Skip to main content

Muscarinic Mechanisms in Psychotic Disorders

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 213))

Abstract

Schizophrenia is a devastating disease with several broad symptom clusters and the current monoamine-based treatments do not adequately treat the disease, especially negative and cognitive symptoms. A proposed alternative approach for treating schizophrenia is through the use of compounds that activate certain muscarinic receptor subtypes, the so-called muscarinic cholinergic hypothesis theory. This theory has been revitalized with a number of recent and provocative findings including postmortem reports in schizophrenia patients showing decreased numbers of muscarinic M1 and M4 receptors in brain regions associated with schizophrenia as well as decreased muscarinic receptors in an in vivo imaging study. Studies with M4 knockout mice have shown that there is a reciprocal relationship between M4 and dopamine receptor function, and a number of muscarinic agonists have shown antidopaminergic activity in a variety of preclinical assays predictive of antipsychotic efficacy in the clinic. Furthermore, the M1/M4 preferring partial agonist xanomeline has been shown to have antipsychotic-like and pro-cognitive activity in preclinical models and in clinical trials to decrease psychotic-like behaviors in Alzheimer’s patients and positive, negative, and cognitive symptoms in patients with schizophrenia. Therefore, we propose that an agonist with M1 and M4 interactions would effectively treat core symptom clusters associated with schizophrenia. Currently, research is focused on developing subtype-selective muscarinic agonists and positive allosteric modulators that have reduced propensity for parasympathetic side-effects, but retain the therapeutic benefit observed with their less selective predecessors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abi-Dargham A, Gil R, Krystal J, Baldwin RM, Seibyl JP, Bowers M, van Dyck CH, Charney DS, Innis RB, Laruelle M (1998) Increased striatal dopamine transmission in schizophrenia: confirmation in a second cohort. Am J Psychiatry 155:761–767

    PubMed  CAS  Google Scholar 

  • Achim AM, Maziade M, Raymond E, Olivier D, Merette C, Roy MA (2011) How prevalent are anxiety disorders in schizophrenia? A meta-analysis and critical review on a significant association. Schizophr Bull 37:811–821

    PubMed  Google Scholar 

  • Anagnostaras SG, Murphy GG, Hamilton SE, Mitchell SL, Rahnama NP, Nathanson NM, Silva AJ (2003) Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice. Nat Neurosci 6:51–58

    PubMed  CAS  Google Scholar 

  • Andersen MB, Fink-Jensen A, Peacock L, Gerlach J, Bymaster F, Lundbaek JA, Werge T (2003) The muscarinic M1/M4 receptor agonist xanomeline exhibits antipsychotic-like activity in Cebus apella monkeys. Neuropsychopharmacology 28:1168–1175

    PubMed  CAS  Google Scholar 

  • Andreasen NC, Carpenter WT Jr (1993) Diagnosis and classification of schizophrenia. Schizophr Bull 19(2):199–214

    PubMed  CAS  Google Scholar 

  • Araya R, Noguchi T, Yuhki M, Kitamura N, Higuchi M, Saido TC, Seki K, Itohara S, Kawano M, Tanemura K, Takashima A, Yamada K, Kondoh Y, Kanno I, Wess J, Yamada M (2006) Loss of M5 muscarinic acetylcholine receptors leads to cerebrovascular and neuronal abnormalities and cognitive deficits in mice. Neurobiol Dis 24:334–344

    PubMed  CAS  Google Scholar 

  • Auerbach JM, Segal M (1996) Muscarinic receptors mediating depression and long-term potentiation in rat hippocampus. J Physiol 492:479–493

    PubMed  CAS  Google Scholar 

  • Barak S (2009) Modeling cholinergic aspects of schizophrenia: focus on the antimuscarinic syndrome. Behav Brain Res 204:335–351

    PubMed  CAS  Google Scholar 

  • Bartko SJ, Romberg C, White B, Wess J, Bussey TJ, Saksida LM (2011) Intact attentional processing but abnormal responding in M1 muscarinic receptor-deficient mice using an automated touchscreen method. Neuropharmacology 61:1366–1378

    PubMed  CAS  Google Scholar 

  • Basile AS, Fedorova I, Zapata A, Liu X, Shippenberg T, Duttaroy A, Yamada M, Wess J (2002) Deletion of the M5 muscarinic acetylcholine receptor attenuates morphine reinforcement and withdrawal but not morphine analgesia. Proc Natl Acad Sci 99:11452–11457

    PubMed  CAS  Google Scholar 

  • Bennett JP Jr, Enna SJ, Bylund DB, Gillin JC, Wyatt RJ, Snyder SH (1979) Neurotransmitter receptors in frontal cortex of schizophrenics. Arch Gen Psychiatry 36:927–934

    PubMed  CAS  Google Scholar 

  • Berkeley JL, Gomeza J, Wess J, Hamilton SE, Nathanson NM, Levey AI (2001) M1 muscarinic acetylcholine receptors activate extracellular signal-regulated kinase in CA1 pyramidal neurons in mouse hippocampal slices. Mol Cell Neurosci 18:512–524

    PubMed  CAS  Google Scholar 

  • Bodick NC, Offen WW, Levey AI, Cutler NR, Gauthier SG, Satlin A, Shannon HE, Tollefson GD, Rasmussen K, Bymaster FP, Hurley DJ, Potter WZ, Paul SM (1997) Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease. Arch Neurol 54:465–473

    PubMed  CAS  Google Scholar 

  • Bolam JP, Francis CM, Henderson Z (1991) Cholinergic input to dopaminergic neurons in the substantia nigra: a double immunocytochemical study. Neuroscience 41:483–494

    PubMed  CAS  Google Scholar 

  • Bowie CR, Harvey PD (2006) Cognitive deficits and functional outcome in schizophrenia. Neuropsychiatr Dis Treat 2:531–536

    PubMed  Google Scholar 

  • Bradley SR, Lameh J, Ohrmund L, Son T, Bajpai A, Nguyen D, Friberg M, Burstein ES, Spalding TA, Ott TR, Schiffer HH, Tabatabaei A, McFarland K, Davis RE, Bonhaus DW (2010) AC-260584, an orally bioavailable M(1) muscarinic receptor allosteric agonist, improves cognitive performance in an animal model. Neuropharmacology 58:365–373

    PubMed  CAS  Google Scholar 

  • Brady AE, Jones CK, Bridges TM, Kennedy JP, Thompson AD, Heiman JU, Breininger ML, Gentry PR, Yin H, Jadhav SB, Shirey JK, Conn PJ, Lindsley CW (2008) Centrally active allosteric potentiators of the M4 muscarinic acetylcholine receptor reverse amphetamine-induced hyperlocomotor activity in rats. J Pharmacol Exp Ther 327:941–953

    PubMed  CAS  Google Scholar 

  • Breier A, Su TP, Saunders R, Carson RE, Kolachana BS, de Bartolomeis A, Weinberger DR, Weisenfeld N, Malhotra AK, Eckelman WC, Pickar D (1997) Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc Natl Acad Sci U S A 94:2569–2574

    PubMed  CAS  Google Scholar 

  • Bridges TM, LeBois EP, Hopkins CR, Wood MR, Jones CK, Conn PJ, Lindsley CW (2010a) The antipsychotic potential of muscarinic allosteric modulation. Drug News Perspect 23:229–240

    PubMed  CAS  Google Scholar 

  • Bridges TM, Lewis LM, Weaver CD, Lindsley CW (2010) Discovery of the first mAChR 5 (M5) selective ligand, an M5 positive allosteric modulator (PAM). Probe Reports from the NIH Molecular Libraries Program. National Center for Biotechnology Information. PMID: 21433383

    Google Scholar 

  • Buchanan RW, Conley RR, Dickinson D, Ball MP, Feldman S, Gold JM, McMahon RP (2008) Galantamine for the treatment of cognitive impairments in people with schizophrenia. Am J Psychiatry 165:82–89

    PubMed  Google Scholar 

  • Burgard EC, Sarvey JM (1990) Muscarinic receptor activation facilitates the induction of long-term potentiation (LTP) in the rat dentate gyrus. Neurosci Lett 116:34–39

    PubMed  CAS  Google Scholar 

  • Bymaster FP, Calligaro DO, Falcone JF, Marsh RD, Moore NA, Tye NC, Seeman P, Wong DT (1996) Radioreceptor binding profile of the atypical antipsychotic olanzapine. Neuropsychopharmacology 14:87–96

    PubMed  CAS  Google Scholar 

  • Bymaster FP, Shannon HE, Rasmussen K, Delapp NW, Mitch CH, Ward JS, Calligaro DO, Ludvigsen TS, Sheardown MJ, Olesen PH, Swedberg MD, Sauerberg P, Fink-Jensen A (1998) Unexpected antipsychotic-like activity with the muscarinic receptor ligand (5R,6R)6-(3-propylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[3.2.1]octane. Eur J Pharmacol 356:109–119

    PubMed  CAS  Google Scholar 

  • Bymaster FP, Nelson DL, DeLapp NW, Falcone JF, Eckols K, Truex LL, Foreman MM, Lucaites VL, Calligaro DO (1999a) Antagonism by olanzapine of dopamine D1, serotonin2, muscarinic, histamine H1 and alpha 1-adrenergic receptors in vitro. Schizophr Res 37:107–122

    PubMed  CAS  Google Scholar 

  • Bymaster FP, Shannon HE, Rasmussen K, DeLapp NW, Ward JS, Calligaro DO, Mitch CH, Whitesitt C, Ludvigsen TS, Sheardown M, Swedberg M, Rasmussen T, Olesen PH, Jeppesen L, Sauerberg P, Fink-Jensen A (1999b) Potential role of muscarinic receptors in schizophrenia. Life Sci 64:527–534

    PubMed  CAS  Google Scholar 

  • Bymaster FP, Felder C, Ahmed S, McKinzie D (2002) Muscarinic receptors as a target for drugs treating schizophrenia. Curr Drug Targets CNS Neurol Disord 1:163–181

    PubMed  CAS  Google Scholar 

  • Bymaster FP, Carter PA, Yamada M, Gomeza J, Wess J, Hamilton SE, Nathanson NM, McKinzie DL, Felder CC (2003a) Role of specific muscarinic receptor subtypes in cholinergic parasympathomimetic responses, in vivo phosphoinositide hydrolysis, and pilocarpine-induced seizure activity. Eur J Neurosci 17:1403–1410

    PubMed  Google Scholar 

  • Bymaster FP, Felder CC, Tzavara E, Nomikos GG, Calligaro DO, Mckinzie DL (2003b) Muscarinic mechanisms of antipsychotic atypicality. Prog Neuropsychopharmacol Biol Psychiatry 27:1125–1143

    PubMed  CAS  Google Scholar 

  • Calabresi P, Centonze D, Gubellini P, Bernardi G (1999) Activation of M1-like muscarinic receptors is required for the induction of corticostriatal LTP. Neuropharmacology 38:323–326

    PubMed  CAS  Google Scholar 

  • Cardinal RN, Pennicott DR, Sugathapala CL, Robbins TW, Everitt BJ (2001) Impulsive choice induced in rats by lesions of the nucleus accumbens core. Science 292:2499–2501

    PubMed  CAS  Google Scholar 

  • Carey GJ, Billard W, Binch H 3rd, Cohen-Williams M, Crosby G, Grzelak M, Guzik H, Kozlowski JA, Lowe DB, Pond AJ, Tedesco RP, Watkins RW, Coffin VL (2001) SCH 57790, a selective muscarinic M(2) receptor antagonist, releases acetylcholine and produces cognitive enhancement in laboratory animals. Eur J Pharmacol 431:189–200

    PubMed  CAS  Google Scholar 

  • Chan WY, McKinzie DL, Bose S, Mitchell SN, Witkin JM, Thompson RC, Christopoulos A, Lazareno S, Birdsall NJ, Bymaster FP, Felder CC (2008) Allosteric modulation of the muscarinic M4 receptor as an approach to treating schizophrenia. Proc Natl Acad Sci USA 105:10978–10983

    PubMed  CAS  Google Scholar 

  • Cohen LH, Thale T, Tissenbaum MJ (1944) Acetylcholine treatment of schizophrenia. Arch Neurol Psychiatry 51:171–175

    Google Scholar 

  • Conn PJ, Tamminga C, Schoepp DD, Lindsley C (2008) Schizophrenia: moving beyond monoamine antagonists. Mol Interv 8:99–107

    PubMed  CAS  Google Scholar 

  • Conn PJ, Jones CK, Lindsley CW (2009) Subtype-selective allosteric modulators of muscarinic receptors for the treatment of CNS disorders. Trends Pharmacol Sci 30:148–155

    PubMed  CAS  Google Scholar 

  • Crook JM, Dean B, Pavey G, Copolov D (1999) The binding of [3 H]AF-DX 384 is reduced in the caudate-putamen of subjects with schizophrenia. Life Sci 64:1761–1771

    PubMed  CAS  Google Scholar 

  • Crook JM, Tomaskovic-Crook E, Copolov DL, Dean B (2000) Decreased muscarinic receptor binding in subjects with schizophrenia: a study of the human hippocampal formation. Biol Psychiatry 48:381–388

    PubMed  CAS  Google Scholar 

  • Crook JM, Tomaskovic-Crook E, Copolov DL, Dean B (2001) Low muscarinic receptor binding in prefrontal cortex from subjects with schizophrenia: a study of Brodmann’s areas 8, 9, 10, and 46 and the effects of neuroleptic drug treatment. Am J Psychiatry 158:918–925

    PubMed  CAS  Google Scholar 

  • Dalley JW, Mar AC, Economidou D, Robbins TW (2008) Neurobehavioral mechanisms of impulsivity: fronto-striatal systems and functional neurochemistry. Pharmacol Biochem Behav 90:250–260

    PubMed  CAS  Google Scholar 

  • Dasari S, Gulledg AT (2011) M1 and M4 receptors modulate hippocampal pyramidal neurons. J Neurophysiol 105:779–792

    PubMed  Google Scholar 

  • Davis KL, Kahn RS, Ko G, Davidson M (1991) Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry 148:1474–1486

    PubMed  CAS  Google Scholar 

  • De Klippel N, Sarre S, Ebinger G, Michotte Y (1993) Effect of M1- and M2-muscarinic drugs on striatal dopamine release and metabolism: an in vivo microdialysis study comparing normal and 6-hydroxydopamine-lesioned rats. Brain Res 630:57–64

    PubMed  CAS  Google Scholar 

  • De Luca V, Wang H, Squassina A, Wong GW, Yeomans J, Kennedy JL (2004) Linkage of M5 muscarinic and alpha7-nicotinic receptor genes on 15q13 to schizophrenia. Neuropsychobiology 50:124–127

    PubMed  Google Scholar 

  • Dean B, Crook JM, Opeskin K, Hill C, Keks N, Copolov DL (1996) The density of muscarinic M1 receptors is decreased in the caudate-putamen of subjects with schizophrenia. Mol Psychiatry 1:54–58

    PubMed  CAS  Google Scholar 

  • Dean B, McLeod M, Keriakous D, McKenzie J, Scarr E (2002) Decreased muscarinic1 receptors in the dorsolateral prefrontal cortex of subjects with schizophrenia. Mol Psychiatry 7:1083–1091

    PubMed  CAS  Google Scholar 

  • Dean B, Bymaster FP, Scarr E (2003) Muscarinic receptors in schizophrenia. Curr Mol Med 3:419–426. http://www.ncbi.nlm.nih.gov/pubmed/7768353

    Google Scholar 

  • Dean B, Gray L, Keriakous D, Scarr E (2004) A comparison of M1 and M4 muscarinic receptors in the thalamus from control subjects and subjects with schizophrenia. Thalamus Relat Syst 2:287–295

    CAS  Google Scholar 

  • Dencker D, Wortwein G, Weikop P, Jeon J, Thomsen M, Sager TN, Mork A, Woldbye DPD, Wess J, Fink-Jensen A (2011) Involvement of a subpopulation of neuronal M4 muscarinic acetylcholine receptors in the antipsychotic-like effects of the M1/M4 preferring muscarinic receptor agonist xanomeline. J Neurosci 31:5905–5908

    PubMed  CAS  Google Scholar 

  • Deng C, Huang XF (2005) Decreased density of muscarinic receptors in the superior temporal gyrus in schizophrenia. J Neurosci Res 81:883–890

    PubMed  CAS  Google Scholar 

  • Dernovsek MZ, Sprah L (2009) Comorbid anxiety in patients with psychosis. Psychiatr Danub 21(suppl 1):43–50

    PubMed  Google Scholar 

  • Edelstein P, Schultz JR, Hirschowitz J, Kanter DR, Garver DL (1981) Physostigmine and lithium response in the schizophrenias. Am J Psychiatry 138:1078–1081

    PubMed  CAS  Google Scholar 

  • Eglen RM (1996) Muscarinic M2 and M3 receptor function in smooth muscle. Proc West Pharmacol Soc 39:57–60

    PubMed  CAS  Google Scholar 

  • Felder CC (1995) Muscarinic acetylcholine receptors: Signal transduction through multiple effectors. FASEB J 9:619–625

    PubMed  CAS  Google Scholar 

  • Felder CC, Bymaster FP, Ward J, DeLapp N (2000) Therapeutic opportunities for muscarinic receptors in the central nervous system. J Med Chem 43:4333–4353

    PubMed  CAS  Google Scholar 

  • Fisher JT, Vincent SG, Gomeza J, Yamada M, Wess J (2004) Loss of vagally mediated bradycardia and bronchoconstriction in mice lacking M2 or M3 muscarinic acetylcholine receptors. FASEB J 18:711–713

    PubMed  CAS  Google Scholar 

  • Friedman JL (2004) Cholinergic targets for cognitive enhancement in schizophrenia: focus on cholinesterase inhibitors and muscarinic agonists. Psychopharmacology (Berl) 174:45–53

    CAS  Google Scholar 

  • Gautam D, Heard TS, Cui Y, Miller G, Bloodworth L, Wess J (2004) Cholinergic stimulation of salivary secretion studied with M1 and M3 muscarinic receptor single- and double-knockout mice. Mol Pharmacol 66(2):260–7

    Google Scholar 

  • Gautam D, Duttaroy A, Cui Y, Han SJ, Deng C, Seeger T, Alzheimer C, Wess J (2006) M1-M3 muscarinic acetylcholine receptor-deficient mice: novel phenotypes. J Mol Neurosci 30:157–160

    PubMed  CAS  Google Scholar 

  • Gautam D, Jeon J, Li JH, Han SJ, Hamdan FF, Cui Y, Lu H, Deng C, Gavrilova O, Wess J (2008) Metabolic roles of the M3 muscarinic acetylcholine receptor studied with M3 receptor mutant mice: a review. J Recept Signal Transduct Res 28:93–108

    PubMed  CAS  Google Scholar 

  • Gerber DJ, Sotnikova TD, Gainetdinov RR, Huang SY, Caron MG, Tonegawa S (2001) Hyperactivity, elevated dopaminergic transmission, and response to amphetamine in M1 muscarinic acetylcholine receptor-deficient mice. Proc Natl Acad Sci 98:15312–15317

    PubMed  CAS  Google Scholar 

  • Gessa GL, Devoto P, Diana M, Flore G, Melis M, Pistis M (2000) Dissociation of haloperidol, clozapine, and olanzapine effects on electrical activity of mesocortical dopamine neurons and dopamine release in the prefrontal cortex. Neuropsychopharmacology 22:642–649

    PubMed  CAS  Google Scholar 

  • Goff DC, Hill M, Barch D (2011) The treatment of cognitive impairment in schizophrenia. Pharmacol Biochem Behav 99:245–253

    PubMed  CAS  Google Scholar 

  • Gomeza J, Zhang L, Kostenis E, Felder C, Bymaster F, Brodkin J, Shannon H, Xia B, Deng C, Wess J (1999) Enhancement of D1 dopamine receptor-mediated locomotor stimulation in M(4) muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci USA 96:10483–10488

    PubMed  CAS  Google Scholar 

  • Gould E, Woolf NJ, Butcher LL (1989) Cholinergic projections to the substantia nigra from the pedunculopontine and laterodorsal tegmental nuclei. Neuroscience 28:611–623

    PubMed  CAS  Google Scholar 

  • Gray JA, Roth BL (2007) Molecular targets for treating cognitive dysfunction in schizophrenia. Schizophr Bull 33:1100–1119

    PubMed  Google Scholar 

  • Green MF (1996) What are the functional consequences of neurocognitive deficits in schizophrenia? Am J Psychiatry 153:321–330

    PubMed  CAS  Google Scholar 

  • Gregory KJ, Sexton PM, Christopoulos A (2007) Allosteric Modulation of Muscarinic Acetylcholine Receptors. Curr Neuropharmacol 5:157–167

    PubMed  CAS  Google Scholar 

  • Grilli M, Patti L, Robino F, Zappettini S, Raiteri M, Marchi M (2008) Release-enhancing pre-synaptic muscarinic and nicotinic receptors co-exist and interact on dopaminergic nerve endings of rat nucleus accumbens. J Neurochem 105:2205–2213

    PubMed  CAS  Google Scholar 

  • Gronier B, Rasmussen K (1998) Activation of midbrain presumed dopaminergic neurons by muscarinic cholinergic receptors: an in vivo electrophysiological study in the rat. Br J Pharmacol 124:455–464

    PubMed  CAS  Google Scholar 

  • Hamilton SE, Nathanson NM (2001) The M1 receptor is required for muscarinic activation of mitogen-activated protein (MAP) kinase in murine cerebral cortical neurons. J Biol Chem 276:15850–15853

    PubMed  CAS  Google Scholar 

  • Heinrich JN, Butera JA, Carrick T, Kramer A, Kowal D, Lock T, Marquis KL, Pausch MH, Popiolek M, Sun SC, Tseng E, Uveges AJ, Mayer SC (2009) Pharmacological comparison of muscarinic ligands: historical versus more recent muscarinic M1-preferring receptor agonists. Eur J Pharmacol 605:53–56

    PubMed  CAS  Google Scholar 

  • Heinrichs RW (2005) The primacy of cognition in schizophrenia. Am Psychol 60:229–242

    PubMed  Google Scholar 

  • Hill SK, Bishop JR, Palumbo D, Sweeney JA (2010) Effect of second-generation antipsychotics on cognition: current issues and future challenges. Expert Rev Neurother 10:43–57

    PubMed  CAS  Google Scholar 

  • Holtzman RS (1998) The legacy of Atropos, the fate who cut the thread of life. Anesthesiology 89:241–249

    Google Scholar 

  • Hyde TM, Crook JM (2001) Cholinergic systems and schizophrenia: primary pathology or epiphenomena? J Chem Neuroanat 22:53–63

    PubMed  CAS  Google Scholar 

  • Janowsky DS, El-Yousef MK, Davis JM, Sekerke HJ (1973) Antagonistic effects of physostigmine and methylphenidate in man. Am J Psychiatry 130:1370–1376

    PubMed  CAS  Google Scholar 

  • Jeon J, Dencker D, Wortwein G, Woldbye DP, Cui Y, Davis AA, Levey AI, Schutz G, Sager TN, Mork A, Li C, Deng CX, Fink-Jensen A, Wess J (2010) A subpopulation of neuronal M4 muscarinic acetylcholine receptors plays a critical role in modulating dopamine-dependent behaviors. J Neurosci 30:2396–2405

    PubMed  CAS  Google Scholar 

  • Johnstone EC, Crow TJ, Ferrier IN, Frith CD, Owens DG, Bourne RC, Gamble SJ (1983) Adverse effects of anticholinergic medication on positive schizophrenic symptoms. Psychol Med 13:513–527

    PubMed  CAS  Google Scholar 

  • Jones CK, Eberle EL, Shaw DB, McKinzie DL, Shannon HE (2005) Pharmacologic interactions between the muscarinic cholinergic and dopaminergic systems in the modulation of prepulse inhibition in rats. J Pharmacol Exp Ther 312:1055–1063

    PubMed  CAS  Google Scholar 

  • Jones CK, Brady AE, Davis AA, Xiang Z, Bubser M, Tantawy MN, Kane AS, Bridges TM, Kennedy JP, Bradley SR, Peterson TE, Ansari MS, Baldwin RM, Kessler RM, Deutch AY, Lah JJ, Levey AI, Lindsley CW, Conn PJ (2008) Novel selective allosteric activator of the M1 muscarinic acetylcholine receptor regulates amyloid processing and produces antipsychotic-like activity in rats. J Neurosci 28:10422–10433

    PubMed  CAS  Google Scholar 

  • Kalkman HO, Subramanian N, Hoyer D (2001) Extended radioligand binding profile of iloperidone: a broad spectrum dopamine/serotonin/norepinephrine receptor antagonist for the management of psychotic disorders. Neuropsychopharmacology 25:904–914

    PubMed  CAS  Google Scholar 

  • Kapur S, Mamo D (2003) Half a century of antipsychotics and still a central role for dopamine D2 receptors. Prog Neuropsychopharmacol Biol Psychiatry 27:1081–1090

    PubMed  CAS  Google Scholar 

  • Keefe RS, Malhotra AK, Meltzer HY, Kane JM, Buchanan RW, Murthy A, Sovel M, Li C, Goldman R (2008) Efficacy and safety of donepezil in patients with schizophrenia or schizoaffective disorder: significant placebo/practice effects in a 12-week, randomized, double-blind, placebo-controlled trial. Neuropsychopharmacology 33:1217–1228

    PubMed  CAS  Google Scholar 

  • Kitazawa T, Hirama R, Masunaga K, Nakamura T, Asakawa K, Cao J, Teraoka H, Unno T, Komori S, Yamada M, Wess J, Taneike T (2008) Muscarinic receptor subtypes involved in carbachol-induced contraction of mouse uterine smooth muscle. Naunyn-Schmiedeberg’s Arch Pharmacol 377:503–513

    PubMed  CAS  Google Scholar 

  • Leach K, Loiacono RE, Felder CC, McKinzie DL, Mogg A, Shaw DB, Sexton PM, Christopoulos A (2010) Molecular mechanisms of action and in vivo validation of an M4 muscarinic acetylcholine receptor allosteric modulator with potential antipsychotic properties. Neuropsychopharmacology 35:855–869

    PubMed  CAS  Google Scholar 

  • Lehmann J, Langer SZ (1982) Muscarinic receptors on dopamine terminals in the cat caudate nucleus: neuromodulation of [3H]dopamine release in vitro by endogenous acetylcholine. Brain Res 248:61–69

    PubMed  CAS  Google Scholar 

  • Levey AI (1993) Immunological localization of m1-m5 muscarinic acetylcholine receptors in peripheral tissues and brain. Life Sci 52:441–448

    PubMed  CAS  Google Scholar 

  • Levey AI, Edmunds SM, Koliatsos V, Wiley RG, Heilman CJ (1995) Expression of m1-m4 muscarinic acetylcholine receptor proteins in rat hippocampus and regulation by cholinergic innervations. J Neurosci 15:4077–4092

    PubMed  CAS  Google Scholar 

  • Li XM, Perry KW, Wong DT, Bymaster FP (1998) Olanzapine increases in vivo dopamine and norepinephrine release in rat prefrontal cortex, nucleus accumbens, and striatum. Psychopharmacology (Berl) 136:153–161

    CAS  Google Scholar 

  • Li Z, Bonhaus DW, Huang M, Prus AJ, Dai J, Meltzer HY (2007) AC260584 (4-[3-(4-butylpiperidin-1-yl)-propyl]-7-fluoro-4H-benzo[1,4]oxazin-3-one), a selective muscarinic M1 receptor agonist, increases acetylcholine and dopamine release in rat medial prefrontal cortex and hippocampus. Eur J Pharmacol 572:129–137

    PubMed  CAS  Google Scholar 

  • Li Z, Snigdha S, Roseman AS, Dai J, Meltzer HY (2008) Effect of muscarinic receptor agonists xanomeline and sabcomeline on acetylcholine and dopamine efflux in the rat brain: comparison with effects of (4-[3-(4-butylpiperidin-1-yl)-propyl]-7-fluoro-4H-benzo[1,4]oxazin-3-one (AC260584) and N-desmethylclozapine. Eur J Pharmacol 596:89–97

    PubMed  CAS  Google Scholar 

  • Liao DL, Hong CJ, Chen HM, Chen YE, Lee SM, Chang CY, Chen H, Tsai SJ (2003) Association of muscarinic m1 receptor genetic polymorphisms with psychiatric symptoms and cognitive function in schizophrenic patients. Neuropsychobiology 48:72–76

    PubMed  CAS  Google Scholar 

  • Ma L, Seager MA, Wittmann M, Jacobson M, Bickel D, Burno M, Jones K, Graufelds VK, Xu G, Pearson M, McCampbell A, Gaspar R, Shughrue P, Danziger A, Regan C, Flick R, Pascarella D, Garson S, Doran S, Kreatsoulas C, Veng L, Lindsley CW, Shipe W, Kuduk S, Sur C, Kinney G, Seabrook GR, Ray WJ (2009) Selective activation of the M1 muscarinic acetylcholine receptor achieved by allosteric potentiation. Proc Natl Acad Sci USA 106:15950–15955

    PubMed  CAS  Google Scholar 

  • Maehara S, Satow A, Hikichi H, Ohta H (2011a) Antipsychotic effects of N-desmethylclozapine on sensorimotor gating function in rats: possible involvement of activation of M(1) muscarinic receptors. Eur J Pharmacol 667:242–249

    PubMed  CAS  Google Scholar 

  • Maehara S, Okuda S, Ohta H (2011b) Ameliorative effect of N-desmethylclozapine in animal models of social deficits and cognitive functions. Brain Res Bull 86:146–151

    PubMed  CAS  Google Scholar 

  • Mancama D, Arranz MJ, Landau S, Kerwin R (2003) Reduced expression of the muscarinic 1 receptor cortical subtype in schizophrenia. Am J Med Genet B Neuropsychiatr Gene 119B:2–6

    CAS  Google Scholar 

  • Marchi M, Raiteri M (1985) On the presence in the cerebral cortex of muscarinic receptor subtypes which differ in neuronal localization, function and pharmacological properties. J Pharmacol Exp Ther 235:230–233

    PubMed  CAS  Google Scholar 

  • Marino MJ, Rouse ST, Levey AI, Potter LT, Conn PJ (1998) Activation of the genetically defined m1 muscarinic receptor potentiates N-methyl-D-aspartate (NMDA) receptor currents in hippocampal pyramidal cells. Proc Natl Acad Sci 95:11465–11470

    PubMed  CAS  Google Scholar 

  • Marlo JE, Niswender CM, Days EL, Bridges TM, Xiang Y, Rodriguez AL, Shirey JK, Brady AE, Nalywajko T, Luo Q, Austin CA, Williams MB, Kim K, Williams R, Orton D, Brown HA, Lindsley CW, Weaver CD, Conn PJ (2009) Discovery and characterization of novel allosteric potentiators of M1 muscarinic receptors reveals multiple modes of activity. Mol Pharmacol 75:577–588

    PubMed  CAS  Google Scholar 

  • McArthur RA, Gray J, Schreiber R (2010) Cognitive effects of muscarinic M1 functional agonists in non-human primates and clinical trials. Curr Opin Investig Drugs 11:740–760

    PubMed  CAS  Google Scholar 

  • McCutchen E, Scheiderer CL, Dobrunz LE, McMahon LL (2006) Coexistence of muscarinic long-term depression with electrically induced long-term potentiation and depression at CA3-CA1 synapses. J Neurophysiol 96:3114–3121

    PubMed  Google Scholar 

  • Mendoza MC, Lindenmayer JP (2009) N-desmethylclozapine: is there evidence for its antipsychotic potential? Clin Neuropharmacol 32:154–157

    PubMed  CAS  Google Scholar 

  • Miyakawa T, Yamada M, Duttaroy A, Wess J (2001) Hyperactivity and intact hippocampus-dependent learning in mice lacking the M1 muscarinic acetylcholine receptor. J Neurosci 21:5239–5250

    PubMed  CAS  Google Scholar 

  • Moghaddam B, Bunney BS (1990) Acute effects of typical and atypical antipsychotic drugs on the release of dopamine from the prefrontal cortex, nucleus accumbens, and striatum of the rat: an in vivo microdialysis study. J Neurochem 54:1755–1760

    PubMed  CAS  Google Scholar 

  • Moriya H, Takagi Y, Nakanishi T, Hayashi M, Tani T, Hirotsu I (1999) Affinity profiles of various muscarinic antagonists for cloned human muscarinic acetylcholine receptor (mAChR) subtypes and mAChRs in rat heart and submandibular gland. Life Sci 64:2351–2358

    PubMed  CAS  Google Scholar 

  • Mrzljak L, Levey AI, Goldman-Rakic PS (1993) Association of m1 and m2 muscarinic receptor proteins with asymmetric synapses in the primate cerebral cortex: morphological evidence for cholinergic modulation of excitatory neurotransmission. Proc Natl Acad Sci USA 90:5194–5198

    PubMed  CAS  Google Scholar 

  • Murphy BP, Chung YC, Park TW, McGorry PD (2006) Pharmacological treatment of primary negative symptoms in schizophrenia: a systematic review. Schizophr Res 88:5–25

    PubMed  Google Scholar 

  • Nathan J, Watson J, Lund J, Peters GL, Dodds CM, Lawrence P, Bentley GD, O’Neill BV, Robertson J, Maruff P, Laruelle M, Bullmore ET (2011) The potent M1 receptor allosteric agonist GSK1034702 improves episodic memory in the nicotine abstinence model of cognitive dysfunction in humans. Am Coll Neuropsychopharmacol 36:S236–S237

    Google Scholar 

  • Neubauer H, Adams M, Redfern P (1975) The role of central cholinergic mechanisms in schizophrenia. Med Hypotheses 1:32–34

    PubMed  CAS  Google Scholar 

  • Newell KA, Zavitsanou K, Jew SK, Huang XF (2007) Alterations of muscarinic and GABA receptor binding in the posterior cingulate cortex in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 31:225–233

    PubMed  CAS  Google Scholar 

  • Olianas MC, Maullu C, Onali P (1997) Effects of clozapine on rat striatal muscarinic receptors coupled to inhibition of adenylyl cyclase activity and on the human cloned m4 receptor. Br J Pharmacol 122:401–408

    PubMed  CAS  Google Scholar 

  • Osterholm RK, Camoriano JK (1982) Transdermal scopolamine psychosis. J Am Med Assoc 247:3081

    CAS  Google Scholar 

  • Perry EK, Perry RH (1995) Acetylcholine and hallucinations: disease-related compared to drug-induced alterations in human consciousness. Brain Cogn 28:240–258

    PubMed  CAS  Google Scholar 

  • Perry KW, Nisenbaum LK, George CA, Shannon HE, Felder CC, Bymaster FP (2001) The muscarinic agonist xanomeline increases monoamine release and immediate early gene expression in the rat prefrontal cortex. Biol Psychiatry 49:716–725

    PubMed  CAS  Google Scholar 

  • Pfeifer CC, Jenny EH (1957) The inhibition of conditioned response and counteraction of schizophrenia by muscarinic stimulation of the brain. Ann N Y Acad Sci 66:753–764

    Google Scholar 

  • Poulin B, Butcher A, McWilliams P, Bourgognon JM, Pawlak R, Kong KC, Bottrill A, Mistry S, Wess J, Rosethorne EM, Charlton SJ, Tobin AB (2010) The M3-muscarinic receptor regulates learning and memory in a receptor phosphorylation/arrestin-dependent manner. Proc Natl Acad Sci USA 107:9440–9445

    PubMed  CAS  Google Scholar 

  • Raedler TJ, Knable MB, Jones DW, Urbina RA, Gorey JG, Lee KS, Egan MF, Coppola R, Weinberger DR (2003) In vivo determination of muscarinic acetylcholine receptor availability in schizophrenia. Am J Psychiatry 160:118–127

    PubMed  Google Scholar 

  • Raedler TJ, Bymaster FP, Tandon R, Copolov D, Dean B (2007) Towards a muscarinic hypothesis of schizophrenia. Mol Psychiatry 12:232–246

    PubMed  CAS  Google Scholar 

  • Ragozzino ME, Mohler EG, Prior M, Palencia CA, Rozman S (2009) Acetylcholine activity in selective striatal regions supports behavioral flexibility. Neurobiol Learn Mem 91:13–22

    PubMed  CAS  Google Scholar 

  • Reichenberg A, Weiser M, Caspi A, Knobler HY, Lubin G, Harvey PD, Rabinowitz J, Davidson M (2006) Premorbid intellectual functioning and risk of schizophrenia and spectrum disorders. Schizophr Res 85:49–57

    PubMed  Google Scholar 

  • Reichenberg A, Harvey PD, Bowie CR, Mojtabai R, Rabinowitz J, Heaton RK, Bromet E (2009) Neuropsychological function and dysfunction in schizophrenia and psychotic affective disorders. Schizophr Bull 35:1022–1029

    PubMed  Google Scholar 

  • Rouse ST, Hamilton SE, Potter LT, Nathanson NM, Conn PJ (2000) Muscarinic-induced modulation of potassium conductances is unchanged in mouse hippocampal pyramidal cells that lack functional M1 receptors. Neurosci Lett 278:61–64

    PubMed  CAS  Google Scholar 

  • Rowe WB, O’Donnell JP, Pearson D, Rose GM, Meaney MJ, Quirion R (2003) Long-term effects of BIBN-99, a selective muscarinic M2 receptor antagonist, on improving spatial memory performance in aged cognitively impaired rats. Behav Brain Res 145:171–178

    PubMed  CAS  Google Scholar 

  • Salah-Uddin H, Scarr E, Pavey G, Harris K, Hagan JJ, Dean B, Challiss RA, Watson JM (2009) Altered M(1) muscarinic acetylcholine receptor (CHRM1)-Galpha(q/11) coupling in a schizophrenia endophenotype. Neuropsychopharmacology 34:2156–2166

    PubMed  CAS  Google Scholar 

  • Sanchez G, Alvares Lde O, Oberholzer MV, Genro B, Quillfeldt J, da Costa JC, Cervenansky C, Jerusalinsky D, Kornisiuk E (2009) M4 muscarinic receptors are involved in modulation of neurotransmission at synapses of Schaffer collaterals on CA1 hippocampal neurons in rats. J Neurosci Res 87:691–700

    PubMed  CAS  Google Scholar 

  • Sarter M, Bruno JP (1996) Cognitive functions of cortical acetylcholine: toward a unifying hypothesis. Brain Res Brain Res Rev 23:28–46

    Google Scholar 

  • Sauerberg P, Jeppesen L, Olesen PH, Rasmussen T, Swedberg MD, Sheardown MJ, Fink-Jensen A, Thomsen C, Thøgersen H, Rimvall K, Ward JS, Calligaro DO, DeLapp NW, Bymaster FP, Shannon HE (1998) Muscarinic agonists with antipsychotic-like activity: structure-activity relationships of 1,2,5-thiadiazole analogues with functional dopamine antagonist activity. J Med Chem 41:4378–4384

    PubMed  CAS  Google Scholar 

  • Scarr E, Keriakous D, Crossland N, Dean B (2006) No change in cortical muscarinic M2, M3 receptors or [35 S]-GTPgammaS binding in schizophrenia. Life Sci 78:1231–1237

    PubMed  CAS  Google Scholar 

  • Scarr E, Sundram S, Keriakous D, Dean B (2007) Altered hippocampal muscarinic M4, but not M1, receptor expression from subjects with schizophrenia. Biol Psychiatry 61:1161–1170

    PubMed  CAS  Google Scholar 

  • Scarr E, Cowie TF, Kanellakis S, Sundram S, Pantelis C, Dean B (2009) Decreased cortical muscarinic receptors define a subgroup of subjects with schizophrenia. Mol Psychiatry 14:1017–1023

    PubMed  CAS  Google Scholar 

  • Schmidt LS, Miller AD, Lester DB, Bay-Richter C, Schulein C, Frikke-Schmidt H, Wess J, Blaha CD, Woldbye DP, Fink-Jensen A, Wortwein G (2010) Increased amphetamine-induced locomotor activity, sensitization, and accumbal dopamine release in M5 muscarinic receptor knockout mice. Psychopharmacology (Berl) 207:547–558

    CAS  Google Scholar 

  • Schmidt LS, Thomsen M, Weikop P, Dencker D, Wess J, Woldbye DP, Wortwein G, Fink-Jensen A (2011) Increased cocaine self-administration in M4 muscarinic acetylcholine receptor knockout mice. Psychopharmacology (Berl) 216:367–378

    CAS  Google Scholar 

  • Seeger T, Fedorova I, Zheng F, Miyakawa T, Koustova E, Gomeza J, Basile AS, Alzheimer C, Wess J (2004) M2 muscarinic acetylcholine receptor knock-out mice show deficits in behavioral flexibility, working memory, and hippocampal plasticity. J Neurosci 24:10117–10127

    PubMed  CAS  Google Scholar 

  • Shahid M, Walker GB, Zorn SH, Wong EH (2009) Asenapine: a novel psychopharmacologic agent with a unique human receptor signature. J Psychopharmacol 23:65–73

    PubMed  CAS  Google Scholar 

  • Shannon HE, Rasmussen K, Bymaster FP, Hart JC, Peters SC, Swedberg MD, Jeppesen L, Sheardown MJ, Sauerberg P, Fink-Jensen A (2000) Xanomeline, an M(1)/M(4) preferring muscarinic cholinergic receptor agonist, produces antipsychotic-like activity in rats and mice. Schizophr Res 42:249–259

    PubMed  CAS  Google Scholar 

  • Shapiro DA, Renock S, Arrington E, Chiodo LA, Liu LX, Sibley DR, Roth BL, Mailman R (2003) Aripiprazole, a novel atypical antipsychotic drug with a unique and robust pharmacology. Neuropsychopharmacology 28:1400–1411

    PubMed  CAS  Google Scholar 

  • Sheffler DJ, Williams R, Bridges TM, Xiang Z, Kane AS, Byun NE, Jadhav S, Mock MM, Zheng F, Lewis LM, Jones CK, Niswender CM, Weaver CD, Lindsley CW, Conn PJ (2009) A novel selective muscarinic acetylcholine receptor subtype 1 antagonist reduces seizures without impairing hippocampus-dependent learning. Mol Pharmacol 76:356–368

    PubMed  CAS  Google Scholar 

  • Shekhar A, Potter WZ, Lightfoot J, Lienemann J, Dubé S, Mallinckrodt C, Bymaster FP, McKinzie DL, Felder CC (2008) Selective muscarinic receptor agonist xanomeline as a novel treatment approach for schizophrenia. Am J Psychiatry 165:1033–1039

    PubMed  Google Scholar 

  • Shinoe T, Matsui M, Taketo MM, Manabe T (2005) Modulation of synaptic plasticity by physiological activation of M1 muscarinic acetylcholine receptors in the mouse hippocampus. J Neurosci 25:11194–11200

    PubMed  CAS  Google Scholar 

  • Shirey JK, Xiang Z, Orton D, Brady AE, Johnson KA, Williams R, Ayala JE, Rodriguez AL, Wess J, Weaver D, Niswender CM, Conn PJ (2008) An allosteric potentiator of M4 mAChR modulates hippocampal synaptic transmission. Nat Chem Biol 4:42–50

    PubMed  CAS  Google Scholar 

  • Shirey JK, Brady AE, Jones PJ, Davis AA, Bridges TM, Kennedy JP, Jadhav SB, Menon UN, Xiang Z, Watson ML, Christian EP, Doherty JJ, Quirk MC, Snyder DH, Lah JJ, Levey AI, Nicolle MM, Lindsley CW, Conn PJ (2009) A selective allosteric potentiator of the M1 muscarinic acetylcholine receptor increases activity of medial prefrontal cortical neurons and restores impairments in reversal learning. J Neurosci 29:14271–14286

    PubMed  CAS  Google Scholar 

  • Singh MM, Kay SR, Opler LA (1987) Anticholinergic-neuroleptic antagonism in terms of positive and negative symptoms of schizophrenia: implications for psychobiological subtyping. Psychol Med 17:39–48

    PubMed  CAS  Google Scholar 

  • Spalding TA, Trotter C, Skjaerbaek N, Messier TL, Currier EA, Burstein ES, Li D, Hacksell U, Brann MR (2002) Discovery of an ectopic activation site on the M(1) muscarinic receptor. Mol Pharmacol 61:1297–1302

    PubMed  CAS  Google Scholar 

  • Stanhope KJ, Mirza NR, Bickerdike MJ, Bright JL, Harrington NR, Hesselink MB, Kennett GA, Lightowler S, Sheardown MJ, Syed R, Upton RL, Wadsworth G, Weiss SM, Wyatt A (2001) J Pharmacol Exp Ther 299:782–792

    PubMed  CAS  Google Scholar 

  • Steidl S, Yeomans JS (2009) M5 muscarinic receptor knockout mice show reduced morphine-induced locomotion but increased locomotion after cholinergic antagonism in the ventral tegmental area. J Pharmacol Exp Ther 328:263–275

    PubMed  CAS  Google Scholar 

  • Stengel PW, Gomeza J, Wess J, Cohen ML (2000) M(2) and M(4) receptor knockout mice: muscarinic receptor function in cardiac and smooth muscle in vitro. J Pharmacol Exp Ther 292:877–885

    PubMed  CAS  Google Scholar 

  • Stengel PW, Yamada M, Wess J, Cohen ML (2002) M(3)-receptor knockout mice: muscarinic receptor function in atria, stomach fundus, urinary bladder, and trachea. Am J Physiol Regul Integr Comp Physiol 282:R1443–R1449

    PubMed  CAS  Google Scholar 

  • Stockton ME, Rasmussen K (1996) Electrophysiological effects of olanzapine, a novel atypical antipsychotic, on A9 and A10 dopamine neurons. Neuropsychopharmacology 14:97–105

    PubMed  CAS  Google Scholar 

  • Struckmann N, Schwering S, Wiegand S, Gschnell A, Yamada M, Kummer W, Wess J, Haberberger RV (2003) Role of muscarinic receptor subtypes in the constriction of peripheral airways: studies on receptor-deficient mice. Mol Pharmacol 64:1444–1451

    PubMed  CAS  Google Scholar 

  • Sur C, Mallorga PJ, Wittmann M, Jacobson MA, Pascarella D, Williams JB, Brandish PE, Pettibone DJ, Scolnick EM, Conn PJ (2003) N-desmethylclozapine, an allosteric agonist at muscarinic 1 receptor, potentiates N-methyl-D-aspartate receptor activity. Proc Natl Acad Sci U S A 100(23):13674–9

    Google Scholar 

  • Tanahashi Y, Unno T, Matsuyama H, Ishii T, Yamada M, Wess J, Komori S (2009) Multiple muscarinic pathways mediate the suppression of voltage-gated Ca2+ channels in mouse intestinal smooth muscle cells. Br J Pharmacol 158:1874–1883

    PubMed  CAS  Google Scholar 

  • Tandon R, Greden JF (1989) Cholinergic hyperactivity and negative schizophrenic symptoms. A model of cholinergic/dopaminergic interactions in schizophrenia. Arch Gen Psychiatry 46:745–753

    PubMed  CAS  Google Scholar 

  • Tandon R, Shipley JE, Greden JF, Mann NA, Eisner WH, Goodson JA (1991) Muscarinic cholinergic hyperactivity in schizophrenia. Relationship to positive and negative symptoms. Schizophr Res 4:23–30

    PubMed  CAS  Google Scholar 

  • Taylor P, Brown HB (1989) Acetylcholine. In: Siegel GJ et al (eds) Basic neurochemistry: molecular, cellular, and medical aspects, 4th edn. Raven, New York, pp 203–231

    Google Scholar 

  • Thomas RL, Langmead CJ, Wood MD, Challiss RA (2009) Contrasting effects of allosteric and orthosteric agonists on m1 muscarinic acetylcholine receptor internalization and down-regulation. J Pharmacol Exp Ther 331:1086–1095

    PubMed  CAS  Google Scholar 

  • Thomas DR, Dada A, Jones GA, Deisz RA, Gigout S, Langmead CJ, Werry TD, Hendry N, Hagan JJ, Davies CH, Watson JM (2010) N-desmethylclozapine (NDMC) is an antagonist at the human native muscarinic M(1) receptor. Neuropharmacology 58:1206–1214

    PubMed  CAS  Google Scholar 

  • Thomsen M, Woldbye DP, Wörtwein G, Fink-Jensen A, Wess J, Caine SB (2005) Reduced cocaine self-administration in muscarinic M5 acetylcholine receptor-deficient mice. J Neurosci 25:8141–8149

    PubMed  CAS  Google Scholar 

  • Thomsen M, Wortwein G, Fink-Jensen A, Woldbye DP, Wess J, Caine SB (2007) Decreased prepulse inhibition and increased sensitivity to muscarinic, but not dopaminergic drugs in M5 muscarinic acetylcholine receptor knockout mice. Psychopharmacology (Berl) 192:97–110

    CAS  Google Scholar 

  • Thomsen M, Wess J, Fulton BS, Fink-Jensen A, Caine SB (2010) Modulation of prepulse inhibition through both M(1) and M(4) muscarinic receptors in mice. Psychopharmacology (Berl) 208:401–416

    CAS  Google Scholar 

  • Tollefson GD, Sanger TM, Lu Y, Thieme ME (1998) Depressive signs and symptoms in schizophrenia: a prospective blinded trial of olanzapine and haloperidol. Arch Gen Psychiatry 55:250–258

    PubMed  CAS  Google Scholar 

  • Toru M, Watanabe S, Shibuya H, Nishikawa T, Noda K, Mitsushio H, Ichikawa H, Kurumaji A, Takashima M, Matago N et al (1988) Neurotransmitters, receptors and neuropeptides in post-mortem brains of chronic schizophrenic patients. Acta Psychiatr Scand 78:121–137

    PubMed  CAS  Google Scholar 

  • Tzavara ET, Bymaster FP, Felder CC, Wade M, Gomeza J, Wess J, McKinzie DL, Nomikos GG (2003) Dysregulated hippocampal acetylcholine neurotransmission and impaired cognition in M2, M4 and M2/M4 muscarinic receptor knockout mice. Mol Psychiatry 8:673–679

    PubMed  CAS  Google Scholar 

  • Tzavara ET, Bymaster FP, Davis RJ, Wade MR, Perry KW, Wess J, McKinzie DL, Felder C, Nomikos GG (2004) M4 muscarinic receptors regulate the dynamics of cholinergic and dopaminergic neurotransmission: relevance to the pathophysiology and treatment of related CNS pathologies. FASEB J 18:1410–1412

    PubMed  CAS  Google Scholar 

  • Veroff AE, Bodick NC, Offen WW, Sramek JJ, Cutler NR (1998) Efficacy of xanomeline in Alzheimer disease: cognitive improvement measured using the Computerized Neuropsychological Test Battery (CNTB). Alzheimer Dis Assoc Disord 12:304–312

    PubMed  CAS  Google Scholar 

  • Vilaró MT, Palacios JM, Mengod G (1990) Localization of m5 muscarinic receptor mRNA in rat brain examined by in situ hybridization histochemistry. Neurosci Lett 114:154–159

    PubMed  Google Scholar 

  • Vilaró MT, Wiederhold KH, Palacios JM, Mengod G (1991) Muscarinic cholinergic receptors in the rat caudate-putamen and olfactory tubercle belong predominantly to the m4 class: in situ hybridization and receptor autoradiography evidence. Neuroscience 40:159–167

    PubMed  Google Scholar 

  • Volz TJ, Farnsworth SJ, Rowley SD, Hanson GR, Fleckenstein AE (2008) Methylphenidate-induced increases in vesicular dopamine sequestration and dopamine release in the striatum: the role of muscarinic and dopamine D2 receptors. J Pharmacol Exp Ther 327:335–340

    Google Scholar 

  • Wang H, Ng K, Hayes D, Gao X, Forster G, Blaha C, Yeomans J (2004) Decreased amphetamine-induced locomotion and improved latent inhibition in mice mutant for the M5 muscarinic receptor gene found in the human 15q schizophrenia region. Neuropsychopharmacology 29:2126–2139

    PubMed  CAS  Google Scholar 

  • Watanabe S, Nishikawa T, Takashima M, Toru M (1983) Increased muscarinic cholinergic receptors in prefrontal cortices of medicated schizophrenics. Life Sci 33:2187–2196

    PubMed  CAS  Google Scholar 

  • Watson J, Brough S, Coldwell MC, Gager T, Ho M, Hunter AJ, Jerman J, Middlemiss DN, Riley GJ, Brown AM (1998) Functional effects of the muscarinic receptor agonist, xanomeline, at 5-HT1 and 5-HT2 receptors. Br J Pharmacol 125:1413–1420

    PubMed  CAS  Google Scholar 

  • Watt ML, Schober DA, Hitchcock S, Liu B, Chesterfield AK, McKinzie D, Felder CC (2011) Pharmacological characterization of LY593093, an M1 muscarinic acetylcholine receptor-selective partial orthosteric agonist. J Pharmacol Exp Ther 338:622–632

    PubMed  CAS  Google Scholar 

  • Weiner DM, Levey AI, Brann MR (1990) Expression of muscarinic acetylcholine and dopamine receptor mRNAs in rat basal ganglia. Proc Natl Acad Sci 87:7050–7054

    PubMed  CAS  Google Scholar 

  • Weiner DM, Meltzer HY, Veinbergs I, Donohue EM, Spalding TA, Smith TT, Mohell N, Harvey SC, Lameh J, Nash N, Vanover KE, Olsson R, Jayathilake K, Lee M, Levey AI, Hacksell U, Burstein ES, Davis RE, Brann MR (2004) The role of M1 muscarinic receptor agonism of N-desmethylclozapine in the unique clinical effects of clozapine. Psychopharmacology (Berl) 177:207–216

    CAS  Google Scholar 

  • Wess J (2012) Novel muscarinic receptor mutant mouse models. Handbook Exp Pharmacol 208:95–117

    CAS  Google Scholar 

  • Wess J, Eglen RM, Gautam D (2007) Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. Nat Rev Drug Discov 6:721–733

    PubMed  CAS  Google Scholar 

  • Westermeyer J (2006) Comorbid schizophrenia and substance abuse: a review of epidemiology and course. Am J Addict 15:345–355

    PubMed  Google Scholar 

  • Woolf NJ (1991) Cholinergic systems in mammalian brain and spinal cord. Prog Neurobiol 37:475–524

    PubMed  CAS  Google Scholar 

  • World Health Organization (2004) The global burden of disease. 2004 update. http://www.who.int/healthinfo/global_burden_disease/GBD_report_2004update_full.pdf

  • Yamada M, Miyakawa T, Duttaroy A, Yamanaka A, Moriguchi T, Makita R, Ogawa M, Chou CJ, Xia B, Crawley JN, Felder CC, Deng CX, Wess J (2001) Mice lacking the M3 muscarinic acetylcholine receptor are hypophagic and lean. Nature 410:207–212

    PubMed  CAS  Google Scholar 

  • Yamada M, Basile AS, Fedorova I, Zhang W, Duttaroy A, Cui Y, Lamping KG, Faraci FM, Deng CX, Wess J (2003) Novel insights into M5 muscarinic acetylcholine receptor function by the use of gene targeting technology. Life Sci 74:345–353

    PubMed  CAS  Google Scholar 

  • Yamasaki M, Matsui M, Watanabe M (2010) Preferential localization of muscarinic M1 receptor on dendritic shaft and spine of cortical pyramidal cells and its anatomical evidence for volume transmission. J Neurosci 30:4408–4418

    PubMed  CAS  Google Scholar 

  • Yasuda RP, Ciesla W, Flores LR, Wall SJ, Li M, Satkus SA, Weisstein JS, Spagnola BV, Wolfe BB (1993) Development of antisera selective for m4 and m5 muscarinic cholinergic receptors: distribution of m4 and m5 receptors in rat brain. Mol Pharmacol 43:149–157

    PubMed  CAS  Google Scholar 

  • Yeomans JS (1995) Role of tegmental cholinergic neurons in dopaminergic activation, antimuscarinic psychosis and schizophrenia. Neuropsychopharmacology 12:3–16

    PubMed  CAS  Google Scholar 

  • Zavitsanou K, Katsifis A, Mattner F, Huang XF (2004) Investigation of m1/m4 muscarinic receptors in the anterior cingulate cortex in schizophrenia, bipolar disorder, and major depression disorder. Neuropsychopharmacology 29:619–625

    PubMed  Google Scholar 

  • Zavitsanou K, Katsifis A, Huang XF (2005) M2/M4 muscarinic receptor binding in the anterior cingulate cortex in schizophrenia and mood disorders. Brain Res Bull 65:397–403

    PubMed  CAS  Google Scholar 

  • Zeng XP, Le F, Richelson E (1997) Muscarinic m4 receptor activation by some atypical antipsychotic drugs. Eur J Pharmacol 321:349–354

    PubMed  CAS  Google Scholar 

  • Zhang W, Yamada M, Gomeza J, Basile AS, Wess J (2002) Multiple muscarinic acetylcholine receptor subtypes modulate striatal dopamine release, as studied with M1-M5 muscarinic receptor knock-out mice. J Neurosci 22:6347–6352

    PubMed  CAS  Google Scholar 

  • Zorn SH, Jones SB, Ward KM, Liston DR (1994) Clozapine is a potent and selective muscarinic M4 receptor agonist. Eur J Pharmacol 269:R1–R2

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. McKinzie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

McKinzie, D.L., Bymaster, F.P. (2012). Muscarinic Mechanisms in Psychotic Disorders. In: Geyer, M., Gross, G. (eds) Novel Antischizophrenia Treatments. Handbook of Experimental Pharmacology, vol 213. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25758-2_9

Download citation

Publish with us

Policies and ethics