Skip to main content

Mutant Mouse Models in Evaluating Novel Approaches to Antipsychotic Treatment

  • Chapter
  • First Online:
Novel Antischizophrenia Treatments

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 213))

Abstract

In this review we consider the application of mutant mouse phenotypes to the study of psychotic illness in general and schizophrenia in particular, as they relate to behavioral, psychopharmacological, and cellular phenotypes of putative import for antipsychotic drug development. Mutant models appear to be heuristic at two main levels; firstly, by indicating the functional roles of neuronal components thought to be of relevance to the putative pathobiology of psychotic illness, they help resolve overt behavioral and underlying cellular processes regulated by those neuronal components; secondly, by indicating the functional roles of genes associated with risk for psychotic illness, they help resolve overt behavioral and underlying cellular processes regulated by those risk genes. We focus initially on models of dopaminergic and glutamatergic dysfunction. Then, we consider advances in the genetics of schizophrenia and mutant models relating to replicable risk genes. Lastly, we extend this discussion by exemplifying two new variant approaches in mutant mice that may serve as prototypes for advancing antipsychotic drug development. There is continuing need not only to address numerous technical challenges but also to develop more “real-world” paradigms that reflect the milieu of gene × environment and gene × gene interactions that characterize psychotic illness and its response to antipsychotic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abazyan B, Nomura J, Kannan G, Ishizuka K, Tamashiro KL, Nucifora F, Pogorelov V, Ladenheim B, Yang C, Krasnova IN, Cadet JL, Pardo C, Mori S, Kamiya A, Vogel MW, Sawa A, Ross CA, Pletnikov MV (2010) Prenatal interaction of mutant DISC1 and immune activation produces adult psychopathology. Biol Psychiatry 68:1172–1181

    Article  PubMed  CAS  Google Scholar 

  • Accortt EE, Freeman MP, Allen JJ (2008) Women and major depressive disorder: clinical perspectives on causal pathways. J Womens Health (Larchmt) 17:1583–1590

    Article  Google Scholar 

  • Achim AM, Maziade M, Raymond E, Olivier D, Mérette C, Roy MA (2011) How prevalent are anxiety disorders in schizophrenia? A meta-analysis and critical review on a significant association. Schizophr Bull 37:811–821

    Article  PubMed  Google Scholar 

  • Andreasen NC, Wilcox MA, Ho BC, Epping E, Ziebell S, Zeien E, Weiss B, Wassink T (2012) Statistical epistasis and progressive brain change in schizophrenia: an approach for examining the relationships between multiple genes. Mol Psychiatry (in press)

    Google Scholar 

  • Andrieux A, Salin PA, Vernet M, Kujala P, Baratier J, Gory-Fauré S, Bosc C, Pointu H, Proietto D, Schweitzer A, Denarier E, Klumperman J, Job D (2002) The suppression of brain cold-stable microtubules in mice induces synaptic defects associated with neuroleptic-sensitive behavioral disorders. Genes Dev 16:2350–2364

    Article  PubMed  CAS  Google Scholar 

  • Andrieux A, Salin P, Schweitzer A, Bégou M, Pachoud B, Brun P, Gory-Fauré S, Kujala P, Suaud-Chagny MF, Höfle G, Job D (2006) Microtubule stabilizer ameliorates synaptic function and behavior in a mouse model for schizophrenia. Biol Psychiatry 60:1224–1230

    Article  PubMed  CAS  Google Scholar 

  • Arguello PA, Gogos JA (2006) Modeling madness in mice: one piece at a time. Neuron 52:179–196

    Article  PubMed  CAS  Google Scholar 

  • Arguello PA, Gogos JA (2010) Cognition in mouse models of schizophrenia susceptibility genes. Schizophr Bull 36:289–300

    Article  PubMed  Google Scholar 

  • Babovic D, O’Tuathaigh CM, O’Sullivan GJ, Clifford JJ, Tighe O, Croke DT, Karayiorgou M, Gogos JA, Cotter D, Waddington JL (2007) Exploratory and habituation phenotype of heterozygous and homozygous COMT knockout mice. Behav Brain Res 183:236–239

    Article  PubMed  CAS  Google Scholar 

  • Babovic D, O’Tuathaigh CM, O’Connor AM, O’Sullivan GJ, Tighe O, Croke DT, Karayiorgou M, Gogos JA, Cotter D, Waddington JL (2008) Phenotypic characterization of cognition and social behavior in mice with heterozygous versus homozygous deletion of catechol-O-methyltransferase. Neuroscience 155:1021–1029

    Article  PubMed  CAS  Google Scholar 

  • Baker M (2011) Synthetic genomes: the next step for the synthetic genome. Nature 473:405–408

    Article  CAS  Google Scholar 

  • Ballard TM, Pauly-Evers M, Higgins GA, Ouagazzal AM, Mutel V, Borroni E, Kemp JA, Bluethmann H, Kew JN (2002) Severe impairment of NMDA receptor function in mice carrying targeted point mutations in the glycine binding site results in drug-resistant nonhabituating hyperactivity. J Neurosci 22:6713–6723

    PubMed  CAS  Google Scholar 

  • Barak S, Weiner I (2011) Putative cognitive enhancers in preclinical models related to schizophrenia: the search for an elusive target. Pharmacol Biochem Behav 99:164–189

    Article  PubMed  CAS  Google Scholar 

  • Barkus C, Feyder M, Graybeal C, Wright T, Wiedholz L, Izquierdo A, Kiselycznyk C, Schmitt W, Sanderson DJ, Rawlins JN, Saksida LM, Bussey TJ, Sprengel R, Bannerman D, Holmes A (2012) Do GluA1 knockout mice exhibit behavioral abnormalities relevant to the negative or cognitive symptoms of schizophrenia and schizoaffective disorder? Neuropharmacology 62:1263–1272

    Article  PubMed  CAS  Google Scholar 

  • Barr AM, Lehmann-Masten V, Paulus M, Gainetdinov RR, Caron MG, Geyer MA (2004) The selective serotonin-2A receptor antagonist M100907 reverses behavioral deficits in dopamine transporter knockout mice. Neuropsychopharmacology 29:221–228

    Article  PubMed  CAS  Google Scholar 

  • Barros CS, Calabrese B, Chamero P, Roberts AJ, Korzus E, Lloyd K, Stowers L, Mayford M, Halpain S, Müller U (2009) Impaired maturation of dendritic spines without disorganization of cortical cell layers in mice lacking NRG1/ErbB signaling in the central nervous system. Proc Natl Acad Sci U S A 106:4507–4512

    Article  PubMed  CAS  Google Scholar 

  • Bartko SJ, Romberg C, White B, Wess J, Bussey TJ, Saksida LM (2011) Intact attentional processing but abnormal responding in M1 muscarinic receptor-deficient mice using an automated touchscreen method. Neuropharmacology 61:1366–1378

    Article  PubMed  CAS  Google Scholar 

  • Bauer D, Gupta D, Harotunian V, Meador-Woodruff JH, McCullumsmith RE (2008) Abnormal expression of glutamate transporter and transporter interacting molecules in prefrontal cortex in elderly patients with schizophrenia. Schizophr Res 104:108–120

    Article  PubMed  Google Scholar 

  • Bay-Richter C, O'Tuathaigh CM, O'Sullivan G, Heery DM, Waddington JL, Moran PM (2009) Enhanced latent inhibition in dopamine receptor-deficient mice is sex-specific for the D1 but not D2 receptor subtype: implications for antipsychotic drug action. Int J Neuropsychopharmacol 12:403–414

    Article  PubMed  CAS  Google Scholar 

  • Beaulieu JM (2012) A role for Akt and glycogen synthase kinase-3 as integrators of dopamine and serotonin neurotransmission in mental health. J Psychiatry Neurosci 37:7–16

    Article  PubMed  Google Scholar 

  • Beaulieu JM, Sotnikova TD, Yao WD, Kockeritz L, Woodgett JR, Gainetdinov RR, Caron MG (2004) Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proc Natl Acad Sci U S A 101:5099–5104

    Article  PubMed  CAS  Google Scholar 

  • Beaulieu JM, Sotnikova TD, Marion S, Lefkowitz RJ, Gainetdinov RR, Caron MG (2005) An Akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behaviour. Cell 122:261–273

    Article  PubMed  CAS  Google Scholar 

  • Bespalov A et al (2012) Development of disease-modifying treatment of schizophrenia. In: Geyer MA, Gross G (eds) Novel antischizophrenia treatments. Current Antipsychotics, vol 213, Handbook of experimental pharmacology. Springer, Heidelberg

    Chapter  Google Scholar 

  • Bhardwaj SK, Baharnoori M, Sharif-Askari B, Kamath A, Williams S, Srivastava LK (2009) Behavioral characterization of dysbindin-1 deficient sandy mice. Behav Brain Res 197:435–441

    Article  PubMed  CAS  Google Scholar 

  • Boulay D, Bergis O, Avenet P, Griebel G (2010) The glycine transporter-1 inhibitor SSR103800 displays a selective and specific antipsychotic-like profile in normal and transgenic mice. Neuropsychopharmacology 35:416–427

    Article  PubMed  CAS  Google Scholar 

  • Brody SA, Conquet F, Geyer MA (2004) Effect of antipsychotic treatment on the prepulse inhibition deficit of mGluR5 knockout mice. Psychopharmacology (Berl) 172:187–195

    Article  CAS  Google Scholar 

  • Burrows EL, McOmish CE, Hannan AJ (2011) Gene-environment interactions and construct validity in preclinical models of psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 35:1376–1382

    Article  PubMed  Google Scholar 

  • Bussey TJ, Holmes A, Lyon L, Mar AC, McAllister KA, Nithianantharajah J, Oomen CA, Saksida LM (2012) New translational assays for preclinical modelling of cognition in schizophrenia: the touchscreen testing method for mice and rats. Neuropharmacology 62(3):1191–1203

    Article  PubMed  CAS  Google Scholar 

  • Cagniard B, Balsam PD, Brunner D, Zhuang X (2006) Mice with chronically elevated dopamine exhibit enhanced motivation, but not learning, for a food reward. Neuropsychopharmacology 31:1362–1370

    Article  PubMed  CAS  Google Scholar 

  • Carlson GC, Talbot K, Halene TB, Gandal MJ, Kazi HA, Schlosser L, Phung QH, Gur RE, Arnold SE, Siegel SJ (2011) Dysbindin-1 mutant mice implicate reduced fast-phasic inhibition as a final common disease mechanism in schizophrenia. Proc Natl Acad Sci USA 108:E962–E970

    Article  PubMed  CAS  Google Scholar 

  • Carpenter WT (2011) The facts of schizophrenia: a personal commentary. Schizophr Res 128:3–4

    Article  PubMed  Google Scholar 

  • Caspi A, Moffitt TE, Cannon M, McClay J, Murray R, Harrington H, Taylor A, Arseneault L, Williams B, Braithwaite A, Poulton R, Craig IW (2005) Moderation of the effect of adolescent-onset cannabis use on adult psychosis by a functional polymorphism in the catechol-O-methyltransferase gene: longitudinal evidence of a gene X environment interaction. Biol Psychiatry 57:1117–1127

    Article  PubMed  CAS  Google Scholar 

  • Chen YW, Lai WS (2011) Behavioral phenotyping of v-akt murine thymoma viral oncogene homolog 1-deficient mice reveals a sex-specific prepulse inhibition deficit in females that can be partially alleviated by glycogen synthase kinase-3 inhibitors but not by antipsychotics. Neuroscience 174:178–189

    Article  PubMed  CAS  Google Scholar 

  • Chen XW, Feng YQ, Hao CJ, Guo XL, He X, Zhou ZY, Guo N, Huang HP, Xiong W, Zheng H, Zuo PL, Zhang CX, Li W, Zhou Z (2008) DTNBP1, a schizophrenia susceptibility gene, affects kinetics of transmitter release. J Cell Biol 181:791–801

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Henter ID, Manji HK (2010) Translational research in bipolar disorder: emerging insights from genetically based models. Mol Psychiatry 15:883–895

    Article  PubMed  CAS  Google Scholar 

  • Chesworth R, Downey L, Logge W, Killcross S, Karl T (2012) Cognition in female transmembrane domain neuregulin 1 mutant mice. Behav Brain Res 226:218–223

    Article  PubMed  CAS  Google Scholar 

  • Clapcote SJ, Lipina TV, Millar JK, Mackie S, Christie S, Ogawa F, Lerch JP, Trimble K, Uchiyama M, Sakuraba Y, Kaneda H, Shiroishi T, Houslay MD, Henkelman RM, Sled JG, Gondo Y, Porteous DJ, Roder JC (2007) Behavioral phenotypes of Disc1 missense mutations in mice. Neuron 54:387–402

    Article  PubMed  CAS  Google Scholar 

  • Costa RM, Gutierrez R, de Araujo IE, Coelho MR, Kloth AD, Gainetdinov RR, Caron MG, Nicolelis MA, Simon SA (2007) Dopamine levels modulate the updating of tastant values. Genes Brain Behav 6:314–320

    Article  PubMed  CAS  Google Scholar 

  • Cox MM, Tucker AM, Tang J, Talbot K, Richer DC, Yeh L, Arnold SE (2009) Neurobehavioral abnormalities in the dysbindin-1 mutant, sandy, on a C57BL/6J genetic background. Genes Brain Behav 8:390–397

    Article  PubMed  CAS  Google Scholar 

  • Coyle JT et al (2012) Glutamatergic synaptic dysregulation in schizophrenia: therapeutic implications. In: Geyer MA, Gross G (eds) Novel antischizophrenia treatments. Current Antipsychotics, vol 213, Handbook of experimental pharmacology. Springer, Heidelberg

    Chapter  Google Scholar 

  • Craddock N, Owen MJ, O’Donovan MC (2006) The catechol-O-methyl transferase (COMT) gene as a candidate for psychiatric phenotypes: evidence and lessons. Mol Psychiatry 11:446–458

    Article  PubMed  CAS  Google Scholar 

  • Deakin IH, Law AJ, Oliver PL, Schwab MH, Nave KA, Harrison PJ, Bannerman DM (2009) Behavioral characterization of neuregulin 1 type I overexpressing transgenic mice. Neuroreport 20:1523–1528

    Article  PubMed  CAS  Google Scholar 

  • Deakin IH, Nissen W, Law AJ, Lane T, Kanso R, Schwab MH, Nave KA, Lamsa KP, Paulsen O, Bannerman DM, Harrison PJ (2012) Transgenic overexpression of the type I isoform of neuregulin 1 affects working memory and hippocampal oscillations but not long-term potentiation. Cereb Cortex 22:1520–9

    Article  PubMed  Google Scholar 

  • Delotterie D, Ruiz G, Brocard J, Schweitzer A, Roucard C, Roche Y, Suaud-Chagny MF, Bressand K, Andrieux A (2010) Chronic administration of atypical antipsychotics improves behavioral and synaptic defects of STOP null mice. Psychopharmacology (Berl) 208:131–141

    Article  CAS  Google Scholar 

  • Desbonnet L, Waddington JL, O’Tuathaigh CM (2009) Mice mutant for genes associated with schizophrenia: common phenotype or distinct endophenotypes? Behav Brain Res 204:258–273

    Article  PubMed  CAS  Google Scholar 

  • Desbonnet L, O’Tuathaigh C, Clarke G, O’Leary C, Petit E, Clarke N, Tighe O, Lai D, Harvey R, Cryan JF, Dinan TG, Waddington JL (2012) Phenotypic effects of repeated psychosocial stress during adolescence in mice mutant for the schizophrenia risk gene neuregulin-1: a putative model of gene × environment interaction. Brain Behav Immun 26(4):660–671

    Article  PubMed  CAS  Google Scholar 

  • DeSteno DA, Schmauss C (2008) Induction of early growth response gene 2 expression in the forebrain of mice performing an attention-set-shifting task. Neuroscience 152:417–428

    Article  PubMed  CAS  Google Scholar 

  • du Bois TM, Newell KA, Huang XF (2012) Perinatal phencyclidine treatment alters neuregulin 1/erbB4 expression and activation in later life. Eur Neuropsychopharmacol 22(5):356–363

    Article  PubMed  CAS  Google Scholar 

  • Duffy L, Cappas E, Lai D, Boucher AA, Karl T (2010) Cognition in transmembrane domain neuregulin 1 mutant mice. Neuroscience 170:800–807

    Article  PubMed  CAS  Google Scholar 

  • Duncan GE, Moy SS, Perez A, Eddy DM, Zinzow WM, Lieberman JA, Snouwaert JN, Koller BH (2004) Deficits in senosrimotor gating and tests of social behavior in a genetic model of reduced NMDA receptor function. Behav Brain Res 153:507–519

    Article  PubMed  CAS  Google Scholar 

  • Duncan GE, Moy SS, Lieberman JA, Koller BH (2006) Effects of haloperidol, clozapine, and quetiapine on sensorimotor gating in a genetic model of reduced NMDA receptor function. Psychopharmacology (Berl) 184:190–200

    Article  CAS  Google Scholar 

  • El-Ghundi M, Fletcher PJ, Drago J, Sibley DR, O’Dowd BF, George SR (1999) Spatial learning deficit in dopamine D(1) receptor knockout mice. Eur J Pharmacol 383:95–106

    Article  PubMed  CAS  Google Scholar 

  • El-Ghundi M, O'Dowd BF, George SR (2001) Prolonged fear responses in mice lacking dopamine D1 receptor. Brain Res 892:86–93

    Article  PubMed  CAS  Google Scholar 

  • Emamian ES, Hall D, Birnbaum MJ, Karayiorgou M, Gogos JA (2004) Convergent evidence for impaired AKT1-GSK3beta signaling in schizophrenia. Nat Genet 36:131–137

    Article  PubMed  CAS  Google Scholar 

  • Fell MJ, Svensson KA, Johnson BG, Schoepp DD (2008) Evidence for the role of metabotropic glutamate (mGlu)2 not mGlu3 receptors in the preclinical antipsychotic pharmacology of the mGlu2/3 receptor agonist (-)-(1R,4S,5S,6S)-4-amino-2-sulfonylbicyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY404039). J Pharmacol Exp Ther 326:209–217

    Article  PubMed  CAS  Google Scholar 

  • Fell MJ, Perry KW, Falcone JF, Johnson BG, Barth VN, Rash KS, Lucaites VL, Threlkeld PG, Monn JA, McKinzie DL, Marek GJ, Svensson KA, Nelson DL (2009) In vitro and in vivo evidence for a lack of interaction with dopamine D2 receptors by the metabotropic glutamate 2/3 receptor agonists 1S,2S,5R,6S-2-aminobicyclo[3.1.0]hexane-2,6-bicaroxylate monohydrate (LY354740) and (-)-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY379268). J Pharmacol Exp Ther 331:1126–1136

    Article  PubMed  CAS  Google Scholar 

  • Feldon J (2012) Behavioral animal models of antipsychotic drug actions. In: Geyer MA, Gross G (eds) Current antipsychotics, vol 212, Handbook of experimental pharmacology. Springer, Heidelberg

    Google Scholar 

  • Feng YQ, Zhou ZY, He X, Wang H, Guo XL, Hao CJ, Guo Y, Zhen XC, Li W (2008) Dysbindin deficiency in sandy mice causes reduction of snapin and displays behaviors related to schizophrenia. Schizophr Res 106:218–228

    Article  PubMed  Google Scholar 

  • Fitzgerald PJ, Barkus C, Feyder M, Wiedholz LM, Chen YC, Karlsson RM, Machado-Vieira R, Graybeal C, Sharp T, Zarate C, Harvey-White J, Du J, Sprengel R, Gass P, Bannerman D, Holmes A (2010) Does gene deletion of AMPA GluA1 phenocopy features of schizoaffective disorder? Neurobiol Dis 40:608–621

    Article  PubMed  CAS  Google Scholar 

  • Fradley RL, O’Meara GF, Newman RJ, Andrieux A, Job D, Reynolds DS (2005) STOP knockout and NMDA NR1 hypomorphic mice exhibit deficits in sensorimotor gating. Behav Brain Res 163:257–264

    Article  PubMed  CAS  Google Scholar 

  • Fremeau RT Jr, Troyer MD, Pahner I, Nygaard GO, Tran CH, Reimer RJ, Bellocchio EE, Fortin D, Storm-Mathisen J, Edwards RH (2001) The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31:247–260

    Article  PubMed  CAS  Google Scholar 

  • Gainetdinov RR (2008) Dopamine transporter mutant mice in experimental neuropharmacology. Naunyn-Schmiedeberg’s Arch Pharmacol 377:301–313

    Article  PubMed  CAS  Google Scholar 

  • Gama Sosa MA, De Gasperi R, Elder GA (2010) Animal transgenesis: an overview. Brain Struct Funct 214:91–109

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Garcia AL, Elizalde N, Matrov D, Harro J, Wojcik SM, Venzala E, Ramírez MJ, Del Rio J, Tordera RM (2009) Increased vulnerability to depressive-like behaviour of mice with decreased expression of VGLUT1. Biol Psychiatry 66:275–282

    Article  PubMed  CAS  Google Scholar 

  • Gejman PV, Sanders AR, Kendler KS (2011) Genetics of schizophrenia: new findings and challenges. Annu Rev Genomics Hum Genet 12:121–144

    Article  PubMed  CAS  Google Scholar 

  • Glickstein SB, Hof PR, Schmauss C (2002) Mice lacking dopamine D2 and D3 receptors have spatial working memory deficits. J Neurosci 22:5619–5629

    PubMed  CAS  Google Scholar 

  • Gogos JA, Morgan M, Luine V, Santha M, Ogawa S, Pfaff D, Karayiorgou M (1998) Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proc Natl Acad Sci USA 95:9991–9996

    Article  PubMed  CAS  Google Scholar 

  • Gray L, van den Buuse M, Scarr E, Dean B, Hannan AJ (2009) Clozapine reverses schizophrenia-related behaviours in the metabotropic glutamate receptor 5 knockout mouse: association with N-methyl-D-aspartic acid receptor up-regulation. Int J Neuropsychopharmacol 12:45–60

    Article  PubMed  CAS  Google Scholar 

  • Greenwood TA, Lazzeroni LC, Murray SS, Cadenhead KS, Calkins ME, Dobie DJ, Green MF, Gur RE, Gur RC, Hardiman G, Kelsoe JR, Leonard S, Light GA, Nuechterlein KH, Olincy A, Radant AD, Schork NJ, Seidman LJ, Siever LJ, Silverman JM, Stone WS, Swerdlow NR, Tsuang DW, Tsuang MT, Turetsky BI, Freedman R, Braff DL (2011) Analysis of 94 candidate genes and 12 endophenotypes for schizophrenia from the Consortium on the Genetics of Schizophrenia. Am J Psychiatry 168:930–946

    Article  PubMed  Google Scholar 

  • Gründer G, Hippius H, Carlsson A (2009) The ‘atypicality’ of antipsychotics: a concept re-examined and re-defined. Nat Rev Drug Discov 8:197–202

    Article  PubMed  CAS  Google Scholar 

  • Guo X, Hamilton PJ, Reish NJ, Sweatt JD, Miller CA, Rumbaugh G (2009) Reduced expression of the NMDA receptor-interacting protein SynGAP causes behavioral abnormalities that model symptoms of schizophrenia. Neuropsychopharmacology 34:1658–1672

    Article  CAS  Google Scholar 

  • Hargreaves A, Morris DW, Rose E, Fahey C, Moore S, Cummings E, Tropea D, Gill M, Corvin A, Donohoe G (2012) ZNF804A and social cognition in patients with schizophrenia and healthy controls. Mol Psychiatry 17(2):118–119

    Article  PubMed  CAS  Google Scholar 

  • Hattori S, Murotani T, Matsuzaki S, Ishizuka T, Kumamoto N, Takeda M, Tohyama M, Yamatodani A, Kunugi H, Hashimoto R (2008) Behavioral abnormalities and dopamine reductions in sdy mutant mice with a deletion in Dtnbp1, a susceptibility gene for schizophrenia. Biochem Biophys Res Commun 373:298–302

    Article  PubMed  CAS  Google Scholar 

  • Heinz A, Schlagenhauf F (2010) Dopaminergic dysfunction in schizophrenia: salience attribution revisited. Schizophr Bull 36:472–485

    Article  PubMed  Google Scholar 

  • Herzog E, Bellenchi GC, Gras C, Bernard V, Ravassard P, Bedet C, Gasnier B, Giros B, El Mestikawy S (2001) The existence of a second vesicular glutamate transporter specifies subpopulations of glutamatergic neurons. J Neurosci 21:RC181

    PubMed  CAS  Google Scholar 

  • Hikida T, Jaaro-Peled H, Seshadri S, Oishi K, Hookway C, Kong S, Wu D, Xue R, Andradé M, Tankou S, Mori S, Gallagher M, Ishizuka K, Pletnikov M, Kida S, Sawa A (2007) Dominant-negative DISC1 transgenic mice display schizophrenia-associated phenotypes detected by measures translatable to humans. Proc Natl Acad Sci USA 104:14501–14506

    Article  PubMed  CAS  Google Scholar 

  • Holmes A, Lachowicz JE, Sibley DR (2004) Phenotypic analysis of dopamine receptor knockout mice; recent insights into the functional specificity of dopamine receptor subtypes. Neuropharmacology 47:1117–1134

    Article  PubMed  CAS  Google Scholar 

  • Humby T, Wilkinson LS (2011) Assaying dissociable elements of behavioral inhibition and impulsivity: translational utility of animal models. Curr Opin Pharmacol 11:534–539

    Article  PubMed  CAS  Google Scholar 

  • Insel TR (2010) Rethinking schizophrenia. Nature 468:187–193

    Article  PubMed  CAS  Google Scholar 

  • Inta D, Monyer H, Sprengel R, Meyer-Lindenberg A, Gass P (2010) Mice with genetically altered glutamate receptors as models of schizophrenia: a comprehensive review. Neurosci Biobehav Rev 34:285–294

    Article  PubMed  CAS  Google Scholar 

  • Javitt DC, Buchanan RW, Keefe RS, Kern R, McMahon RP, Green MF, Lieberman J, Goff DC, Csernansky JG, McEvoy JP, Jarskog F, Seidman LJ, Gold JM, Kimhy D, Nolan KS, Barch DS, Ball MP, Robinson J, Marder SR (2012) Effect of the neuroprotective peptide davunetide (AL-108) on cognition and functional capacity in schizophrenia. Schizophr Res 136(1–3):25–31

    Article  PubMed  Google Scholar 

  • Javitt DC (2012) Glycine transport inhibitors in the treatment of schizophrenia. In: Geyer MA, Gross G (eds) Novel antischizophrenia treatments. Current Antispychotics, vol 213, Handbook of experimental pharmacology. Springer, Heidelberg

    Google Scholar 

  • Jentsch JD, Trantham-Davidson H, Jairl C, Tinsley M, Cannon TD, Lavin A (2009) Dysbindin modulates prefrontal cortical glutamatergic circuits and working memory function in mice. Neuropsychopharmacology 34:2601–2608

    Article  PubMed  CAS  Google Scholar 

  • Kapur S, Ginovart N (2012) Role of Dopamine D2 Receptors for Antipsychotic Activity. In: Geyer MA, Gross G (eds) Current Antipsychotics, vol 212, Handbook of experimental pharmacology. Springer, Heidelberg

    Google Scholar 

  • Karam CS, Ballon JS, Bivens NM, Freyberg Z, Girgis RR, Lizardi-Ortiz JE, Markx S, Lieberman JA, Javitch JA (2010) Signaling pathways in schizophrenia: emerging targets and therapeutic strategies. Trends Pharmacol Sci 31:381–390

    Article  PubMed  CAS  Google Scholar 

  • Karasinska JM, George SR, El-Ghundi M, Fletcher PJ, O’Dowd BF (2000) Modification of dopamine D(1) receptor knockout phenotype in mice lacking both dopamine D1 and D3 receptors. Eur J Pharmacol 399:171–181

    Article  PubMed  CAS  Google Scholar 

  • Karlsson RM, Tanaka K, Heilig M, Holmes A (2008) Loss of glial glutamate and aspartate transporter (excitatory amino acid transporter 1) causes locomotor hyperactivity and exaggerated responses to psychotomimetics: rescue by haloperidol and metabotropic glutamate 2/3 agonist. Biol Psychiatry 64:810–814

    Article  PubMed  CAS  Google Scholar 

  • Karlsson RM, Tanaka K, Saksida LM, Bussey TJ, Heilig M, Holmes A (2009) Assessment of glutamate transporter GLAST (EAAT1)-deficient mice for phenotypes relevant to the negative and executive/cognitive symptoms of schizophrenia. Neuropsychopharmacology 34:1578–1589

    Article  PubMed  CAS  Google Scholar 

  • Kas MJ, Kahn RS, Collier DA, Waddington JL, Ekelund J, Porteous DJ, Schughart K, Hovatta I (2011) Translational neuroscience of Schizophrenia: seeking a meeting of minds between mouse and man. Sci Transl Med 3:102mr3

    Article  PubMed  Google Scholar 

  • Kellendonk C, Simpson EH, Kandel ER (2009) Modeling cognitive endophenotypes of schizophrenia in mice. Trends Neurosci 32:347–358

    Article  PubMed  CAS  Google Scholar 

  • Keshavan MS, Nasrallah HA, Tandon R (2011) Schizophrenia, “Just the Facts” 6. Moving ahead with the schizophrenia concept: from the elephant to the mouse. Schizophr Res 127:3–13

    Article  PubMed  Google Scholar 

  • Keefe RSE, Harvey PD (2012) Cognitive Impairment in Schizophrenia. In: Geyer MA, Gross G (eds) Novel antischizophrenia treatments. Current Antispychotics, vol 213, Handbook of experimental pharmacology. Springer, Heidelberg

    Chapter  Google Scholar 

  • Kim Y, Zerwas S, Trace SE, Sullivan PF (2011) Schizophrenia genetics: where next? Schizophr Bull 37:456–463

    Article  PubMed  Google Scholar 

  • Kinon BJ, Zhang L, Millen BA, Osuntokun OO, Williams JE, Kollack-Walker S, Jackson K, Kryzhanovskaya L, Jarkova N, HBBI Study Group (2011) A multicenter, inpatient, phase 2, double-blind, placebo-controlled dose-ranging study of LY2140023 monohydrate in patients with DSM-IV schizophrenia. J Clin Psychopharmacol 31:349–355

    Article  PubMed  CAS  Google Scholar 

  • Kirby B, Waddington JL, O’Tuathaigh CMP (2010) Advancing a functional genomics for schizophrenia: psychopathological and cognitive phenotypes in mutants with gene disruption. Brain Res Bull 83:162–176

    Article  PubMed  CAS  Google Scholar 

  • Koike H, Arguello PA, Kvajo M, Karayiorgou M, Gogos JA (2006) Disc1 is mutated in the 129S6/SvEv strain and modulates working memory in mice. Proc Natl Acad Sci USA 103:3693–3697

    Article  PubMed  CAS  Google Scholar 

  • Krivoy A, Fischel T, Weizman A (2008) The possible involvement of metabotropic glutamate receptors in schizophrenia. Eur Neuropsychopharmacol 18:395–405

    Article  PubMed  CAS  Google Scholar 

  • Kruzich PJ, Grandy DK (2004) Dopamine D2 receptors mediate two-odor discrimination and reversal learning in C57BL/6 mice. BMC Neurosci 5:12

    Article  PubMed  Google Scholar 

  • Kuepper R, Skinbjerg M, Abi-Dargham A (2012) The dopamine dysfunction in schizophrenia revisited: New insights into topography and course. In: Geyer MA, Gross G (eds) Current antipsychotics, vol 212, Handbook of experimental pharmacology. Springer, Heidelberg

    Chapter  Google Scholar 

  • Kuroda K, Yamada S, Tanaka M, Iizuka M, Yano H, Mori D, Tsuboi D, Nishioka T, Namba T, Iizuka Y, Kubota S, Nagai T, Ibi D, Wang R, Enomoto A, Isotani-Sakakibara M, Asai N, Kimura K, Kiyonari H, Abe T, Mizoguchi A, Sokabe M, Takahashi M, Yamada K, Kaibuchi K (2011) Behavioral alterations associated with targeted disruption of exons 2 and 3 of the Disc1 gene in the mouse. Hum Mol Genet 20:4666–4683

    Article  PubMed  CAS  Google Scholar 

  • Kvajo M, McKellar H, Arguello PA, Drew LJ, Moore H, MacDermott AB, Karayiorgou M, Gogos JA (2008) A mutation in mouse Disc 1 that models a schizophrenia risk allele leads to specific alterations in neuronal architecture and cognition. Proc Natl Acad Sci USA 105:7076–7081

    Article  PubMed  CAS  Google Scholar 

  • Labrie V, Lipina T, Roder JC (2008) Mice with reduced NMDA receptor glycine affinity model some of the negative and cognitive symptoms of schizophrenia. Psychopharmacology (Berl) 200:217–230

    Article  CAS  Google Scholar 

  • Labrie V, Fukumura R, Rastogi A, Fick LJ, Wang W, Boutros PC, Kennedy JL, Semeralul MO, Lee FH, Baker GB, Belsham DD, Barger SW, Gondo Y, Wong AH, Roder JC (2009) Serine racemase is associated with schizophrenia susceptibility in humans and in a mouse model. Hum Mol Genet 18:3227–3243

    Article  PubMed  CAS  Google Scholar 

  • Lai WS, Xu B, Westphal KG, Paterlini M, Olivier B, Pavlidis P, Karayiorgou M, Gogos JA (2006) Akt1 deficiency affects neuronal morphology and predisposes to abnormalities in prefrontal cortex functioning. Proc Natl Acad Sci USA 103:16906–16911

    Article  PubMed  CAS  Google Scholar 

  • Laporte JL, Ren-Patterson RF, Murphy DL, Kalueff AV (2008) Refining psychiatric genetics: from ‘mouse psychiatry’ to understanding complex human disorders. Behav Pharmacol 19:377–384

    Article  PubMed  Google Scholar 

  • Li W, Zhang Q, Oiso N, Novak EK, Gautam R, O’Brien EP, Tinsley CL, Blake DJ, Spritz RA, Copeland NG, Jenkins NA, Amato D, Roe BA, Starcevic M, Dell’Angelica EC, Elliott RW, Mishra V, Kingsmore SF, Paylor RE, Swank RT (2003) Hermansky-Pudlak syndrome type 7 (HPS-7) results from mutant dysbindin, a member of the biogenesis of lysosome-related organelles complex 1 (BLOC-1). Nat Genet 35:84–89

    Article  PubMed  CAS  Google Scholar 

  • Li W, Zhou Y, Jentsch JD, Brown RA, Tian X, Ehninger D, Hennah W, Peltonen L, Lönnqvist J, Huttunen MO, Kaprio J, Trachtenberg JT, Silva AJ, Cannon TD (2007) Specific developmental disruption of disrupted-in-schizophrenia-1 function results in schizophrenia-related phenotypes in mice. Proc Natl Acad Sci USA 104:18280–18285

    Article  PubMed  CAS  Google Scholar 

  • Li M, Luo XJ, Xiao X, Shi L, Liu XY, Yin LD, Diao HB, Su B (2011) Allelic differences between Han Chinese and Europeans for functional variants in ZNF804A and their association with schizophrenia. Am J Psychiatry 168(12):1318–1325

    PubMed  Google Scholar 

  • Lipina TV, Wang M, Liu F, Roder JC (2012) Synergistic interactions between PDE4B and GSK-3: DISC1 mutant mice. Neuropharmacology 62(3):1252–1262

    Article  PubMed  CAS  Google Scholar 

  • Low NC, Hardy J (2007) What is a schizophrenic mouse? Neuron 54:348–349

    Article  PubMed  CAS  Google Scholar 

  • Mao Y, Ge X, Frank CL, Madison JM, Koehler AN, Doud MK, Tassa C, Berry EM, Soda T, Singh KK, Biechele T, Petryshen TL, Moon RT, Haggarty SJ, Tsai LH (2009) Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3beta/beta-catenin signaling. Cell 136:1017–1031

    Article  PubMed  CAS  Google Scholar 

  • Marder SR, Fenton W (2004) Measurement and Treatment Research to Improve Cognition in Schizophrenia: NIMH MATRICS initiative to support the development of agents for improving cognition in schizophrenia. Schizophr Res 72:5–9

    Article  PubMed  Google Scholar 

  • Meltzer H (2012) Serotonergic mechanisms as targets for existing and novel antipsychotics. In: Geyer MA, Gross G (eds). Current Antipsychotics, vol 213, Handbook of experimental pharmacology. Springer, Heidelberg

    Chapter  Google Scholar 

  • Merenlender-Wagner A, Pikman R, Giladi E, Andrieux A, Gozes I (2010) NAP (davunetide) enhances cognitive behavior in the STOP heterozygous mouse–a microtubule-deficient model of schizophrenia. Peptides 31:1368–1373

    Article  PubMed  CAS  Google Scholar 

  • Meyer U, Knuesel I, Nyffeler M, Feldon J (2010) Chronic clozapine treatment improves prenatal infection-induced working memory deficits without influencing adult hippocampal neurogenesis. Psychopharmacology (Berl) 208:531–543

    Article  CAS  Google Scholar 

  • Meyer-Lindenberg A (2010) From maps to mechanisms through neuroimaging of schizophrenia. Nature 468:194–202

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto Y, Yamada K, Noda Y, Mori H, Mishina M, Nabeshima T (2001) Hyperfunction of dopaminergic and serotonergic neuronal systems in mice lacking the NMDA receptor epsilon1 subunit. J Neurosci 21:750–757

    PubMed  CAS  Google Scholar 

  • Mohn AR, Gainetdinov RR, Caron MG, Koller BH (1999) Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 98:427–436

    Article  PubMed  CAS  Google Scholar 

  • Moore H (2010) The role of rodent models in the discovery of new treatments for schizophrenia: updating our strategy. Schizophr Bull 36:1066–1072

    Article  PubMed  Google Scholar 

  • Moser PC, Hitchcock JM, Lister S, Moran PM (2000) The pharmacology of latent inhibition as an animal model of schizophrenia. Brain Res Brain Res Rev 33:275–307

    Article  PubMed  CAS  Google Scholar 

  • Moutsimilli L, Farley S, El Khoury MA, Chamot C, Sibarita JB, Racine V, El Mestikawy S, Mathieu F, Dumas S, Giros B, Tzavara ET (2008) Antipsychotics increase vesicular glutamate transporter 2 (VGLUT2) expression in thalamolimbic pathways. Neuropharmacology 54:497–508

    Article  PubMed  CAS  Google Scholar 

  • Muglia P (2011) From genes to therapeutic targets for psychiatric disorders—what to expect? Curr Opin Pharmacol 11:563–571

    Article  PubMed  CAS  Google Scholar 

  • Murotani T, Ishizuka T, Hattori S, Hashimoto R, Matsuzaki S, Yamatodani A (2007) High dopamine turnover in the brains of Sandy mice. Neurosci Lett 421(1):47–51

    Article  PubMed  CAS  Google Scholar 

  • Muhia M, Yee BK, Feldon J, Markopoulos F, Knuesel I (2010) Disruption of hippocampus-regulated behavioral and cognitive processes by heterozygous constitutive deletion of SynGAP. Eur J Neurosci 31:529–543

    Article  PubMed  Google Scholar 

  • Munafò MR, Bowes L, Clark TG, Flint J (2005) Lack of association of the COMT (Val158/108 Met) gene and schizophrenia: a meta-analysis of case-control studies. Mol Psychiatry 10:765–770

    Article  PubMed  CAS  Google Scholar 

  • Nestler EJ, Hyman SE (2010) Animal models of neuropsychiatric disorders. Nat Neurosci 13:1161–1169

    Article  PubMed  CAS  Google Scholar 

  • Niwa M, Kamiya A, Murai R, Kubo K, Gruber AJ, Tomita K, Lu L, Tomisato S, Jaaro-Peled H, Seshadri S, Hiyama H, Huang B, Kohda K, Noda Y, O’Donnell P, Nakajima K, Sawa A, Nabeshima T (2010) Knockdown of DISC1 by in utero gene transfer disturbs postnatal dopaminergic maturation in the frontal cortex and leads to adult behavioral deficits. Neuron 65:480–489

    Article  PubMed  CAS  Google Scholar 

  • O’Leary C, Desbonnet L, O’Tuathaigh CM, Petit E, Clarke N, Tighe O, Lai D, Harvey R, Waddington JL (2010) Prenatal immune activation in mice with heterozygous deletion of the schizophrenia risk gene neuregulin-1: modelling gene x environment interaction in schizophrenia. Ir J Med Sci 180:60

    Google Scholar 

  • O’Tuathaigh CMP, Waddington JL (2010) Mutant mouse models: phenotypic relationships to domains of psychopathology and pathobiology in schizophrenia. Schizophr Bull 36:243–245

    Article  PubMed  Google Scholar 

  • O’Tuathaigh CMP, Babovic D, O’Meara G, Clifford JJ, Croke DT, Waddington JL (2007a) Susceptibility genes for schizophrenia: phenotypic characterisation of mutant models. Neurosci Biobehav Rev 31:60–78

    Article  PubMed  CAS  Google Scholar 

  • O’Tuathaigh CM, Babovic D, O’Sullivan GJ, Clifford JJ, Tighe O, Croke DT, Harvey R, Waddington JL (2007b) Phenotypic characterization of spatial cognition and social behavior in mice with ‘knockout’ of the schizophrenia risk gene neuregulin 1. Neuroscience 147:18–27

    Article  PubMed  CAS  Google Scholar 

  • O’Tuathaigh CM, O’Connor AM, O’Sullivan G, Lai D, Harvey R, Croke DT, Waddington JL (2008) Disruption to social dyadic interactions but not emotional/anxiety-related behaviour in mice with heterozygous ‘knockout’ of the schizophrenia risk gene neuregulin-1. Prog Neuropsychopharmacol Biol Psychiatry 32:462–466

    Article  PubMed  CAS  Google Scholar 

  • O’Tuathaigh CM, Hryniewiecka M, Behan A, Tighe O, Coughlan C, Desbonnet L, Cannon M, Karayiorgou M, Gogos JA, Cotter DR, Waddington JL (2010) Chronic adolescent exposure to Δ-9-tetrahydrocannabinol in COMT mutant mice: impact on psychosis-related and other phenotypes. Neuropsychopharmacology 35:2262–2273

    Article  PubMed  CAS  Google Scholar 

  • O’Tuathaigh CM, Desbonnet L, Moran PM, Kirby BP, Waddington JL (2011) Molecular genetic models related to schizophrenia and psychotic illness: heuristics and challenges. Curr Top Behav Neurosci 7:87–119

    Article  PubMed  Google Scholar 

  • O’Tuathaigh CM, Clarke G, Walsh J, Desbonnet L, Petit E, O’Leary C, Tighe O, Clarke N, Karayiorgou M, Gogos JA, Dinan TG, Cryan JF, Waddington JL (2012) Genetic vs. pharmacological inactivation of COMT influences cannabinoid-induced expression of schizophrenia related phenotypes. Int J Neuropsychopharmacol 11:1–12

    Google Scholar 

  • Oni-Orisan A, Kristiansen LV, Haroutunian V, Meador-Woodruff JH, McCullumsmith RE (2008) Altered vesicular glutamate transporter expression in the anterior cingulate cortex in schizophrenia. Biol Psychiatry 63:766–775

    Article  PubMed  CAS  Google Scholar 

  • Owen MJ, O’Donovan MC, Thapar A, Craddock N (2011) Neurodevelopmental hypothesis of schizophrenia. Br J Psychiatry 198:173–175

    Article  PubMed  Google Scholar 

  • Pan B, Huang XF, Deng C (2011) Antipsychotic treatment and neuregulin 1-ErbB4 signalling in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 35:924–930

    Article  PubMed  CAS  Google Scholar 

  • Papaleo F, Weinberger DR (2011) Dysbindin and Schizophrenia: it’s dopamine and glutamate all over again. Biol Psychiatry 69:2–4

    Article  PubMed  CAS  Google Scholar 

  • Papaleo F, Crawley JN, Song J, Lipska BK, Pickel J, Weinberger DR, Chen J (2008) Genetic dissection of the role of catechol-O-methyltransferase in cognition and stress reactivity in mice. J Neurosci 28:8709–8723

    Article  PubMed  CAS  Google Scholar 

  • Papaleo F, Lipska BK, Weinberger DR (2012) Mouse models of genetic effects on cognition: relevance to schizophrenia. Neuropharmacology 62(3):1204–1220

    Article  PubMed  CAS  Google Scholar 

  • Patil ST, Zhang L, Martenyi F, Lowe SL, Jackson KA, Andreev BV, Avedisova AS, Bardenstein LM, Gurovich IY, Morozova MA, Mosolov SN, Neznanov NG, Reznik AM, Smulevich AB, Tochilov VA, Johnson BG, Monn JA, Schoepp DD (2007) Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial. Nat Med 13:1102–1107

    Article  PubMed  CAS  Google Scholar 

  • Piontkewitz Y, Assaf Y, Weiner I (2009) Clozapine administration in adolescence prevents postpubertal emergence of brain structural pathology in an animal model of schizophrenia. Biol Psychiatry 66:1038–1046

    Article  PubMed  CAS  Google Scholar 

  • Piontkewitz Y, Arad M, Weiner I (2012) Tracing the development of psychosis and its prevention: what can be learned from animal models. Neuropharmacology 62:1273–1289

    Article  PubMed  CAS  Google Scholar 

  • Pletnikov MV, Ayhan Y, Nikolskaia O, Xu Y, Ovanesov MV, Huang H, Mori S, Moran TH, Ross CA (2008) Inducible expression of mutant human DISC1 in mice is associated with brain and behavioral abnormalities reminiscent of schizophrenia. Mol Psychiatry 13:173–186

    Article  PubMed  CAS  Google Scholar 

  • Porsolt RD, Moser PC, Castagné V (2010) Behavioral indices in antipsychotic drug discovery. J Pharmacol Exp Ther 333:632–638

    Article  PubMed  CAS  Google Scholar 

  • Powell SB, Young JW, Ong JC, Caron MG, Geyer MA (2008) Atypical antipsychotics clozapine and quetiapine attenuate prepulse inhibition deficits in dopamine transporter knockout mice. Behav Pharmacol 19:562–565

    Article  PubMed  CAS  Google Scholar 

  • Powell SB, Zhou X, Geyer MA (2009) Prepulse inhibition and genetic mouse models of schizophrenia. Behav Brain Res 204:282–294

    Article  PubMed  CAS  Google Scholar 

  • Ralph RJ, Varty GB, Kelly MA, Wang YM, Caron MG, Rubinstein M, Grandy DK, Low MJ, Geyer MA (1999) The dopamine D2, but not D3 or D4, receptor subtype is essential for the disruption of prepulse inhibition produced by amphetamine in mice. J Neurosci 19:4627–4633

    PubMed  CAS  Google Scholar 

  • Ralph-Williams RJ, Lehmann-Masten V, Otero-Corchon V, Low MJ, Geyer MA (2002) Differential effects of direct and indirect dopamine agonists on prepulse inhibition: a study in D1 and D2 receptor knock-out mice. J Neurosci 22:9604–9611

    PubMed  CAS  Google Scholar 

  • Rimer M, Barrett DW, Maldonado MA, Vock VM et al (2005) Neuregulin-1 immunoglobulin-like domain mutant mice: clozapine sensitivity and impaired latent inhibition. Neuroreport 16:271–275

    Article  PubMed  CAS  Google Scholar 

  • Ripke S, Sanders AR, Kendler KS, Levinson DF, Sklar P, Holmans PA, Lin DY, Duan J, Ophoff RA, Andreassen OA, Scolnick E, Cichon S, St Clair D, Corvin A, Gurling H, Werge T, Rujescu D, Blackwood DH, Pato CN, Malhotra AK, Purcell S, Dudbridge F, Neale BM, Rossin L, Visscher PM, Posthuma D, Ruderfer DM, Fanous A, Stefansson H, Steinberg S, Mowry BJ, Golimbet V, De Hert M, Jönsson EG, Bitter I, Pietiläinen OP, Collier DA, Tosato S, Agartz I, Albus M, Alexander M, Amdur RL, Amin F, Bass N, Bergen SE, Black DW, Børglum AD, Brown MA, Bruggeman R, Buccola NG, Byerley WF, Cahn W, Cantor RM, Carr VJ, Catts SV, Choudhury K, Cloninger CR, Cormican P, Craddock N, Danoy PA, Datta S, de Haan L, Demontis D, Dikeos D, Djurovic S, Donnelly P, Donohoe G, Duong L, Dwyer S, Fink-Jensen A, Freedman R, Freimer NB, Friedl M, Georgieva L, Giegling I, Gill M, Glenthøj B, Godard S, Hamshere M, Hansen M, Hansen T, Hartmann AM, Henskens FA, Hougaard DM, Hultman CM, Ingason A, Jablensky AV, Jakobsen KD, Jay M, Jürgens G, Kahn RS, Keller MC, Kenis G, Kenny E, Kim Y, Kirov GK, Konnerth H, Konte B, Krabbendam L, Krasucki R, Lasseter VK, Laurent C, Lawrence J, Lencz T, Lerer FB, Liang KY, Lichtenstein P, Lieberman JA, Linszen DH, Lönnqvist J, Loughland CM, Maclean AW, Maher BS, Maier W, Mallet J, Malloy P, Mattheisen M, Mattingsdal M, McGhee KA, McGrath JJ, McIntosh A, McLean DE, McQuillin A, Melle I, Michie PT, Milanova V, Morris DW, Mors O, Mortensen PB, Moskvina V, Muglia P, Myin-Germeys I, Nertney DA, Nestadt G, Nielsen J, Nikolov I, Nordentoft M, Norton N, Nöthen MM, O’Dushlaine CT, Olincy A, Olsen L, O’Neill FA, Orntoft TF, Owen MJ, Pantelis C, Papadimitriou G, Pato MT, Peltonen L, Petursson H, Pickard B, Pimm J, Pulver AE, Puri V, Quested D, Quinn EM, Rasmussen HB, Réthelyi JM, Ribble R, Rietschel M, Riley BP, Ruggeri M, Schall U, Schulze TG, Schwab SG, Scott RJ, Shi J, Sigurdsson E, Silverman JM, Spencer CC, Stefansson K, Strange A, Strengman E, Stroup TS, Suvisaari J, Terenius L, Thirumalai S, Thygesen JH, Timm S, Toncheva D, van den Oord E, van Os J, van Winkel R, Veldink J, Walsh D, Wang AG, Wiersma D, Wildenauer DB, Williams HJ, Williams NM, Wormley B, Zammit S, Sullivan PF, O’Donovan MC, Daly MJ, Gejman PV, Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium (2011) Genome-wide association study identifies five new schizophrenia loci. Nat Genet 43:969–976

    Article  CAS  Google Scholar 

  • Rodriguiz RM, Chu R, Caron MG, Wetsel WC (2004) Aberrant responses in social interaction of dopamine transporter knockout mice. Behav Brain Res 148:185–198

    Article  PubMed  CAS  Google Scholar 

  • Rünker AE, O’Tuathaigh C, Dunleavy M, Morris DW, Little GE, Corvin AP, Gill M, Henshall DC, Waddington JL, Mitchell KJ (2011) Mutation of Semaphorin-6A disrupts limbic and cortical connectivity and models neurodevelopmental psychopathology. PLoS One 6:e26488

    Article  PubMed  CAS  Google Scholar 

  • Sagata N, Iwaki A, Aramaki T, Takao K, Kura S, Tsuzuki T, Kawakami R, Ito I, Kitamura T, Sugiyama H, Miyakawa T, Fukumaki Y (2010) Comprehensive behavioral study of GluR4 knockout mice: implication in cognitive function. Genes Brain Behav 9:899–909

    Article  PubMed  CAS  Google Scholar 

  • Salahpour A, Medvedev IO, Beaulieu JM, Gainetdinov RR, Caron MG (2007) Local knockdown of genes in the brain using small interfering RNA: a phenotypic comparison with knockout animals. Biol Psychiatry 61:65–69

    Article  PubMed  CAS  Google Scholar 

  • Seamans JK, Yang CR (2004) The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol 74:1–58

    Article  PubMed  CAS  Google Scholar 

  • Seeman P, Guan HC (2008) Phencyclidine and glutamate agonist LY379268 stimulate dopamine D2High receptors: D2 basis for schizophrenia. Synapse 62:819–828

    Article  PubMed  CAS  Google Scholar 

  • Seeman P, Guan HC (2009) Glutamate agonists for treating schizophrenia have affinity for dopamine D2high and D3 receptors. Synapse 63:705–709

    Article  PubMed  CAS  Google Scholar 

  • Shen S, Lang B, Nakamoto C, Zhang F, Pu J, Kuan SL, Chatzi C, He S, Mackie I, Brandon NJ, Marquis KL, Day M, Hurko O, McCaig CD, Riedel G, St Clair D (2008) Schizophrenia-related neural and behavioral phenotypes in transgenic mice expressing truncated DISC1. J Neurosci 28:10893–10904

    Article  PubMed  CAS  Google Scholar 

  • Shi J, Levinson DF, Duan J, Sanders AR, Zheng Y, Pe’er I, Dudbridge F, Holmans PA, Whittemore AS, Mowry BJ, Olincy A, Amin F, Cloninger CR, Silverman JM, Buccola NG, Byerley WF, Black DW, Crowe RR, Oksenberg JR, Mirel DB, Kendler KS, Freedman R, Gejman PV (2009) Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature 460:753–757

    PubMed  CAS  Google Scholar 

  • Shi Y, Li Z, Xu Q, Wang T, Li T, Shen J, Wang T, Li T, Shen J, Zhang F, Chen J, Zhou G, Ji W, Li B, Xu Y, Liu D, Wang P, Yang P, Liu B, Sun W, Wan C, Qin S, He G, Steinberg S, Cichon S, Werge T, Sigurdsson E, Tosato S, Palotie A, Nöthen MM, Rietschel M, Ophoff RA, Collier DA, Rujescu D, Clair DS, Stefansson H, Stefansson K, Ji J, Wang Q, Li W, Zheng L, Zhang H, Feng G, He L (2011) Common variants on 8p12 and 1q24.2 confer risk of schizophrenia. Nat Genet 43:1224–1227

    Article  PubMed  CAS  Google Scholar 

  • Siegel S, Rabin C (2012) Delivery systems and dosing for antipsychotics. In: Geyer MA, Gross G (eds) Current antipsychotics, vol 212, Handbook of experimental pharmacology. Springer, Heidelberg

    Google Scholar 

  • Simpson EH, Kellendonk C, Ward RD, Richards V, Lipatova O, Fairhurst S, Kandel ER, Balsam PD (2011) Pharmacologic rescue of motivational deficit in an animal model of the negative symptoms of schizophrenia. Biol Psychiatry 69:928–935

    Article  PubMed  CAS  Google Scholar 

  • Smith RE, Haroutunian V, Davis KL, Meador-Woodruff JH (2001) Expression of excitatory amino acid transporter transcripts in the thalamus of subjects with schizophrenia. Am J Psychiatry 158:1393–1399

    Article  PubMed  CAS  Google Scholar 

  • Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S, Brynjolfsson J, Gunnarsdottir S, Ivarsson O, Chou TT, Hjaltason O, Birgisdottir B, Jonsson H, Gudnadottir VG, Gudmundsdottir E, Bjornsson A, Ingvarsson B, Ingason A, Sigfusson S, Hardardottir H, Harvey RP, Lai D, Zhou M, Brunner D, Mutel V, Gonzalo A, Lemke G, Sainz J, Johannesson G, Andresson T, Gudbjartsson D, Manolescu A, Frigge ML, Gurney ME, Kong A, Gulcher JR, Petursson H, Stefansson K (2002) Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 71:877–892

    Article  PubMed  Google Scholar 

  • Sullivan PF (2010) The psychiatric GWAS consortium: big science comes to psychiatry. Neuron 68:182–186

    Article  PubMed  CAS  Google Scholar 

  • Takao K, Toyama K, Nakanishi K, Hattori S, Takamura H, Takeda M, Miyakawa T, Hashimoto R (2008) Impaired long-term memory retention and working memory in sdy mutant mice with a deletion in Dtnbp1, a susceptibility gene for schizophrenia. Mol Brain 1:11

    Article  PubMed  CAS  Google Scholar 

  • Talbot K (2009) The sandy (sdy) mouse: a dysbindin-1 mutant relevant to schizophrenia research. Prog Brain Res 179:87–94

    Article  PubMed  CAS  Google Scholar 

  • Tanaka KF, Ahmari SE, Leonardo ED, Richardson-Jones JW, Budreck EC, Scheiffele P, Sugio S, Inamura N, Ikenaka K, Hen R (2010) Flexible Accelerated STOP Tetracycline Operator-knockin (FAST): a versatile and efficient new gene modulating system. Biol Psychiatry 67:770–773

    Article  PubMed  CAS  Google Scholar 

  • Tillerson JL, Caudle WM, Parent JM, Gong C, Schallert T, Miller GW (2006) Olfactory discrimination deficits in mice lacking the dopamine transporter or the D2 dopamine receptor. Behav Brain Res 172:97–105

    Article  PubMed  CAS  Google Scholar 

  • Tost H, Braus DF, Hakimi S, Ruf M, Vollmert C, Hohn F, Meyer-Lindenberg A (2010) Acute D2 receptor blockade induces rapid, reversible remodeling in human cortical-striatal circuits. Nat Neurosci 13:920–922

    Article  PubMed  CAS  Google Scholar 

  • Tunbridge EM, Harrison PJ, Weinberger DR (2006) Catechol-o-methyltransferase, cognition, and psychosis: Val158Met and beyond. Biol Psychiatry 60:141–151

    Article  PubMed  CAS  Google Scholar 

  • van den Buuse M (2010) Modelling the positive symptoms of schizophrenia in genetically-modified mice: pharmacology and methodology aspects. Schizophr Bull 36:246–270

    Article  PubMed  Google Scholar 

  • van den Buuse M, Wischhof L, Lee RX, Martin S, Karl T (2009) Neuregulin 1 hypomorphic mutant mice: enhanced baseline locomotor activity but normal psychotropic drug-induced hyperlocomotion and prepulse inhibition regulation. Int J Neuropsychopharmacol 12:1383–1393

    Article  PubMed  CAS  Google Scholar 

  • van Os J, Kenis G, Rutten BP (2010) The environment and schizophrenia. Nature 468:203–212

    Article  PubMed  CAS  Google Scholar 

  • Waddington JL, O’Tuathaigh C, O’Sullivan G, Tomiyama K, Koshikawa N, Croke DT (2005) Phenotypic studies on dopamine receptor subtype and associated signal transduction mutants: insights and challenges from 10 years at the psychopharmacology-molecular biology interface. Psychopharmacology (Berl) 181:611–638

    Article  CAS  Google Scholar 

  • Waddington JL, O’Sullivan GJ, Tomiyama K (2011) Regulation of orofacial movement: dopamine receptor mechanisms and mutant models. Int Rev Neurobiol 97:39–60

    Article  PubMed  CAS  Google Scholar 

  • Waddington JL, Hennessy RJ, O’Tuathaigh CMP, Owoeye O, Russell V (2012) Schizophrenia and the lifetime trajectory of psychotic illness: developmental neuroscience and pathobiology, redux. In: Brown AS, Patterson PH (eds) The Origins of Schizophrenia. Columbia University Press, New York, NY, pp 3–21

    Google Scholar 

  • Wallén-Mackenzie A, Nordenankar K, Fejgin K, Lagerström MC, Emilsson L, Fredriksson R, Wass C, Andersson D, Egecioglu E, Andersson M, Strandberg J, Lindhe O, Schiöth HB, Chergui K, Hanse E, Långström B, Fredriksson A, Svensson L, Roman E, Kullander K (2009) Restricted cortical and amygdaloid removal of vesicular glutamate transporter 2 in preadolescent mice impacts dopaminergic activity and neuronal circuitry of higher brain function. J Neurosci 29:2238–2251

    Article  PubMed  CAS  Google Scholar 

  • Wiedholz LM, Owens WA, Horton RE, Feyder M, Karlsson RM, Hefner K, Sprengel R, Celikel T, Daws LC, Holmes A (2008) Mice lacking the AMPA GluR1 receptor exhibit striatal hyperdopaminergia and ‘schizophrenia-related’ behaviors. Mol Psychiatry 13:631–640

    Article  PubMed  CAS  Google Scholar 

  • Williams HJ, Owen MJ, O’Donovan MC (2007) Is COMT a susceptibility gene for schizophrenia? Schizophr Bull 33:635–641

    Article  PubMed  Google Scholar 

  • Williams HJ, Norton N, Dwyer S, Moskvina V, Nikolov I, Carroll L, Georgieva L, Williams NM, Morris DW, Quinn EM, Giegling I, Ikeda M, Wood J, Lencz T, Hultman C, Lichtenstein P, Thiselton D, Maher BS, Malhotra AK, Riley B, Kendler KS, Gill M, Sullivan P, Sklar P, Purcell S, Nimgaonkar VL, Kirov G, Holmans P, Corvin A, Rujescu D, Craddock N, Owen MJ, O’Donovan MC, Molecular Genetics of Schizophrenia Collaboration (MGS) International Schizophrenia Consortium (ISC), SGENE-plus, GROUP (2011) Fine mapping of ZNF804A and genome-wide significant evidence for its involvement in schizophrenia and bipolar disorder. Mol Psychiatry 16:429–441

    Article  PubMed  CAS  Google Scholar 

  • Xu R, Hranilovic D, Fetsko LA, Bucan M, Wang Y (2002) Dopamine D2S and D2L receptors may differentially contribute to the actions of antipsychotic and psychotic agents in mice. Mol Psychiatry 7:1075–1082

    Article  PubMed  CAS  Google Scholar 

  • Young JW, Powell SB, Risbrough V, Marston HM, Geyer MA (2009) Using the MATRICS to guide development of a preclinical cognitive test battery for research in schizophrenia. Pharmacol Ther 122:150–202

    Article  PubMed  CAS  Google Scholar 

  • Young JW, Powell SB, Geyer MA (2012a) Mouse pharmacological models of cognitive disruption relevant to schizophrenia. Neuropharmacology 62:1381–1390

    Article  PubMed  CAS  Google Scholar 

  • Young JW et al (2012b) Behavioral animal models to assess pro-cognitive treatments for schizophrenia. In: Geyer MA, Gross G (eds) Novel antischizophrenia treatments, vol 213, Handbook of experimental pharmacology. Springer, Heidelberg

    Chapter  Google Scholar 

  • Yue WH, Wang HF, Sun LD, Tang FL, Liu ZH, Zhang HX, Li WQ, Zhang YL, Zhang Y, Ma CC, Du B, Wang LF, Ren YQ, Yang YF, Hu XF, Wang Y, Deng W, Tan LW, Tan YL, Chen Q, Xu GM, Yang GG, Zuo XB, Yan H, Ruan YY, Lu TL, Han X, Ma XH, Wang Y, Cai LW, Jin C, Zhang HY, Yan J, Mi WF, Yin XY, Ma WB, Liu Q, Kang L, Sun W, Pan CY, Shuang M, Yang FD, Wang CY, Yang JL, Li KQ, Ma X, Li LJ, Yu X, Li QZ, Huang X, Lv LX, Li T, Zhao GP, Huang W, Zhang XJ, Zhang D (2011) Genome-wide association study identifies a susceptibility locus for schizophrenia in Han Chinese at 11p11.2. Nat Genet 43:1228–1231

    Article  PubMed  CAS  Google Scholar 

  • Zhang R, Su B (2008) MicroRNA regulation and the variability of human cortical gene expression. Nucleic Acids Res 36:4621–4628

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors’ studies are supported by a Science Foundation Ireland Principal Investigator grant (07/IN.1/B960) and a Postdoctoral Fellowship from the Health Research Board of Ireland (PD/2007/20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colm M. P. O’Tuathaigh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

O’Tuathaigh, C.M.P., Desbonnet, L., Waddington, J.L. (2012). Mutant Mouse Models in Evaluating Novel Approaches to Antipsychotic Treatment. In: Geyer, M., Gross, G. (eds) Novel Antischizophrenia Treatments. Handbook of Experimental Pharmacology, vol 213. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25758-2_5

Download citation

Publish with us

Policies and ethics