenous Phytohormones in Wheat Plants Under Salinity

  • Chapter
  • First Online:
Phytohormones and Abiotic Stress Tolerance in Plants

Abstract

Unfavorable environmental factors, such as salinity, are known to induce significant shifts in the state of endogenous hormonal system of plants, usually associated with the accumulation of stress hormone ABA and the decrease in the levels of growth-stimulating hormones—auxins and cytokinins. Treatment by phytohormones to improve plant stress resistance also leads to rearrangement of the hormonal balance of plants, and this indicates the involvement of endogenous hormones in the protective effect of exogenous hormones on plants. The aim of this study was to identify the hormonal intermediates in the action of 24-epibrassinolide (EBR), methyl jasmonate (Me-JA), and salicylic acid (SA) on wheat plants under sodium chloride salinity. We found that during pretreatment of seedlings with EBR for 24 h, rapid and stable double accumulation of cytokinins (CKs) was observed without any changes in the contents of IAA and ABA. Pretreatment of seedlings with EBR for 24 h significantly reduced the damaging effect of salinity on plant growth, considerably reduced the stress-induced ABA accumulation as well as the decrease in the IAA content, and also maintained the concentration of CKs at the level of control plants. Interestingly, treatment of seedlings with Me-JA also caused almost a twofold reversible (in contrast to EBR action) CK accumulation without changes in the contents of IAA and ABA. Pretreatment with Me-JA also reduced the stress-induced accumulation of ABA and diminished the decrease in the IAA content and prevented salinity-induced decline in the CK level. These data suggest an important role of cytokinins as intermediates in the manifestation of the protective effect of EBR and Me-JA on wheat plants under salt stress. Comparative analysis of the influence of EBR, Me-JA, and CKs on growth, the state of proantioxidant system, and the level of osmoprotectants in the seedlings under salinity yielded experimental arguments in favor of this assumption. We have previously suggested that ABA may serve as endogenous intermediate in the protective effect of SA on wheat plants. Comparative analysis of the influence of SA and SA in mixture with fluridone, being an effective inhibitor of ABA biosynthesis, on both PR-1 and TADHN dehydrin gene expression and the activity of antioxidant enzymes, as well as deposition of lignin in the cell walls under sodium chloride salinity, revealed the key role of endogenous ABA in the manifestation of the protective effect of SA on wheat plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albacete A, Ghanem ME, Martinez-Andujar C, Acosta M, Sanchez-Bravo J, Martinez V, Lutts S, Dodd IC, Perez-Alfocea F (2008) Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants. J Exp Bot 59:4119–4131

    PubMed  CAS  Google Scholar 

  • Ali Q, Athar H, Ashraf M (2008) Modulation of growth, photosynthetic capacity and water relations in salt stressed wheat plants by exogenously applied 24-epibrassinolide. Plant Growth Regul 56:107–116

    CAS  Google Scholar 

  • Allagulova ChR, Gimalov FR, Shakirova FM, Vakhitov VA (2003) The plant dehydrins: structure and putative functions. Biochemistry (Moscow) 68:945–951

    CAS  Google Scholar 

  • Altmann T (1999) Molecular physiology of brassinosteroids revealed by the analysis of mutants. Planta 208:1–11

    PubMed  CAS  Google Scholar 

  • Amzallag GN, Lerner HR, Poljakoff-Mayber A (1990) Exogenous ABA as a modulator of the response of sorghum to high salinity. J Exp Bot 41:1529–1534

    CAS  Google Scholar 

  • An C, Mou Z (2011) Salicylic acid and its function in plant immunity. J Integr Plant Biol 53:412–428

    PubMed  CAS  Google Scholar 

  • Ananieva K, Melbeck J, Kaminek M, Staden J (2004) Methyl jasmonate down-regulated cytokinin levels in cotyledons of Cucurbita pepo (zucchini) seedlings. Physiol Plant 122:496–503

    CAS  Google Scholar 

  • Arbona V, Argamasilla R, Gomez-Cadenas A (2010) Common and divergent physiological, hormonal and metabolic responses of Arabidopsis thaliana and Thellungiella halophila to water and salt stress. J Plant Physiol 167:1342–1350

    PubMed  CAS  Google Scholar 

  • Argueso CT, Ferreira FJ, Kieber JJ (2009) Environmental perception avenues: the interaction of cytokinin and environmental response pathways. Plant Cell Environ 32:1147–1160

    PubMed  CAS  Google Scholar 

  • Arteca RN, Arteca JM (2008) Effects of brassinosteroid, auxin, and cytokinin on ethylene production in Arabidopsis thaliana plants. J Exp Bot 59:3019–3026

    PubMed  CAS  Google Scholar 

  • Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745

    PubMed  CAS  Google Scholar 

  • Ashraf M, Athar HR, Harris PJC, Kwon TR (2008) Some prospective strategies for improving crop salt tolerance. Adv Agron 97:45–110

    CAS  Google Scholar 

  • Avalbaev AM, Bezrukova MV, Shakirova FM (2003) Effect of brassinosteroids on the hormonal balance in wheat seedlings. Dokl Biol Sci 391:337–339

    CAS  Google Scholar 

  • Avalbaev AM, Yuldashev RA, Shakirova FM (2004) Triticum aestivum cytokinin oxidase gene, partial cds. NCBI Accession No AY831399

    Google Scholar 

  • Avalbaev AM, Yuldashev RA, Vysotskaya LB, Shakirova FM (2006) Regulation of gene expression and activity of cytokinin oxidase in the roots of wheat seedlings by 24-epibrassinolide. Dokl Biochem Biophys 410:317–319

    CAS  Google Scholar 

  • Avalbaev AM, Yuldashev RA, Fatkhutdinova RA, Urusov FA, Safutdinova YuV, Shakirova FM (2010a) The influence of 24-epibrassidinolide on the hormonal status of wheat plants under sodium chloride. Appl Biochem Microbiol 46:99–102

    CAS  Google Scholar 

  • Avalbaev AM, Yuldashev RA, Safutdinova YuV, Allagulova ChR, Fatkhutdinova RA, Shakirova FM (2010b) Effect of 6-benzylaminopurine on the growth and hormonal system of wheat seedlings under salinity conditions. Agrochimiya 9:60–65

    Google Scholar 

  • Bajguz A, Tretyn A (2003) The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry 62:1027–1046

    PubMed  CAS  Google Scholar 

  • Balbi V, Devoto A (2008) Jasmonate signaling network in Arabidopsis thaliana: crucial regulatory nodes and new physiological scenarios. New Phytol 177:301–318

    PubMed  CAS  Google Scholar 

  • Ballare CL (2011) Jasmonate-induced defenses: a tale of intelligence, collaborators and rascals. Trends Plant Sci 16:249–257

    PubMed  CAS  Google Scholar 

  • Bandurska H, Stroinski A, Kubis J (2003) The effect of jasmonic acid on the accumulation of ABA, proline and spermidine and its influence on membrane injury under water deficit in two barley genotypes. Acta Physiol Plant 25:279–285

    CAS  Google Scholar 

  • Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    PubMed  CAS  Google Scholar 

  • Battal P, Erez ME, Turker M, Berber I (2008) Molecular and physiological changes in maize (Zea mays) induced by exogenous NAA and MeJa during cold stress. Ann Bot Fenn 45:173–185

    Google Scholar 

  • Boudet AM, Lapierre C, Grima-Pettenati J (1995) Biochemistry and molecular biology of lignification. New Phytol 129:203–236

    CAS  Google Scholar 

  • Browse J (2009) Jasmonate passes muster: a receptor and targets for the defense hormone. Annu Rev Plant Biol 60:183–205

    PubMed  CAS  Google Scholar 

  • Cambrolle J, Redondo-Gomez S, Mateos-Naranjo E, Luque T, Figueroa ME (2011) Physiological responses to salinity in the yellow-horned poppy, Glaucium flavum. Plant Physiol Biochem 49:186–194

    PubMed  CAS  Google Scholar 

  • Campos ML, de Almeida M, Rossi ML, Martinelli AP, Litholdo JCG, Figueira A, Rampelotti-Ferreira FT, Vendramim JD, Benedito VA, Peres LEP (2009) Brassinosteroids interact negatively with jasmonates in the formation of anti-herbivory traits in tomato. J Exp Bot 60:4347–4361

    PubMed  CAS  Google Scholar 

  • Catala R, Ouyang J, Abreu IA, Hu Y, Seo H, Zhang X, Chua N-H (2007) The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses. Plant Cell 19:2952–2966

    PubMed  CAS  Google Scholar 

  • Chen Y, Pang Q, Dai S, Wang Y, Chen S, Yan X (2011) Proteomic identification of differentially expressed proteins in Arabidopsis in response to methyl jasmonate. J Plant Physiol. doi:10.1016/j.jplph.2011.01.018

  • Chernyad’ev II (2009) The protective action of cytokinins on the photosynthetic machinery and productivity of plants under stress (review). Appl Biochem Microbiol 45:351–362

    Google Scholar 

  • Choudhary SP, Bhardwaj R, Gupta BD, Dutt P, Gupta RK, Biondi S, Kanwar M (2010) Epibrassinolide induces changes in indole-3-acetic acid, abscisic acid and polyamine concentrations and enhances antioxidant potential of radish seedlings under copper stress. Physiol Plant 140:280–296

    PubMed  CAS  Google Scholar 

  • Chow B, McCourt P (2004) Hormone signalling from a developmental context. J Exp Bot 55:247–251

    PubMed  CAS  Google Scholar 

  • Chung S, Parish RW (2008) Combination interactions of multiple cis-elements regulating the induction of the Arabidopsis XERO2 dehydrin gene by abscisic acid and cold. Plant J 54:15–29

    PubMed  CAS  Google Scholar 

  • Clarke SM, Cristescu SM, Miersch O, Harren FJM, Wasternack C, Mur LAJ (2009) Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana. New Phytol 182:175–187

    PubMed  CAS  Google Scholar 

  • Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 96:795–803

    Google Scholar 

  • Clouse SD, Sasse JM (1998) Brassinosteroids: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49:427–451

    PubMed  CAS  Google Scholar 

  • Cortes PA, Terrazas T, Leon TC, Larque-Saavedra A (2003) Brassinosteroid effect on the precocity and yield of cladodes of cactus pear (Opuntia ficus-indica (L) Mill.). Sci Hortic 97:65–73

    Google Scholar 

  • Creelman RA, Mullet JE (1995) Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proc Natl Acad Sci USA 92:4114–4119

    PubMed  CAS  Google Scholar 

  • Davies WJ, Kudoyarova GR, Hartung W (2005) Long-distance ABA signaling and its relation to other signaling pathways in the detection of soil drying and the mediation of the plant’s response to drought. J Plant Growth Regul 24:285–295

    CAS  Google Scholar 

  • Dermastia M, Ravnikar M, Vilhar B, Kovae M (1994) Increased level of cytokinins ribosides in jasmonic acid treated potato (Solanum tuberosum L.) stem node cultures. Physiol Plant 92:241–246

    CAS  Google Scholar 

  • Des Marais DL, Juenger TE (2010) Pleiotropy, plasticity, and the evolution of plant abiotic stress tolerance. Ann NY Acad Sci 1206:56–79

    PubMed  CAS  Google Scholar 

  • Divi UK, Rahman T, Krishna P (2010) Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biol 10:151–165

    PubMed  Google Scholar 

  • Dobra J, Motyka V, Dobrev P, Malbeck J, Prasil IT, Haisel D, Gaudinova A, Havlova M, Gubis J, Vankova R (2010) Comparison of hormonal responses to heat, drought and combined stress in tobacco plants with elevated proline content. J Plant Physiol 167:1360–1370

    PubMed  CAS  Google Scholar 

  • El-Khallal SM, Hathout TA, Ashour AA, Kerrit AA (2009) Brassinolide and salicylic acid induced antioxidant enzymes, hormonal balance and protein profile of maize plants grown under salt stress. Res J Agric Biol Sci 5:391–402

    CAS  Google Scholar 

  • Eun J-S, Kuraishi S, Sakurai N (1989) Changes in levels of auxin and abscisic acid and the evolution of ethylene in squash hypocotyls after treatment with brassinolide. Plant Cell Physiol 30:807–810

    CAS  Google Scholar 

  • Fatkhutdinova RA, Shakirova FM, Chemeris AV, Sabirzhanov BE, Vakhitov VA (2002) NOR activity in wheat species with different ploidy levels treated with phytohormones. Russ J Genet 38:1335–1338

    CAS  Google Scholar 

  • Fatkhutdinova DR, Sakhabutdinova AR, Maksimov IV, Yarullina LG, Shakirova FM (2004) The effect of salicylic acid on antioxidant enzymes in wheat seedlings. Agrochimiya 8:27–31

    Google Scholar 

  • Fernandes CF, Moraes VCP, Vasconcelos IM, Silveira JAG, Oliveira JTA (2006) Induction of an anionic peroxidase in cowpea leaves by exogenous salicylic acid. J Plant Physiol 163:1040–1048

    PubMed  CAS  Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    PubMed  CAS  Google Scholar 

  • Fu FQ, Mao WH, Shi K, Zhou YH, Asami T, Yu JQ (2008) A role of brassinosteroids in early fruit development in cucumber. J Exp Bot 59:2299–2308

    PubMed  CAS  Google Scholar 

  • Fujimoto T, Tomitaka Y, Abe H, Tsuda S, Futai K, Mizukubo T (2011) Expression profile of jasmonic acid-induced genes and the induced resistance against the root-knot nematode (Meloidogyne incognita) in tomato plants (Solanum lycopersicum) after foliar treatment with methyl jasmonate. J Plant Physiol 168:1084–1097

    PubMed  CAS  Google Scholar 

  • Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Tran L-SP, Yamaguchi-Shinozaki K, Shinozaki K (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J 39:863–876

    PubMed  CAS  Google Scholar 

  • Funk C, Brodelius P (1990) Influence of growth regulators and elicitor on phenylpropanoid metabolism in suspension culture of Vanilla planifolia. Phytochemistry 29:845–848

    CAS  Google Scholar 

  • Galis I, Gaquerel E, Pandey SP, Baldwin IT (2009) Molecular mechanisms underlying plant memory in JA-mediated defence responses. Plant Cell Environ 32:617–627

    PubMed  CAS  Google Scholar 

  • Galuszka P, Frebortova J, Werner T, Yamada M, Strnad M, Schmulling T, Frebort I (2004) Cytokinin oxidase/dehydrogenase genes in barley and wheat. Cloning and heterologous expression. Eur J Biochem 271:3990–4002

    PubMed  CAS  Google Scholar 

  • Gangwar S, Singh VP, Prasad SM, Maurya JN (2010) Modulation of manganese toxicity in Pisum sativum L. seedlings by kinetin. Sci Hortic 126:467–474

    CAS  Google Scholar 

  • Gaudinova A, Sussenbekova H, Vojtechova M, Kaminek M, Eder J, Kohout L (1995) Different effects of two brassinosteroids on growth, auxin and cytokinin content in tobacco callus tissue. Plant Growth Regul 17:121–126

    CAS  Google Scholar 

  • Gemes K, Poor P, Horvath E, Kolbert Z, Szopko D, Szepesi A, Tari I (2011) Cross-talk between salicylic acid and NaCl-generated reactive oxygen species and nitric oxide in tomato during acclimation to high salinity. Physiol Plant 142:179–192

    PubMed  CAS  Google Scholar 

  • Gendron JM, Haque A, Gendron N, Chang T, Asami T, Wang Z-Y (2008) Chemical genetic dissection of brassinosteroids-ethylene interaction. Mol Plant 1:368–379

    PubMed  CAS  Google Scholar 

  • Ghanem ME, Albacete A, Smigocki AC, Frebort I, Pospisilova H, Martinez-Andujar C, Acosta M, Sanchez-Bravo J, Lutts S, Dodd IC, Perez-Alfocea F (2011) Root-synthesized cytokinins improve shoot growth and fruit yield in salinized tomato (Solanum lycopersicum L.) plants. J Exp Bot 62:125–140

    PubMed  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    PubMed  CAS  Google Scholar 

  • Goda H, Sasaki E, Akiyama K, Maruyama-Nakashita A, Nakabayashi K, Li W, Ogawa M, Yamauchi Y, Preston J, Aoki K, Kiba T, Takatsuto S, Fujioka S, Asami T, Nakano T, Kato H, Mizuno T, Sakakibara H, Yamaguchi S, Nambara E, Kamiya Y, Takahashi H, Hirai MY, Sakurai T, Shinozaki K, Saito K, Yoshida S, Shimada Y (2008) The AtGenExpress hormone and chemical treatment data set: experimental design, data evaluation, model data analysis and data access. Plant J 55:526–542

    PubMed  CAS  Google Scholar 

  • Granda V, Cuesta C, Alvarez R, Ordas R, Centeno ML, Rodriguez A, Majada JP, Fernandez B, Feito I (2011) Rapid responses of C14 clone of Eucalyptus globulus to root drought stress: time-course of hormonal and physiological signaling. J Plant Physiol 168:661–670

    PubMed  CAS  Google Scholar 

  • Guo J, Hu X, Duan R (2005) Interactive effects of cytokinins, light, and sucrose on the phenotypes and the syntheses of anthocyanins and lignins in cytokinin overproducing transgenic Arabidopsis. J Plant Growth Regul 24:93–101

    CAS  Google Scholar 

  • Hansen M, Chae HS, Kieber JJ (2009) Regulation of ACS protein stability by cytokinin and brassinosteroids. Plant J 57:606–614

    PubMed  CAS  Google Scholar 

  • Hara M (2010) The multifunctionality of dehydrins. Plant Signal Behav 5:503–508

    CAS  Google Scholar 

  • Hare PD, Cress WA, van Staden J (1997) The involvement of cytokinins in plant responses to environmental stress. Plant Growth Regul 23:79–103

    CAS  Google Scholar 

  • Hays DB, Wilen RW, Sheng C, Moloney MM, Pharis RP (1999) Embryo-specific gene expression in microspore-derived embryos of Brassica napus. An interaction between abscisic acid and jasmonic acid. Plant Physiol 119:1065–1072

    PubMed  Google Scholar 

  • Hiraga S, Sasaki K, Ito H, Ohashi Y, Matsui H (2001) A large family of class III plant peroxidases. Plant Cell Physiol 42:462–468

    PubMed  CAS  Google Scholar 

  • Horvath E, Szalai G, Janda T (2007) Induction of abiotic stress tolerance by salicylic acid signaling. J Plant Growth Regul 26:290–300

    CAS  Google Scholar 

  • Hu Y, Bao A, Li J (2000) Promotive effect of brassinosteroids on cell division involves a distinct CycD3-induction pathway in Arabidopsis. Plant J 24:693–701

    PubMed  CAS  Google Scholar 

  • Huang D, Wu W, Abrams SR, Cutler AJ (2008) The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. J Exp Bot 59:2991–3007

    PubMed  CAS  Google Scholar 

  • Hung KT, Hsu YT, Kao CH (2006) Hydrogen peroxide is involved in methyl jasmonate-induced senescence of rice leaves. Physiol Plant 127:293–303

    CAS  Google Scholar 

  • Iqbal M, Ashraf M (2005) Presowing seed treatment with cytokinins and its effect on growth, photosynthetic rate, ionic levels and yield of two wheat cultivars differing in salt tolerance. J Integr Plant Biol 47:1315–1325

    CAS  Google Scholar 

  • Jager CE, Symons GM, Ross JJ, Reid JB (2008) Do brassinosteroids mediate the water stress response? Physiol Plant 133:417–425

    PubMed  CAS  Google Scholar 

  • Janeczko A, Swaczynova J (2010) Endogenous brassinosteroids in wheat treated with 24-epibrassinolide. Biol Plant 54:477–482

    CAS  Google Scholar 

  • Janeczko A, Biesaga-Koscielniak J, Oklest’kova J, Filek M, Dziurka M, Szarek-Lukaszewska G, Koscielniak J (2010) Role of 24-epibrassinolide in wheat production: physiological effects and uptake. J Agron Crop Sci 196:311–321

    CAS  Google Scholar 

  • Janz D, Behnke K, Schnitzler J-P, Kanawati B, Schmitt-Kopplin P, Polle A (2010) Pathway analysis of the transcriptome and metabolome of salt sensitive and tolerant poplar species reveals evolutionary adaption of stress tolerance mechanisms. BMC Plant Biol 10:150–165

    PubMed  Google Scholar 

  • Jaspers P, Kangasjarvi J (2010) Reactive oxygen species in abiotic stress signaling. Physiol Plant 138:405–413

    PubMed  CAS  Google Scholar 

  • Jiang M, Zhang J (2002) Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot 53:2401–2410

    PubMed  CAS  Google Scholar 

  • Jiang Y, Yang B, Harris NS, Deyholos MK (2007) Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. J Exp Bot 58:3591–3607

    PubMed  CAS  Google Scholar 

  • Kagale S, Divi UK, Krochko JE, Keller WA, Krishna P (2007) Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta 225:353–364

    PubMed  CAS  Google Scholar 

  • Kang D-J, Seo Y-J, Lee J-D, Ishii R, Kim KU, Shin DH, Park SK, Jang SW, Lee I-J (2005) Jasmonic acid differentially affects growth, ion uptake and abscisic acid concentration in salt-tolerant and salt-sensitive rice cultivars. J Agron Crop Sci 191:273–282

    CAS  Google Scholar 

  • Katsir L, Chung HS, Koo AJK, Howe GA (2008) Jasmonate signaling: a conserved mechanism of hormone sensing. Curr Opin Plant Biol 11:428–435

    PubMed  CAS  Google Scholar 

  • Khadri M, Tejera NA, Lluch C (2007) Sodium chloride–ABA interaction in two common bean (Phaseolus vulgaris) cultivars differing in salinity tolerance. Environ Exp Bot 60:211–218

    CAS  Google Scholar 

  • Khan MA, Gul B, Weber DJ (2004) Action of plant growth regulators and salinity on seed germination of Ceratoides lanata. Can J Bot 82:37–42

    CAS  Google Scholar 

  • Khripach V, Zhabinskii V, de Groot A (2000) Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century. Ann Bot 86:441–447

    CAS  Google Scholar 

  • Kim T-W, Wang Z-Y (2010) Brassinosteroid signal transduction from receptor kinases to transcription factors. Annu Rev Plant Biol 61:681–704

    PubMed  CAS  Google Scholar 

  • Kim T-H, Bohmer M, Hu H, Nishimura N, Schroeder JI (2010) Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol 61:561–591

    PubMed  CAS  Google Scholar 

  • Koornneef A, Pieterse CMJ (2008) Cross talk in defense signaling. Plant Physiol 146:839–844

    PubMed  CAS  Google Scholar 

  • Krouk G, Ruffel S, Gutiérrez RA, Gojon A, Crawford NM, Coruzzi GM, Lacombe B (2011) A framework integrating plant growth with hormones and nutrients. Trends Plant Sci 16:178–182

    PubMed  CAS  Google Scholar 

  • Kudo T, Kiba T, Sakakibara H (2010) Metabolism and long-distance translocation of cytokinins. J Integr Plant Biol 52:53–60

    PubMed  CAS  Google Scholar 

  • Kuppusamy KT, Walcyer CL, Nemhauser JL (2008) Cross-regulatory mechanisms in hormone signaling. Plant Mol Biol 69:375–381

    PubMed  Google Scholar 

  • Kurepin LV, Qaderi MM, Back TG, Reid DM, Pharis RP (2008) A rapid effect of applied brassinolide on abscisic acid concentrations in Brassica napus leaf tissue subjected to short-term heat stress. Plant Growth Regul 55:165–167

    CAS  Google Scholar 

  • Lee B-R, Jung W-J, Lee B-H, Avice J-C, Ourry A, Kim T-H (2008) Kinetics of drought-induced pathogenesis-related proteins and its physiological significance in white clover leaves. Physiol Plant 132:329–337

    PubMed  CAS  Google Scholar 

  • Li J (2010) Regulation of the nuclear activities of brassinosteroid signaling. Curr Opin Plant Biol 13:540–547

    PubMed  CAS  Google Scholar 

  • Liu J-J, Ekramoddoullah AKM (2006) The family 10 of plant pathogenesis-related proteins: their structure, regulation, and function in response to biotic and abiotic stresses. Physiol Mol Plant Pathol 68:3–13

    CAS  Google Scholar 

  • Liu H-T, Liu Y-Y, Pan Q-H, Yang H-R, Zhan J-C, Huang W-D (2006) Novel interrelationship between salicylic acid, abscisic acid, and PIP-specific phospholipase C in heat acclimation-induced thermotolerance in pea leaves. J Exp Bot 57:3337–3347

    PubMed  CAS  Google Scholar 

  • Liu Y, Jiang H, Zhao Z, An L (2011) Abscisic acid is involved in brassinosteroids-induced chilling tolerance in the suspension cultured cells from Chorispora bungeana. J Plant Physiol 168:853–862

    PubMed  CAS  Google Scholar 

  • Maksymiec W, Krupa Z (2006) The effects of short-term exposition to Cd, excess Cu ions and jasmonate on oxidative stress appearing in Arabidopsis thaliana. Environ Exp Bot 57:187–194

    CAS  Google Scholar 

  • Mantyla E, Lang V, Palva ET (1995) Role of abscisic acid in drought-induced freezing tolerance, cold acclimation, and accumulation of LT178 and RABI8 proteins in Arabidopsis thaliana. Plant Physiol 107:141–148

    PubMed  Google Scholar 

  • Metraux JP (2002) Recent breakthroughs in study of salicylic acid biosynthesis. Trends Plant Sci 7:331–334

    Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ 33:453–467

    PubMed  CAS  Google Scholar 

  • Moura JCMS, Bonine CAV, Viana JOF, Dornelas MC, Mazzafera P (2010) Abiotic and biotic stresses and changes in the lignin content and composition in plants. J Integr Plant Biol 52:360–376

    PubMed  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    PubMed  CAS  Google Scholar 

  • Müssig C, Altmann T (2003) Genomic brassinosteroid effects. J Plant Growth Regul 22:313–324

    PubMed  Google Scholar 

  • Nazar R, Iqbal N, Syeed S, Khan NA (2011) Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. J Plant Physiol 168:807–815

    PubMed  CAS  Google Scholar 

  • Nemhauser JL, Hong F, Chory J (2006) Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 126:467–475

    PubMed  CAS  Google Scholar 

  • Pauwels L, Inze D, Goossens A (2009) Jasmonate-inducible gene: what does it mean? Trends Plant Sci 14:87–91

    PubMed  CAS  Google Scholar 

  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:290–295

    PubMed  CAS  Google Scholar 

  • Peng Z-Y, Zhou X, Li L, Yu X, Li H, Cao G, Bai M, Wang X, Jiang C, Jiang Z, Lu H, Hou X, Qu L, Wang Z, Zuo J, Fu X, Su Z, Li S, Guo H (2009) Arabidopsis hormone database: a comprehensive genetic and phenotypic information database for plant hormone research in Arabidopsis. Nucleic Acids Res 37(suppl 1):D975–D982. doi:10.1093/nar/gkn873

    PubMed  CAS  Google Scholar 

  • Peng Z, Han C, Yuan L, Zhang K, Huang H, Ren C (2011) Brassinosteroid enhances jasmonate-induced anthocyanin accumulation in Arabidopsis seedlings. J Integr Plant Biol. doi:10.1111/j.17447909.2011.01042.x

  • Piotrowska A, Bajguz A, Godlewska-Zylkiewicz B, Czerpak R, Kaminska M (2009) Jasmonic acid as modulator of lead toxicity in aquatic plant Wolffia arrhiza (Lemnaceae). Environ Exp Bot 66:507–513

    CAS  Google Scholar 

  • Potters G, Pasternak T, Guisez Y, Jansen MAK (2009) Different stresses, similar morphogenic responses: integrating a plethora of pathways. Plant Cell Environ 32:158–169

    PubMed  Google Scholar 

  • Raskin I (1992) Role of salicylic acid in plants. Annu Rev Plant Physiol Plant Mol Biol 43:439–463

    CAS  Google Scholar 

  • Reski R (2006) Small molecules on the move: homeostasis, crosstalk, and molecular action of phytohormones. Plant Biol 8:277–280

    CAS  Google Scholar 

  • Rivero RM, Shulaev V, Blumwald E (2009) Cytokinin-dependent photorespiration and the protection of photosynthesis during water deficit. Plant Physiol 150:1530–1540

    PubMed  CAS  Google Scholar 

  • Rock CD, Sakata Y, Quatrano RS (2010) Stress signaling I: the role of abscisic acid (ABA). In: Pareek A, Sopory SA, Bohner HJ, Govindjee (eds) Abiotic stress adaptation in plants: physiological, molecular and genomic foundation. Springer, Dordrecht

    Google Scholar 

  • Rubio V, Bustos R, Irigoyen ML, Ximena C-L, Rojas-Triana M, Paz-Ares J (2009) Plant hormones and nutrient signaling. Plant Mol Biol 69:361–373

    PubMed  CAS  Google Scholar 

  • Rubio-Wilhelmi MM, Sanchez-Rodriguez E, Rosales MA, Blasco B, Rios JJ, Romero L, Blumwald E, Ruiz JM (2011) Effect of cytokinins on oxidative stress in tobacco plants under nitrogen deficiency. Environ Exp Bot 72:167–173

    CAS  Google Scholar 

  • Sasaki-Sekimoto Y, Taki N, Obayashi T, Aono M, Matsumoto F, Sakurai N, Suzuki H, Hirai MY, Noji M, Saito K, Masuda T, Takamiya K, Shibata D, Ohta H (2005) Coordinated activation of metabolic pathways for antioxidants and defence compounds by jasmonates and their roles in stress tolerance in Arabidopsis. Plant J 44:653–668

    PubMed  CAS  Google Scholar 

  • Saygideger S, Deniz F (2008) Effect of 24-epibrassinolide on biomass, growth and free proline concentration in Spirulina platensis (Cyanophyta) under NaCl stress. Plant Growth Regul 56:219–223

    CAS  Google Scholar 

  • Seo PJ, Lee A-K, Xiang F, Park C-M (2008) Molecular and functional profiling of Arabidopsis pathogenesis-related genes: insights into their roles in salt response of seed germination. Plant Cell Physiol 49:334–344

    PubMed  CAS  Google Scholar 

  • Shakirova FM (2001) Nonspecific resistance of plants to stress factors and its regulation. Gilem, Ufa

    Google Scholar 

  • Shakirova FM (2007) Role of hormonal system in manifestation of growth promoting and antistress action of salicylic acid. In: Hayat S, Ahmad A (eds) Salicylic acid – a plant hormone. Springer, The Netherlands

    Google Scholar 

  • Shakirova FM, Bezrukova MV (1997) Induction of wheat resistance against environmental salinization by salicylic acid. Biol Bull 24:109–112

    Google Scholar 

  • Shakirova FM, Bezrukova MV (1998) Effect of 24-epibrassinolide and salinity on the levels of ABA and lectin. Russ J Plant Physiol 45:388–391

    CAS  Google Scholar 

  • Shakirova FM, Konrad K, Klyachko NL, Kulaeva ON (1982) Relationship between the effect of cytokinin on the growth of pumpkin isolated cotyledons and RNA and protein synthesis in them. Russ J Plant Physiol 29:52–61

    CAS  Google Scholar 

  • Shakirova FM, Bezrukova MV, Avalbaev AM, Gimalov FR (2002) Stimulation of wheat germ agglutinin gene expression in root seedlings by 24-epibrassinolide. Russ J Plant Physiol 49:225–228

    CAS  Google Scholar 

  • Shakirova FM, Sakhabutdinova AR, Bezrukova MV, Fatkhutdinova RA, Fatkhutdinova DR (2003) Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci 164:317–322

    CAS  Google Scholar 

  • Shakirova FM, Allagulova ChR, Bezrukova MV, Gimalov FR (2005) Induction of expression of the dehydrin gene TADHN and accumulation of abscisic acid in wheat plants in hypothermia. Dokl Biochem Biophys 400:69–71

    PubMed  CAS  Google Scholar 

  • Shakirova FM, Allagulova ChR, Bezrukova MV, Aval’baev AM, Gimalov FR (2009) The role of endogenous ABA in cold-induced expression of the TADHN dehydrin gene in wheat seedlings. Russ J Plant Physiol 56:720–723

    CAS  Google Scholar 

  • Shakirova FM, Avalbaev AM, Bezrukova MV, Kudoyarova GR (2010a) Role of endogenous hormonal system in the realization of the antistress action of plant growth regulators on plants. Plant Stress 4:32–38

    Google Scholar 

  • Shakirova FM, Sakhabutdinova AR, Ishdavletova LOV (2010b) Influence of pretreatment with methyl jasmonate on wheat resistance to salt stress. Agrochimiya 7:26–32

    Google Scholar 

  • Shan C, Liang Z (2010) Jasmonic acid regulates ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress. Plant Sci 178:130–139

    CAS  Google Scholar 

  • Shimizu Y, Maeda K, Kato M, Shimomura K (2011) Co-expression of GbMYB1 and GbMYC1 induces anthocyanin accumulation in roots of cultured Gynura bicolor DC. plantlet on methyl jasmonate treatment. Plant Physiol Biochem 49:159–167

    PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    PubMed  CAS  Google Scholar 

  • Si Y, Zhang C, Meng S (2009) Gene expression changes in response to drought stress in Citrullus colocynthis. Plant Cell Rep 28:997–1009

    PubMed  CAS  Google Scholar 

  • Silva-Ortega CO, Ochoa-Alfaro AE, Reyes-Agüero JA, Aguado-Santacruz GA, Jiménez-Bremont JF (2008) Salt stress increases the expression of p5cs gene and induces proline accumulation in cactus pear. Plant Physiol Biochem 46:82–92

    PubMed  CAS  Google Scholar 

  • Srivastava S, Emery RJN, Rahman MH, Kav NNV (2007) A crucial role for cytokinins in pea ABR17-mediated enhanced germination and early seedling growth of Arabidopsis thaliana under saline and low-temperature stresses. J Plant Growth Regul 26:26–37

    CAS  Google Scholar 

  • Stamm P, Kumar PP (2010) The phytohormone signal network regulating elongation growth during shade avoidance. J Exp Bot 61:2889–2903

    PubMed  CAS  Google Scholar 

  • Stoparih G, Maksimovih I (2008) The effect of cytokinins on the concentration of hydroxyl radicals and the intensity of lipid peroxidation in nitrogen deficient wheat. Cereal Res Commun 36:601–609

    Google Scholar 

  • Sun J, Xu Y, Ye S, Jiang H, Chen Q, Liu F, Zhou W, Chen R, Li X, Tietz O, Wu X, Cohen JD, Palme K, Li C (2009) Arabidopsis ASA1 is importance for jasmonate-mediated regulation of auxin biosynthesis and transport during lateral root formation. Plant Cell 21:1495–1511

    PubMed  CAS  Google Scholar 

  • Syeed S, Anjum NA, Nazar R, Iqbal N, Masood A, Khan NA (2011) Salicylic acid-mediated changes in photosynthesis, nutrients content and antioxidant metabolism in two mustard (Brassica juncea L.) cultivars differing in salt tolerance. Acta Physiol Plant 33:877–886

    CAS  Google Scholar 

  • Szabados L, Savoure A (2009) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    PubMed  Google Scholar 

  • Tamaoki M, Freeman JL, Pilon-Smits EAH (2008) Cooperative ethylene and jasmonic acid signaling regulates selenite resistance in Arabidopsis. Plant Physiol 146:1219–1230

    PubMed  CAS  Google Scholar 

  • Thomas JC, McElwain EF, Bohnert HJ (1992) Convergent induction of osmotic stress-responses. Abscisic acid, cytokinin, and the effects of NaCI. Plant Physiol 100:416–423

    PubMed  CAS  Google Scholar 

  • Thulke O, Conrath U (1998) Salicylic acid has dual role in activation of defence-related genes in parsley. Plant J 14:35–42

    PubMed  CAS  Google Scholar 

  • Tognetti VB, Muhlenbock P, Van Breusegem F (2011) Stress homeostasis – the redox and auxin perspective. Plant Cell Environ. doi:10.1111/j.1365-3040.2011.02324.x

  • Traw MB, Bergelson J (2003) Interactive effects of jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Plant Physiol 133:1367–1375

    PubMed  CAS  Google Scholar 

  • Tuteja N, Sopory SK (2008) Chemical signaling under abiotic stress environment in plants. Plant Signal Behav 3:525–536

    PubMed  Google Scholar 

  • Upreti KK, Murti GSR (2004) Effects of brassinosteroids on growth, nodulation, phytohormone content and nitrogenase activity in French bean under water stress. Biol Plant 48:407–411

    CAS  Google Scholar 

  • Van der Ent S, Van Wees SCM, Pieterse CMJ (2009) Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochemistry 70:1581–1588

    PubMed  Google Scholar 

  • Verslues PE, Bray EA (2006) Role of abscisic acid (ABA) and Arabidopsis thaliana ABA-insensitive loci in low water potential-induced ABA and proline accumulation. J Exp Bot 57:201–212

    PubMed  CAS  Google Scholar 

  • Vert G, Walcher CL, Chory J, Namhauser JL (2008) Integration of auxin and brassinosteroid pathways by Auxin Response Factor 2. Proc Natl Acad Sci USA 105:9829–9834

    PubMed  CAS  Google Scholar 

  • Veselov DS, Veselov SYu, Vysotskaya LB, Kudoyarova GR, Farhutdinov RG (2007) Plant hormones. Regulation of the concentration and relationship with growth and water metabolism. Nauka, Moscow

    Google Scholar 

  • Vlasankova E, Kohout L, Klems M, Eder J, Reinohl V, Hradilik J (2009) Evaluation of biological activity of new synthetic brassinolide analogs. Acta Physiol Plant 31:987–993

    CAS  Google Scholar 

  • Vlot AC, Dempsey DA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206

    PubMed  CAS  Google Scholar 

  • Vysotskaya LB, Avalbaev AM, Yuldashev RA, Shakirova FM, Veselov SYu, Kudoyarova GR (2010) Regulation of cytokinin oxidase activity as a factor affecting the content of cytokinins. Russ J Plant Physiol 57:494–500

    CAS  Google Scholar 

  • Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Close TJ (2007) Large-scale expression profiling and physiological characterization of jasmonic acid-mediated adaptation of barley to salinity stress. Plant Cell Environ 30:410–421

    PubMed  CAS  Google Scholar 

  • Wang C, Yang A, Yin H, Zhang J (2008) Influence of water stress on endogenous hormone contents and cell damage of maize seedlings. J Integr Plant Biol 50:427–434

    PubMed  CAS  Google Scholar 

  • Wang L, Wang Z, Xu Y, Joo S-H, Kim S-K, Xue Z, Xu Z, Wang Z, Chong K (2009) OsGSR1 is involved in crosstalk between gibberellins and brassinosteroids in rice. Plant J 57:498–510

    PubMed  CAS  Google Scholar 

  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697

    PubMed  CAS  Google Scholar 

  • Widodo PJH, Newbigin E, Tester M, Bacic A, Roessner U (2009) Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. J Exp Bot 60:4089–4103

    PubMed  CAS  Google Scholar 

  • Wilkinson S, Davies WJ (2010) Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant Cell Environ 33:510–525

    PubMed  CAS  Google Scholar 

  • Wong CE, Singh MB, Bhalla PL (2009) Floral initiation process at the soybean shoot apical meristem may involve multiple hormonal pathways. Plant Signal Behav 4:648–651

    PubMed  CAS  Google Scholar 

  • Wu G, Zhang C, Chu L-Y, Shao H-B (2007) Responses of higher plants to abiotic stresses and agricultural sustainable development. J Plant Interact 2:135–147

    Google Scholar 

  • Xia X-J, Wang Y-J, Zhou Y-H, Tao Y, Mao W-H, Shi K, Asami T, Chen Z, Yu J-Q (2009) Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiol 150:801–814

    PubMed  CAS  Google Scholar 

  • Xu Y, Gianfagna T, Huang B (2010) Proteomic changes associated with expression of a gene (ipt) controlling cytokinin synthesis for improving heat tolerance in a perennial grass species. J Exp Bot 61:3273–3289

    PubMed  CAS  Google Scholar 

  • Xue YJ, Tao L, Yang ZM (2008) Aluminum-induced cell wall peroxidase activity and lignin synthesis are differentially regulated by jasmonate and nitric oxide. J Agric Food Chem 56:9676–9684

    PubMed  CAS  Google Scholar 

  • Yang Y, Qi M, Mei C (2004) Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress. Plant J 40:909–919

    PubMed  CAS  Google Scholar 

  • Yang D-H, Hettenhausen C, Baldwin IT, Wu J (2011) BAK1 regulates the accumulation of jasmonic acid and the levels of trypsin proteinase inhibitors in Nicotiana attenuata’s responses to herbivory. J Exp Bot 62:641–652

    PubMed  CAS  Google Scholar 

  • Ye N, Zhu G, Liu Y, Li Y, Zhang J (2011) ABA controls H2O2 accumulation through the induction of OsCATB in rice leaves under water stress. Plant Cell Physiol 52:689–698

    PubMed  CAS  Google Scholar 

  • Yu X, Li L, Zola J, Aluru M, Ye H, Foudree A, Guo H, Anderson S, Aluru S, Liu P, Rodermel S, Yin Y (2011) A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana. Plant J 65:634–646

    PubMed  CAS  Google Scholar 

  • Yuan G-F, Jia C-G, Li Z, Sun B, Zhang L-P, Liu N, Wang Q-M (2010) Effect of brassinosteroids on drought resistance and abscisic acid concentration in tomato under water stress. Sci Hortic 126:103–108

    CAS  Google Scholar 

  • Zalewski W, Galuszka P, Gasparis S, Orczyk W, Nadolska-Orczyk A (2010) Silencing of the HvCKX1 gene decreases the cytokinin oxidase/dehydrogenase level in barley and leads to higher plant productivity. J Exp Bot 61:1839–1851

    PubMed  CAS  Google Scholar 

  • Zavaleta-Mancera HA, López-Delgado H, Loza-Tavera H, Mora-Herrera M, Trevilla-García C, Vargas-Suárez M, Ougham H (2007) Cytokinin promotes catalase and ascorbate peroxidase activities and preserves the chloroplast integrity during dark-senescence. J Plant Physiol 164:1572–1582

    PubMed  CAS  Google Scholar 

  • Zhang M, Zhai Z, Tian X, Duan L, Li Z (2008) Brassinolide alleviated the adverse effect of water deficits on photosynthesis and the antioxidant of soybean (Glycine max L.). Plant Growth Regul 56:257–264

    CAS  Google Scholar 

  • Zhang S, Wei Y, Lu Y, Wang X (2009) Mechanisms of brassinosteroids interacting with multiple hormones. Plant Signal Behav 4:1117–1120

    PubMed  CAS  Google Scholar 

  • Zhang X, Chen S, Mou Z (2010) Nuclear localization of NPR1 is required for regulation of salicylate tolerance, isochorismate synthase 1 expression and salicylate accumulation in Arabidopsis. J Plant Physiol 167:144–148

    PubMed  CAS  Google Scholar 

  • Zhang A, Zhang J, Zhang J, Ye N, Zhang H, Tan M, Jiang M (2011) Nitric oxide mediates brassinosteroid-induced ABA biosynthesis involved in oxidative stress tolerance in maize leaves. Plant Cell Physiol 52:181–192

    PubMed  CAS  Google Scholar 

  • Ziosi V, Bonghi C, Bregoli AM, Trainotti L, Biondi S, Sutthiwal S, Kondo S, Costa G, Torrigiani P (2008) Jasmonate-induced transcriptional changes suggest a negative interference with the ripening syndrome in peach fruit. J Exp Bot 59:563–573

    PubMed  CAS  Google Scholar 

  • Zubo YO, Yamburenko MV, Selivankina SY, Shakirova FM, Avalbaev AM, Kudryakova NV, Zubkova NK, Liere K, Kulaeva ON, Kusnetsov VV, Borner T (2008) Cytokinin stimulates chloroplast transcription in detached barley leaves. Plant Physiol 148:1082–1093

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Foundation for Basic Research—Povoljie (project no. 11-04-97051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farida M. Shakirova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Shakirova, F.M. et al. (2012). Hormonal Intermediates in the Protective Action of Exogenous Phytohormones in Wheat Plants Under Salinity. In: Khan, N., Nazar, R., Iqbal, N., Anjum, N. (eds) Phytohormones and Abiotic Stress Tolerance in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25829-9_9

Download citation

Publish with us

Policies and ethics