Skip to main content

Interactions and Monitoring of Antipsychotic Drugs

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 212))

Abstract

As a consequence of individualized antipsychotic pharmacotherapy, many patients need more than a single drug, since they do not respond sufficiently to monotherapy. Other patients suffer from comorbid diseases and therefore require additional drugs from other pharmacological classes. Drug combinations, however, can give rise to pharmacokinetic and/or pharmacodynamic drug–drug interactions. Evaluation of pharmacokinetic interactions with antipsychotic drugs must consider substrate, inhibitor, and inducer properties for the cytochrome P450 (CYP) isoenzymes of all combined drugs. For consideration of pharmacodynamic interactions, special attention must be given to effects on dopamine D2, histamine H1, and acetylcholine M1 receptors and on cardiac potassium channels. Additive pharmacological actions of combined drugs on these target structures can induce adverse reactions such as extrapyramidal symptoms, drowsiness, metabolic disturbances leading to weight gain and cardiac problems, cognitive impairment, delirium, or ventricular arrhythmia. Measuring plasma concentrations, i.e., therapeutic drug monitoring (TDM), is valuable to adjust antipsychotic medication when drug combinations contain inhibitors or inducers that alter plasma concentrations of the antipsychotic drugs. Amalgamating the broad knowledge on drug–drug interactions and using appropriately the option to monitor plasma concentrations in blood will help to apply complex combination therapies with antipsychotic drugs with maximal efficiency and safety.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Baptista T, Zárate J, Joober R, Colasante C, Beaulieu S, Páez X, Hernández L (2004) Drug induced weight gain, an impediment to successful pharmacotherapy: focus on antipsychotics. Curr Drug Targets 5:279–299

    Article  PubMed  CAS  Google Scholar 

  • Barnes TR, Paton C (2011) Antipsychotic polypharmacy in schizophrenia: benefits and risks. CNS Drugs 25:383–399

    Article  PubMed  Google Scholar 

  • Bender S, Grohmann R, Engel RR, Degner D, Dittmann Balcar A, Rüther E (2004) Severe adverse drug reactions in psychiatric inpatients treated with neuroleptics. Pharmacopsychiatry 37(1):S46–S53

    PubMed  CAS  Google Scholar 

  • Benet LZ, Hoener B-A (2002) Changes in plasma binding have little clinical relevance. Clin Pharmacol Ther 71:115–121

    Article  PubMed  CAS  Google Scholar 

  • Bondolfi G, Morel F, Crettol S, Rachid F, Baumann P, Eap CB (2005) Increased clozapine plasma concentrations and side effects induced by smoking cessation in 2 CYP1A2 genotyped patients. Ther Drug Monit 27:539–543

    Article  PubMed  CAS  Google Scholar 

  • Cascorbi I (2011) P-glycoprotein: tissue distribution, substrates, and functional consequences of genetic variations. Handb Exp Pharmacol 201:261–283

    Article  PubMed  CAS  Google Scholar 

  • Castberg I, Skogvoll E, Spigset O (2007) Quetiapine and drug interactions: evidence from a routine therapeutic drug monitoring service. J Clin Psychiatry 68:1540–1545

    Article  PubMed  CAS  Google Scholar 

  • Chew ML, Mulsant BH, Poloock BG, Lehman ME, Greenspan A, Mahmoud RA, Kirshner MA, Sorisio DA, Bies RR, Gharabawi G (2008) Anticholinergic activity of 107 medications commonly used by older adults. J Am Geriatr Soc 56:1333–1341

    Article  PubMed  Google Scholar 

  • Cole ML, Trigoboff E, Demler TL, Opler LA (2010) Impact of smoking cessation on psychiatric inpatients treated with clozapine or olanzapine. J Psychiatr Pract 16:75–81

    Article  PubMed  Google Scholar 

  • Crumb WJ Jr, Ekins S, Sarazan RD, Wikel JH, Wrighton SA, Carlson C, Beasley CM Jr (2006) Effects of antipsychotic drugs on I(to), I (Na), I (sus), I (K1), and hERG: QT prolongation, structure activity relationship, and network analysis. Pharm Res 23:1133–1143

    Article  PubMed  CAS  Google Scholar 

  • Dobrinas M, Cornuz J, Oneda B, Kohler Serra M, Puhl M, Eap CB (2011) Impact of smoking, smoking cessation, and genetic polymorphisms on CYP1A2 activity and inducibility. Clin Pharmacol Ther 90:117–125

    Article  PubMed  CAS  Google Scholar 

  • DeGorter MK, Xia CQ, Yang JJ, Kim RB (2012) Drug transporters in drug efficacy and toxicity. Annu Rev Pharmacol Toxicol 52:249–273

    Article  PubMed  CAS  Google Scholar 

  • Dürr D, Stieger B, Kullak-Ublick GA, Rentsch KM, Steinert HC, Meier PJ, Fattinger K (2000) St John’s Wort induces intestinal P-glycoprotein/MDR1 and intestinal and hepatic CYP3A4. Clin Pharmacol Ther 68:598–604

    Article  PubMed  Google Scholar 

  • Faber MS, Jetter A, Fuhr U (2005) Assessment of CYP1A2 activity in clinical practice: why, how, and when? Basic Clin Pharmacol Toxicol 97:125–134

    Article  PubMed  CAS  Google Scholar 

  • Farde L, Nordström AL, Wiesel F-A, Pauli S, Halldin C, Sedvall G (1992) Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine Relation to extrapyramidal side effects. Arch Gen Psychiatry 49:538–544

    Article  PubMed  CAS  Google Scholar 

  • Farde L, Wiesel FA, Halldin C, Sedvall G (1988) Central D2-dopamine receptor occupancy in schizophrenic patients treated with antipsychotic drugs. Arch Gen Psychiatry 45:71–76

    Article  PubMed  CAS  Google Scholar 

  • Faries D, Ascher-Svanum H, Zhu B, Correll C, Kane J (2005) Antipsychotic monotherapy and polypharmacy in the naturalistic treatment of schizophrenia with atypical antipsychotics. BMC Psychiatry 5:26

    Article  PubMed  Google Scholar 

  • Freudenreich O, Goff DC (2002) Antipsychotic combination therapy in schizophrenia. A review of efficacy and risks of current combinations. Acta Psychiatr Scand 106:323–330

    Article  PubMed  CAS  Google Scholar 

  • Ghadirian AM, Annable L, Bélanger MC, Chouinard G (1996) A cross-sectional study of parkinsonism and tardive dyskinesia in lithium-treated affective disordered patients. J Clin Psychiatry 57:22–28

    PubMed  CAS  Google Scholar 

  • Goodwin G, Fleischhacker W, Arango C, Baumann P, Davidson M, de Hert M, Falkai P, Kapur S, Leucht S, Licht R, Naber D, O’Keane V, Papakostas G, Vieta E, Zohar J (2009) Advantages and disadvantages of combination treatment with antipsychotics ECNP Consensus Meeting, March 2008, Nice. Eur Neuropsychopharmacol 19:520–532

    Article  PubMed  CAS  Google Scholar 

  • Gross G, Drescher K (2012) The role of dopamine D3 receptors for antipsychotic activity and cognitive functions. In: Geyer M, Gross G (eds) Novel antischizophrenia treatments, vol 213, Handbook of Experimental Pharmacology. Springer, Berlin

    Google Scholar 

  • Gründer G, Carlsson A, Wong DF (2003) Mechanism of new antipsychotic medications: occupancy is not just antagonism. Arch Gen Psychiatry 60:974–977

    Article  PubMed  Google Scholar 

  • Gründer G, Hiemke C, Paulzen M, Veselinovic T, Vernaleken I (2011) Therapeutic plasma concentrations of antidepressants and antipsychotics: lessons from PET imaging. Pharmacopsychiatry 44:236–248

    Article  PubMed  Google Scholar 

  • Heal DJ, Gosden J, Jackson HC, Cheetham SC, Smith SL (2012) In: Gross G, Geyer M (ed) Current antipsychotics. Handbook of Experimental Pharmacology, vol 212. Springer, Berlin, pp xxx–xxx

    Google Scholar 

  • Hiemke C, Baumann P, Bergemann N, Conca A, Dietmaier O, Egberts K, Fric M, Gerlach M, Greiner C, Gründer G, Haen E, Havemann-Reinecke U, Jaquenoud Sirot E, Kirchherr H, Laux G, Lutz UC, Messer T, Müller MJ, Pfuhlmann B, Rambeck B, Riederer P, Schoppek B, Stingl J, Uhr M, Ulrich S, Waschgler R, Zernig G (2011) AGNP consensus guidelines for therapeutic drug monitoring in psychiatry—update 2011. Pharmacopsychiatry 44:195–235

    Article  Google Scholar 

  • Jecel J, Michel TM, Gutknecht L, Schmidt D, Pfuhlmann B, Jabs BE (2005) Toxic clozapine serum levels during acute urinary tract infection: a case report. Eur J Clin Pharmacol 60:909–910

    Article  PubMed  Google Scholar 

  • Jensen NH, Rodriguiz RM, Caron MG, Wetsel WC, Rothman RB, Roth BL (2008) N-desalkylquetiapine, a potent norepinephrine reuptake inhibitor and partial 5-HT1A agonist, as a putative mediator of quetiapine’s antidepressant activity. Neuropsychopharmacology 33:2303–2312

    Article  PubMed  CAS  Google Scholar 

  • Jerling M, Lindström L, Bondesson U, Bertilsson L (1994) Fluvoxamine inhibition and carbamazepine induction of the metabolism of clozapine: evidence from a therapeutic drug monitoring service. Ther Drug Monit 16:368–374

    Article  PubMed  CAS  Google Scholar 

  • Juurlink DN, Mamdani MM, Kopp A, Laupacis A, Redelmeier DA (2003) Drug-drug interactions among elderly patients hospitalized for drug toxicity. J Am Med Assoc 289:1652–1658

    Article  CAS  Google Scholar 

  • Kannakeril PC, Roden DM (2007) Drug-induced long QT and torsade de pointes: recent advances. Curr Opin Cardiol 22:39–43

    Article  Google Scholar 

  • Kapur S, Zipursky R, Jones C, Shammi CS, Remington G, Seeman P (2000) A positron emission tomography study of quetiapine in schizophrenia: a preliminary finding of an antipsychotic effect with only transiently high dopamine D2 receptor occupancy. Arch Gen Psychiatry 57:553–559

    Article  PubMed  CAS  Google Scholar 

  • Kapur S, Zipursky RB, Remington G, Jones C, DaSilva J, Wilson AA, Houle S (1998) 5-HT2 and D2 receptor occupancy of olanzapine in schizophrenia: a PET investigation. Am J Psychiatry 155:921–928

    PubMed  CAS  Google Scholar 

  • Kirschbaum KM, Uhr M, Holthoewer D, Namendorf C, Pierzik C, Hiemke C, Schmitt U (2011) Pharmacokinetics of acute and subchronic aripiprazole in P-glycoprotein deficient mice. Neuropharmacology 2010(59):474–479

    Google Scholar 

  • Köhler GI, Bode-Böger SM, Busse R, Hoopmann M, Welte T, Böger RH (2000) Drug-drug interactions in medical patients: effects of in-hospital treatment and relation to multiple drug use. Int J Clin Pharmacol Ther 38:504–513

    PubMed  Google Scholar 

  • Lee S-O, Kim Y-J, Kim K-T, Choe H, Jo S-H (2006) Blockade of HERG human K+ channels on I Kr of guinea-pig cardiomyocytes by the antipsychotic drug clozapine. Br J Pharmacol 148:499–509

    Article  PubMed  CAS  Google Scholar 

  • Letsas KP, Sideris A, Kounas SP, Efremidis M, Korantzopoulos P, Kardaras F (2006) Drug-induced QT interval prolongation after ciprofloxacin administration in a patient receiving olanzapine. Int J Cardiol 109:273–274

    Article  PubMed  Google Scholar 

  • Lowe EJ, Ackman ML (2010) Impact of tobacco smoking cessation on stable clozapine or olanzapine treatment. Ann Pharmacother 44:727–732

    Article  Google Scholar 

  • Lu ML, Lane HY, Chen KP, Jann MW, Su MH, Chang WH (2000) Fluvoxamine reduces the clozapine dosage needed in refractory schizophrenic patients. J Clin Psychiatry 61:594–599

    Article  PubMed  CAS  Google Scholar 

  • Lynch T, Price A (2007) The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am Fam Physician 76:391–396

    PubMed  Google Scholar 

  • Ma X, Idie J, Gonzalez FJ (2008) The pregnane X receptor: from bench to bedside. Expert Opin Drug Metab Toxicol 4:895–908

    Article  PubMed  CAS  Google Scholar 

  • Medori R, Mannaert E, Gründer G (2006) Plasma antipsychotic concentration and receptor occupancy, with special focus on risperidone long-acting injectable. Eur Neuropsychopharmacol 16:233–240

    Article  PubMed  CAS  Google Scholar 

  • Misawa F, Shimizu K, Fujii Y, Miyata R, Koshiishi F, Kobayashi M, Shida H, Oguchi Y, Okumura Y, Ito O, Kayama H (2011) Is antipsychotic polypharmacy associated with metabolic syndrome even after adjustment for lifestyle effects?: a cross sectional study. BMC Psychiatry 11:118

    Article  PubMed  Google Scholar 

  • Mitchell AJ, Vancampfort D, Sweers K, van Winkel R, Yu W, De Hert M (2011) Prevalence of metabolic syndrome and metabolic abnormalities in schizophrenia and related disorders--A systematic review and meta-analysis. Schizophr Bull 2011 [Epub ahead of print]

    Google Scholar 

  • Moons T, de Roo M, Claes S, Dom G (2011) Relationship between P-glycoprotein and second-generation antipsychotics. Pharmacogenomics 12:1193–1211

    Article  PubMed  CAS  Google Scholar 

  • Nakamura A, Mihara K, Nagai G, Suzuki T, Kondo T (2009) Pharmacokinetic and pharmacodynamic interactions between carbamazepine and aripiprazole in patients with schizophrenia. Ther Drug Monit 31:575–578

    Article  PubMed  CAS  Google Scholar 

  • Newcomer JW (2007) Metabolic considerations in the use of antipsychotic medications: a review of recent evidence. J Clin Psychiatry 68(suppl 1):20–27

    PubMed  CAS  Google Scholar 

  • Nickl-Jockschat T, Paulzen M, Schneider F, Grözinger M (2009) Drug interaction can lead to undetectable serum concentrations of quetiapine in the presence of carbamazepine. Clin Neuropharmacol 32(1):55

    Article  PubMed  Google Scholar 

  • Pang X, Cheng J, Krausz KW, Guo DA, Gonzalez FJ (2011) Pregnane X receptor-mediated induction of Cyp3a by black cohosh. Xenobiotica 41:112–123

    Article  PubMed  CAS  Google Scholar 

  • Pfuhlmann B, Hiemke C, Unterecker S, Burger R, Schmidtke A, Riederer P, Deckert J, Jabs B (2009) Toxic clozapine serum levels during inflammatory reactions. J Clin Psychopharmacol 29:392–394

    Article  PubMed  Google Scholar 

  • Richelsen E, Souder T (2000) Binding of antipsychotic drugs to human brain receptors. Focus on newer generation compounds. Life Sci 68:29–39

    Article  Google Scholar 

  • Roden DM (2004) Drug-induced prolongation of the QT interval. N Engl J Med 350(10):1013–1022

    Article  PubMed  CAS  Google Scholar 

  • Roden DM, Viswanthan PC (2005) Genetics of acquired long QT syndrome. J Clin Invest 115:2025–2032

    Article  PubMed  CAS  Google Scholar 

  • Rosenzweig P, Canal M, Patat A, Bergougnan L, Zieleniuk I, Bianchetti G (2002) A review of the pharmacokinetics tolerability and pharmacodynamics of amisulpride in healthy volunteers. Hum Psychopharmacol 17:1–13

    Article  PubMed  CAS  Google Scholar 

  • Silver H (2001) Fluvoxamine as an adjunctive agent in schizophrenia. CNS Drug Rev 7:283–304

    Article  PubMed  CAS  Google Scholar 

  • Silvestre JS, Prous J (2005) Research on adverse drug events. I. Muscarinic M3 receptor binding affinity could predict the risk of antipsychotics to induce type 2 diabetes. J Methods Find Exp Clin Pharmacol 27:289–304

    Article  CAS  Google Scholar 

  • Sinz M, Wallace G, Sahi J (2008) Current industrial practices in assessing CYP450 enzyme induction: preclinical and clinical. AAPS J 10:391–400

    Article  PubMed  CAS  Google Scholar 

  • Spina E, de Leon J (2007) Metabolic drug interactions with newer antipsychotics: a comparative review. Basic Clin Pharmacol Toxicol 100:4–22

    Article  PubMed  CAS  Google Scholar 

  • Spina E, Santoro V, D’Arrigo C (2008) Clinically relevant pharmacokinetic drug interactions with second-generation antidepressants: an update. Clin Ther 30:1206–1227

    Article  PubMed  CAS  Google Scholar 

  • Spina E, Scordo MG, D’Arrigo C (2003) Metabolic drug interactions with new psychotropic agents. Fundam Clin Pharmacol 17:517–538

    Article  PubMed  CAS  Google Scholar 

  • Szegedi A, Anghelescu I, Wiesner J, Schlegel S, Weigmann H, Härtter S, Hiemke C, Wetzel H (1999) Addition of low-dose fluvoxamine to low-dose clozapine monotherapy in schizophrenia: drug monitoring and tolerability data from a prospective clinical trial. Pharmacopsychiatry 32:148–153

    Article  PubMed  CAS  Google Scholar 

  • Talbot PS, Laruelle M (2002) The role of in vivo molecular imaging with PET and SPECT in the elucidation of psychiatric drug action and new drug development. Eur Neuropsychopharmacol 12:503–511

    Article  PubMed  CAS  Google Scholar 

  • Talvik M, Nordstrom AL, Larsen NE, Jucaite A, Cervenka S, Halldin C, Farde L (2004) A cross-validation study on the relationship between central D2 receptor occupancy and serum perphenazine concentration. Psychopharmacology 175:148–153

    Article  PubMed  CAS  Google Scholar 

  • Tisdale JE, Overholser BR, Wroblewski HA, Sowinski KM, Amankwa K, Borzak S, Kingery JR, Coram R, Zipes DP, Flockhart DA, Kovacs RJ (2011) Enhanced sensitivity to drug-induced QT interval lenthening in patients with heart failure due to left ventricular systolic dysfunction. J Clin Pharmacol 70:16–23

    Google Scholar 

  • Tranulis C, Skalli L, Lalonde P, Nicole L, Stip E (2008) Benefits and risks of antipsychotic polypharmacy: an evidence-based review of the literature. Drug Saf 31:7–20

    Article  PubMed  CAS  Google Scholar 

  • Unterecker S, Warrings B, Deckert J, Pfuhlmann B (2012) Correlation of QTc interval-prolongation and serum level of citalopram after intoxication – a case report. Pharmacopsychiatry 45:30–34

    Article  PubMed  CAS  Google Scholar 

  • van Noord C, Eijgelsheim M, Stricker BH (2010) Drug- and non-drug-associated QT interval prolongation. Br J Clin Pharmacol 70:16–23

    Article  PubMed  Google Scholar 

  • Wenzel-Seifert K, Wittmann M, Haen E (2011) QTc prolongation by psychotropic drugs and the risk of Torsades de pointes. Dtsch Ärztebl Int 108:687–693

    PubMed  Google Scholar 

  • Wong DF, Gründer G, Brasic JR (2007) Brain imaging research: does the science serve clinical practice? Int Rev Psychiatry 19:541–558

    Article  PubMed  Google Scholar 

  • Zhou SF (2009) Polymorphims of human cytochrome P450 2D6 and its clinical significance: part II. Clin Pharmacokinet 48:761–804

    Article  PubMed  CAS  Google Scholar 

  • Zhu BT (2010) On the general mechanism of selective induction of cytochrome P450 enzymes by chemicals: some theoretical considerations. Expert Opin Drug Metab Toxicol 6:483–494

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Hiemke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hiemke, C., Pfuhlmann, B. (2012). Interactions and Monitoring of Antipsychotic Drugs. In: Gross, G., Geyer, M. (eds) Current Antipsychotics. Handbook of Experimental Pharmacology, vol 212. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25761-2_10

Download citation

Publish with us

Policies and ethics