Skip to main content

Glutamatergic Synaptic Dysregulation in Schizophrenia: Therapeutic Implications

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 213))

Abstract

Schizophrenia affects approximately 1% of the population and continues to be associated with poor outcome because of the limited efficacy of and noncompliance with existing antipsychotic medications. An alternative hypothesis invoking the excitatory neurotransmitter, glutamate, arose out of clinical observations that NMDA receptor antagonists, the dissociative anesthetics like ketamine, can replicate in normal individuals the full range of symptoms of schizophrenia including psychosis, negative symptoms, and cognitive impairments. Low dose ketamine can also re-create a number of physiologic abnormalities characteristic of schizophrenia. Postmortem studies have revealed abnormalities in endogenous modulators of NMDA receptors in schizophrenia as well as components of a postsynaptic density where NMDA receptors are localized. Gene association studies have revealed several genes that affect NMDA receptor function whose allelic variants are associated with increased risk for schizophrenia including genes encoding d-amino acid oxidase, its modulator G72, dysbindin, and neuregulin. The parvalbumin-positive, fast-firing GABAergic interneurons that provide recurrent inhibition to cortical-limbic pyramidal neurons seem to be most sensitive to NMDA receptor hypofunction. As a consequence, disinhibition of glutamatergic efferents disrupts cortical processing, causing cognitive impairments and negative symptoms, and drives subcortical dopamine release, resulting in psychosis. Drugs designed to correct the cortical-limbic dysregulated glutamatergic neurotransmission show promise for reducing negative and cognitive symptoms of schizophrenia as well as its positive symptoms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abekawa T, Ito K, Nakagawa S, Koyama T (2007) Prenatal exposure to an NMDA receptor antagonist, MK-801 reduces density of parvalbumin-immunoreactive GABAergic neurons in the medial prefrontal cortex and enhances phencyclidine-induced hyperlocomotion but not behavioral sensitization to methamphetamine in postpubertal rats. Psychopharmacology (Berl) 192(3):303–316

    Article  CAS  Google Scholar 

  • Adler CM, Malhotra AK, Elman I, Goldberg T, Egan M, Pickar D, Breier A (1999) Comparison of ketamine-induced thought disorder in healthy volunteers and thought disorder in schizophrenia. Am J Psychiatry 156:1646–1649

    PubMed  CAS  Google Scholar 

  • Akbarian S, Bunney WE Jr, Potkin SG, Wigal SB, Hagman JO, Sandman CA, Jones EG (1993) Altered distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase cells in frontal lobe of schizophrenics implies disturbances of cortical development. Arch Gen Psychiatry 50:169–177

    Article  PubMed  CAS  Google Scholar 

  • Akbarian S, Kim JJ, Potkin SG, Hagman JO, Tafazzoli A, Bunney WE Jr, Jones EG (1995) Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch Gen Psychiatry 52:258–266

    Article  PubMed  CAS  Google Scholar 

  • Akbarian S, Huang HS (2006) Molecular and cellular mechanisms of altered GAD1/GAD67 expression in schizophrenia and related disorders. Brain Res Rev 52:293–304

    Article  PubMed  CAS  Google Scholar 

  • Allen NC, Bagade S, McQueen MB, Ioannidis JP, Kavvoura FK, Khoury MJ, Tanzi RE, Bertram L (2008) Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat Genet 40:827–834

    Article  PubMed  CAS  Google Scholar 

  • Andersen JD, Puzet B (2004) Spatial memory deficits induced by perinatal treatment of rats with PCP and reversal effect of D-serine. Neuropsychopharmacology 29:1080–1090

    Article  PubMed  CAS  Google Scholar 

  • Anis NA, Berry SC, Burton NR, Lodge D (1983) The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate. Br J Pharmacol 79:565–575

    Article  PubMed  CAS  Google Scholar 

  • Antonova E, Kumari V, Morris R, Halari R, Anilkumar A, Mehrotra R, Sharma T (2005) The relationship of structural alterations to cognitive deficits in schizophrenia: a voxel-based morphometry study. Biol Psychiatry 58:457–467

    Article  PubMed  Google Scholar 

  • Balu DT, Basu AC, Corradi JP, Cacace AM, Coyle JT (2012) The NMDA receptor co-agonists, D-serine and glycine, regulate neuronal dendritic architecture in the somatosensory cortex. Neurobiol Dis 45(2):671–682

    Article  PubMed  CAS  Google Scholar 

  • Beasley CL, Reynolds GP (1997) Parvalbumin-immunoreactive neurons are reduced in the prefrontal cortex of schizophrenics. Schizophr Res 24:349–355

    Article  PubMed  CAS  Google Scholar 

  • Beasley CL, Zhang ZJ, Patten I, Reynolds GP (2002) Selective deficits in prefrontal cortical GABAergic neurons in schizophrenia defined by the presence of calcium-binding proteins. Biol Psychiatry 52:708–715

    Article  PubMed  CAS  Google Scholar 

  • Begni S, Popoli M, Moraschi S, Bignotti S, Tura GB, Gennarelli M (2002) Association between the ionotropic glutamate receptor kainate 3 (GRIK3) ser310ala polymorphism and schizophrenia. Mol Psychiatry 7:416–418

    Article  PubMed  CAS  Google Scholar 

  • Behrens MM, Ali SS, Dao DN, Lucero J, Shekhtman G, Quick KL, Dugan LL (2007) Ketamine-induced loss of phenotype of fast-spiking interneurons is mediated by NADPH-oxidase. Science 318:1645–1647

    Article  PubMed  CAS  Google Scholar 

  • Bendikov I, Nadri C, Amar S, Panizzutti R, De Miranda J, Wolosker H et al (2006) A CSF and postmortem brain study of D-serine metabolic parameters in schizophrenia. Schizophr Res 90:41–51

    Article  PubMed  Google Scholar 

  • Benes FM (1989) Myelination of cortical-hippocampal relays during late adolescence. Schizophr Bull 15:585–593

    Article  PubMed  CAS  Google Scholar 

  • Benes FM, Todtenkopf MS, Kostoulakos P (2001) GluR5,6,7 subunit immunoreactivity on apical pyramidal cell dendrites in hippocampus of schizophrenics and manic depressives. Hippocampus 11:482–491

    Article  PubMed  CAS  Google Scholar 

  • Benes FM, Vincent SL, Alsterberg G, Bird ED, SanGiovanni JP (1992) Increased GABAA receptor binding in superficial layers of cingulate cortex in schizophrenics. J Neurosci 12:924–929

    PubMed  CAS  Google Scholar 

  • Benes FM, Vincent SL, Marie A, Khan Y (1996) Up-regulation of GABAA receptor binding on neurons of the prefrontal cortex in schizophrenic subjects. Neuroscience 75:1021–1031

    Article  PubMed  CAS  Google Scholar 

  • Berger UV, Luthi-Carter R, Passani LA, Elkabes S, Black I, Konradi C, Coyle JT (1999) Glutamate carboxypeptidase II is expressed by astrocytes in the adult rat nervous system. J Comp Neurol 415:52–64

    Article  PubMed  CAS  Google Scholar 

  • Bergeron R, Meyer TM, Coyle JT, Greene RW (1998) Modulation of N-methyl-D-aspartate receptor function by glycine transport. Proc Natl Acad Sci USA 95:15730–15734

    Article  PubMed  CAS  Google Scholar 

  • Bergeron R, Coyle JT, Tsai G, Greene RW (2005) NAAG reduces NMDA receptor current in CA1 hippocampal pyramidal neurons of acute slices and dissociated neurons. Neuropsychopharmacology 30:7–16

    Article  PubMed  CAS  Google Scholar 

  • Beneyto M, Kristiansen LV, Oni-Orisan A, McCullumsmith RE, Meador-Woodruff JH (2007) Abnormal glutamate receptor expression in the medial temporal lobe in schizophrenia and mood disorders. Neuropsychopharmacology 32:1888–1902

    Article  PubMed  CAS  Google Scholar 

  • Birch PJ, Grossman CJ, Hayes AG (1988) Kynurenic acid antagonises responses to NMDA via an action at the strychnine-insensitive glycine receptor. Eur J Pharmacol 154:85–87

    Article  PubMed  CAS  Google Scholar 

  • Bischofberger J, Schild D (1996) Glutamate and N-acetylaspartylglutamate block HVA calcium currents in frog olfactory bulb interneurons via an mGluR2/3-like receptor. J Neurophysiol 76:2089–2092

    PubMed  CAS  Google Scholar 

  • Bjarnadottir M, Misner DL, Haverfield-Gross S, Bruun S, Helgason VG, Stefansson H, Sigmundsson A, Firth DR, Nielsen B, Stefansdottir R, Novak TJ, Stefansson K, Gurney ME, Andresson T (2007) Neuregulin1 (NRG1) signaling through Fyn modulates NMDA receptor phosphorylation: differential synaptic function in NRG1+/- knock-outs compared with wild-type mice. J Neurosci 27:4519–4529

    Article  PubMed  CAS  Google Scholar 

  • Black IB (1999) Trophic regulation of synaptic plasticity. J Neurobiol 41:108–118

    Article  PubMed  CAS  Google Scholar 

  • Bourgeois JP, Goldman-Rakic PS, Rakic P (1994) Synaptogenesis in the prefrontal cortex of rhesus monkeys. Cerebral Cortex 4:78–96

    Article  PubMed  CAS  Google Scholar 

  • Bowers MB Jr, Swigar ME (1983) Vulnerability to psychosis associated with hallucinogen use. Psychiatry Res 9:91–97

    Article  PubMed  Google Scholar 

  • Braff D, Stone C, Callaway E, Geyer M, Glick I, Bali L (1978) Prestimulus effects on human startle reflex in normals and schizophrenics. Psychophysiology 15:339–343

    Article  PubMed  CAS  Google Scholar 

  • Braff DL, Geyer MA, Swerdlow NR (2001) Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology (Berl) 156:234–258

    Article  CAS  Google Scholar 

  • Burdick KE, Lencz T, Funke B, Finn CT, Szeszko PR, Kane JM, Kucherlapati R, Malhotra AK (2006) Genetic variation in DTNBP1 influences general cognitive ability. Hum Mol Genet 15:1563–1568

    Article  PubMed  CAS  Google Scholar 

  • Burnet PW, Eastwood SL, Bristow GC, Godlewska BR, Sikka P, Walker M, Harrison PJ (2008) D-amino acid oxidase activity and expression are increased in schizophrenia. Mol Psychiatry 13:658–660

    Article  PubMed  CAS  Google Scholar 

  • Bu DF, Erlander MG, Hitz BC, Tillakaratne NJ, Kaufman DL, Wagner-McPherson CB, Evans GA, Tobin AJ (1992) Two human glutamate decarboxylases, 65-kDa GAD and 67-kDa GAD, are each encoded by a single gene. Proc Natl Acad Sci USA 89(6):2115–2119

    Article  PubMed  CAS  Google Scholar 

  • Cardno AG, Gottesman II (2000) Twin studies of schizophrenia: from bow-and-arrow concordances to star wars Mx and functional genomics. Am J Med Genet 97:12–17

    Article  PubMed  CAS  Google Scholar 

  • Chen YJ, Johnson MA, Lieberman MD, Goodchild RE, Schobel S, Lewandowski N, Rosoklija G, Liu RC, Gingrich JA, Small S, Moore H, Dwork AJ, Talmage DA, Role LW (2008) Type III neuregulin-1 is required for normal sensorimotor gating, memory-related behaviors, and corticostriatal circuit components. J Neurosci 28(27):6872–6883

    Article  PubMed  CAS  Google Scholar 

  • Chumakov I, Blumenfeld M, Guerassimenko O, Cavarec L, Palicio M, Abderrahim H, Bougueleret L, Barry C, Tanaka H, La Rosa P, Puech A, Tahri N, Cohen-Akenine A, Delabrosse S, Lissarrague S, Picard FP, Maurice K, Essioux L, Millasseau P, Grel P, Debailleul V, Simon AM, Caterina D, Dufaure I, Malekzadeh K, Belova M, Luan JJ, Bouillot M, Sambucy JL, Primas G, Saumier M, Boubkiri N, Martin-Saumier S, Nasroune M, Peixoto H, Delaye A, Pinchot V, Bastucci M, Guillou S, Chevillon M, Sainz-Fuertes R, Meguenni S, Aurich-Costa J, Cherif D, Gimalac A, Van Duijn C, Gauvreau D, Ouellette G, Fortier I, Raelson J, Sherbatich T, Riazanskaia N, Rogaev E, Raeymaekers P, Aerssens J, Konings F, Luyten W, Macciardi F, Sham PC, Straub RE, Weinberger DR, Cohen N, Cohen D (2002) Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc Natl Acad Sci USA 99:13675–13680

    Article  PubMed  CAS  Google Scholar 

  • Clancy B, Darlington RB, Finlay BL (2001) Translating developmental time across mammalian species. Neuroscience 105:7–17

    Article  PubMed  CAS  Google Scholar 

  • Conde F, Lund JS, Jacobowitz DM, Baimbridge KG, Lewis DA (1994) Local circuit neurons immunoreactive for calretinin, calbindin D-28 k or parvalbumin in monkey prefrontal cortex: distribution and morphology. J Comp Neurol 341:95–116

    Article  PubMed  CAS  Google Scholar 

  • Conn PJ, Lindsley CW, Jones CK (2009) Activation of metabotropic glutamate receptors as a novel approach for the treatment of schizophrenia. Trends Pharmacol Sci 30:25–31

    Article  PubMed  CAS  Google Scholar 

  • Corvin A, McGhee KA, Murphy K, Donohoe G, Nangle JM, Schwaiger S, Kenny N, Clarke S, Meagher D, Quinn J, Scully P, Baldwin P, Browne D, Walsh C, Waddington JL, Morris DW, Gill M (2007) Evidence for association and epistasis at the DAOA/G30 and D-amino acid oxidase loci in an Irish schizophrenia sample. Am J Med Genet B Neuropsychiatr Genet 144B:949–953

    Article  PubMed  CAS  Google Scholar 

  • Coyle JT (2006) Glial metabolites of tryptophan and excitotoxicity: coming unglued. Exp Neurol 197:4–7

    Article  PubMed  CAS  Google Scholar 

  • Coyle JT, Balu D, Benneyworth M, Basu A, Roseman A (2010) Beyond the dopamine receptor: novel therapeutic targets for treating schizophrenia. Dialogues Clin Neurosci 12:359–382

    PubMed  Google Scholar 

  • Coyle JT, Tsai G, Goff DC (2002) Ionotropic glutamate receptors as therapeutic targets in schizophrenia. Curr Drug Targets CNS Neurol Disord 1:183–189

    Article  PubMed  CAS  Google Scholar 

  • Davis JM, Chen N, Glick ID (2003) A meta-analysis of the efficacy of second-generation antipsychotics. Arch Gen Psychiatry 60:553–564

    Article  PubMed  CAS  Google Scholar 

  • Davis M, Ressler K, Rothbaum BO, Richardson R (2006) Effects of D-cycloserine on extinction: translation from preclinical to clinical work. Biol Psychiatry 60:369–375

    Article  PubMed  CAS  Google Scholar 

  • Depoortère R, Dargazanli G, Estenne-Bouhtou G, Coste A, Lanneau C, Desvignes C, Poncelet M, Heaulme M, Santucci V, Decobert M, Cudennec A, Voltz C, Boulay D, Terranova JP, Stemmelin J, Roger P, Marabout B, Sevrin M, Vigé X, Biton B, Steinberg R, Françon D, Alonso R, Avenet P, Oury-Donat F, Perrault G, Griebel G, George P, Soubrié P, Scatton B (2005) Neurochemical, electrochemical, electrophysiological and pharmacological profiles of the selective inhibitor of the glycine transporter-1 SSR504734, a potential new type of antipsychotic. Neuropsychopharmacology 30:1963–1985

    Article  PubMed  CAS  Google Scholar 

  • Dosemeci A, Makusky AJ, Jankowska-Stephens E, Yang X, Slotta DJ, Markey SP (2007) Composition of the synaptic PSD-95 complex. Mol Cell Proteomics 6:1749–1760

    Article  PubMed  CAS  Google Scholar 

  • Erhardt S, Engberg G (2002) Increased phasic activity of dopaminergic neurones in the rat ventral tegmental area following pharmacologically elevated levels of endogenous kynurenic acid. Acta Physiol Scand 175:45–53

    Article  PubMed  CAS  Google Scholar 

  • Erhardt S, Schwieler L, Engberg G (2003) Kynurenic acid and schizophrenia. Adv Exp Med Biol 527:155–165

    Article  PubMed  CAS  Google Scholar 

  • Erhardt S, Blennow K, Nordin C, Skogh E, Lindström LH, Engberg G (2001) Kynurenic acid levels are elevated in the cerebrospinal fluid of patients with schizophrenia. Neurosci Lett 313:96–98

    Article  PubMed  CAS  Google Scholar 

  • Evans JD, Bond GR, Meyer PS, Kim HW, Lysaker PH, Gibson PJ, Tunis S (2004) Cognitive and clinical predictors of success in vocational rehabilitation in schizophrenia. Schizophr Res 70:331–342

    Article  PubMed  Google Scholar 

  • Fagg GE (1987) Phencyclidine and related drugs bind to the activated N-methyl-D-aspartate receptor-channel complex in rat brain membranes. Neurosci Lett 76:221–227

    Article  PubMed  CAS  Google Scholar 

  • Fell MJ, Svensson KA, Johnson BG, Schoepp DD (2008) Evidence for the role of metabotropic glutamate (mGlu)2 not mGlu3 receptors in the preclinical antipsychotic pharmacology of the mGlu2/3 receptor agonist (-)-(1R,4 S,5 S,6 S)-4-amino-2-sulfonylbicyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY404039). J Pharmacol Exp Ther 326:209–217

    Article  PubMed  CAS  Google Scholar 

  • Fricker AC, Mok MH, de la Flor R, Shah AJ, Woolley M, Dawson LA, Kew JN (2009) Effects of N-acetylaspartylglutamate (NAAG) at group II mGluRs and NMDAR. Neuropharmacology 56:1060–1067

    Article  PubMed  CAS  Google Scholar 

  • Fujii K, Maeda K, Hikida T, Mustafa AK, Balkissoon R, Xia J, Yamada T, Ozeki Y, Kawahara R, Okawa M, Huganir RL, Ujike H, Snyder SH, Sawa A (2006) Serine racemase binds to PICK1: potential relevance to schizophrenia. Mol Psychiatry 11:150–157

    Article  PubMed  CAS  Google Scholar 

  • Gao XM, Sakai K, Roberts RC, Conley RR, Dean B, Tamminga CA (2000) Ionotropic glutamate receptors and expression of N-methyl-D-aspartate receptor subunits in subregions of human hippocampus: effects of schizophrenia. Am J Psychiatry 157:1141–1149

    Article  PubMed  CAS  Google Scholar 

  • Garey LJ, Ong WY, Patel TS, Kanani M, Davis A, Mortimer AM, Barnes TR, Hirsch SR (1998) Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J Neurol Neurosurg Psychiatry 65:446–453

    Article  PubMed  CAS  Google Scholar 

  • Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR (2001) Pharmacological studies of 707 prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology (Berl) 156:117–154

    Article  CAS  Google Scholar 

  • Ghose S, Weickert CS, Colvin SM, Coyle JT, Herman MM, Hyde TM, Kleinman JE (2004) Glutamate carboxypeptidase II gene expression in the human frontal and temporal lobe in schizophrenia. Neuropsychopharmacology 29:117–125

    Article  PubMed  CAS  Google Scholar 

  • Ghose S, Chin R, Gallegos A, Roberts R, Coyle J, Tamminga C (2009) Localization of NAAG-related gene expression deficits to the anterior hippocampus in schizophrenia. Schizophr Res 111:131–137

    Article  PubMed  Google Scholar 

  • Glantz LA, Lewis DA (2000) Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 57:65–73

    Article  PubMed  CAS  Google Scholar 

  • Goff DC, Tsai G, Manoach DS, Coyle JT (1995) Dose-finding trial of D-cycloserine added to neuroleptics for negative symptoms in schizophrenia. Am J Psychiatry 152(8):1213–1215

    Google Scholar 

  • Goltsov AY, Loseva JG, Andreeva TV, Grigorenko AP, Abramova LI, Kaleda VG, Orlova VA, Moliaka YK, Rogaev EI (2006) Polymorphism in the 5′-promoter region of serine racemase gene in schizophrenia. Mol Psychiatry 11:325–326

    Article  PubMed  CAS  Google Scholar 

  • Gornick MC, Addington AM, Sporn A, Gogtay N, Greenstein D, Lenane M, Gochman P, Ordonez A, Balkissoon R, Vakkalanka R, Weinberger DR, Rapoport JL, Straub RE (2005) Dysbindin (DTNBP1, 6p22.3) is associated with childhood-onset psychosis and endophenotypes measured by the Premorbid Adjustment Scale (PAS). J Autism Dev Disord 35:831–838

    Article  PubMed  CAS  Google Scholar 

  • Grunze HC, Rainnie DG, Hasselmo ME, Barkai E, Hearn EF, McCarley RW et al (1996) NMDA-dependent modulation of CA1 local circuit inhibition. J Neurosci 16:2034–2043

    PubMed  CAS  Google Scholar 

  • Guilarte TR, Hammoud DA, McGlothan JL, Caffo BS, Foss CA, Kozikowski AP, Pomper MG (2008) Dysregulation of glutamate carboxypeptidase II in psychiatric disease. Schizophr Res 99:324–332

    Article  PubMed  Google Scholar 

  • Hahn CG, Wang HY, Cho DS, Talbot K, Gur RE, Berrettini WH, Bakshi K, Kamins J, Borgmann-Winter KE, Siegel SJ, Gallop RJ, Arnold SE (2006) Altered neuregulin 1-erbB4 signaling contributes to NMDA receptor hypofunction in schizophrenia. Nat Med 12:824–828

    Article  PubMed  CAS  Google Scholar 

  • Hakak Y, Walker JR, Li C, Wong WH, Davis KL, Buxbaum JD et al (2001) Genomewide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci USA 98:4746–4751

    Article  PubMed  CAS  Google Scholar 

  • Hall BJ, Ripley B, Ghosh A (2007) NR2B signaling regulates the development of synaptic AMPA receptor current. J Neurosci 27(49):13446–13456

    Article  PubMed  CAS  Google Scholar 

  • Hanada S, Mita T, Nishino N, Tanaka C (1987) [3 H]muscimol binding sites increased in autopsied brains of chronic schizophrenics. Life Sci 40:259–266

    Article  PubMed  CAS  Google Scholar 

  • Harris EW, Ganong AH, Cotman CW (1984) Long-term potentiation in the hippocampus involves activation of N-methyl-D-aspartate receptors. Brain Res 323:132–137

    Article  PubMed  CAS  Google Scholar 

  • Harris LW, Sharp T, Gartlon J, Jones DN, Harrison PJ (2003) Long-term behavioural, molecular and morphological effects of neonatal NMDA receptor antagonism. Eur J Neurosci 18:1706–1710

    Article  PubMed  Google Scholar 

  • Hashimoto K, Engberg G, Shimizu E, Nordin C, Lindström LH, Iyo M (2005) Reduced D-serine to total serine ratio in the cerebrospinal fluid of drug naive schizophrenic patients. Prog Neuropsychopharmacol Biol Psychiatry 29:767–769

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto K, Fukushima T, Shimizu E, Komatsu N, Watanabe H, Shinoda N et al (2003) Decreased serum levels of D-serine in patients with schizophrenia: evidence in support of the N-methyl-D-aspartate receptor hypofunction hypothesis of schizophrenia. Arch Gen Psychiatry 60:572–576

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto A, Nishikawa T, Oka T, Takahashi K (1993) Endogenous D-serine in rat brain: N-methyl-D-aspartate receptor-related distribution and aging. J Neurochem 60:783–786

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto T, Bazmi HH, Mirnics K, Wu Q, Sampson AR, Lewis DA (2008) Conserved regional patterns of GABA-related transcript expression in the neocortex of subjects with schizophrenia. Am J Psychiatry 165:479–489

    Article  PubMed  Google Scholar 

  • Hazlett EA, Buchsbaum MS, Haznedar MM, Newmark R, Goldstein KE, Zelmanova Y, Glanton CF, Torosjan Y, New AS, Lo JN, Mitropoulou V, Siever LJ (2008) Cortical gray and white matter volume in unmedicated schizotypal and schizophrenia patients. Schizophr Res 101:111–123

    Article  PubMed  Google Scholar 

  • Heckers S, Stone D, Walsh J, Shick J, Koul P, Benes FM (2002) Differential hippocampal expression of glutamic acid decarboxylase 65 and 67 messenger RNA in bipolar disorder and schizophrenia. Arch Gen Psychiatry 59:521–529

    Article  PubMed  CAS  Google Scholar 

  • Heresco-Levy U, Javitt DC, Ebstein R, Vass A, Lichtenberg P, Bar G, Catinari S, Ermilov M (2005) D-serine efficacy as add-on pharmacotherapy to risperidone and olanzapine for treatment-refractory schizophrenia. Biol Psychiatry 57:577–585

    Article  PubMed  CAS  Google Scholar 

  • Hilmas C, Pereira EF, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque EX (2001) The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications. J Neurosci 21:7463–7473

    PubMed  CAS  Google Scholar 

  • Ho BC, Andreasen NC, Nopoulos P, Arndt S, Magnotta V, Flaum M (2003) Progressive structural brain abnormalities and their relationship to clinical outcome: a longitudinal magnetic resonance imaging study early in schizophrenia. Arch Gen Psychiatry 60:585–594

    Article  PubMed  Google Scholar 

  • Holzman PS, Kringlen E, Matthysse S, Flanagan SD, Lipton RB, Cramer G, Levin S, Lange K, Levy DL (1988) A single dominant gene can account for eye tracking dysfunctions and schizophrenia in offspring of discordant twins. Arch Gen Psychiatry 45:641–647

    Article  PubMed  CAS  Google Scholar 

  • Homayoun H, Moghaddam B (2007) NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. J Neurosci 27:11496–11500

    Article  PubMed  CAS  Google Scholar 

  • Hong CJ, Liao DL, Shih HL, Tsai SJ (2004) Association study of PICK1 rs3952 polymorphism and schizophrenia. Neuroreport 15:1965–1967

    Article  PubMed  CAS  Google Scholar 

  • Huerta I, McCullumsmith RE, Haroutunian V, Giménez-Amaya JM, Meador-Woodruff JH (2006) Expression of excitatory amino acid transporter interacting protein transcripts in the thalamus in schizophrenia. Synapse 59:394–402

    Article  PubMed  CAS  Google Scholar 

  • Hulshoff PHE, Kahn RS (2008) What happens after the first episode? A review of progressive brain changes in chronically ill patients with schizophrenia. Schizophr Bull 34:354–366

    Article  Google Scholar 

  • Ibrahim HM, Hogg AJ Jr, Healy DJ, Haroutunian V, Davis KL, Meador-Woodruff JH (2000) Ionotropic glutamate receptor binding and subunit mRNA expression in thalamic nuclei in schizophrenia. Am J Psychiatry 157(11):1811–1823

    Article  PubMed  CAS  Google Scholar 

  • Impagnatiello F, Guidotti AR, Pesold C, Dwivedi Y, Caruncho H, Pisu MG, Uzunov DP, Smalheiser NR, Davis JM, Pandey GN, Pappas GD, Tueting P, Sharma RP, Costa E (1998) A decrease of reelin expression as a putative vulnerability factor in schizophrenia. Proc Natl Acad Sci USA 95:15718–15723

    Article  PubMed  CAS  Google Scholar 

  • International Schizophrenia Consortium (2008) Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 455:237–241

    Article  CAS  Google Scholar 

  • Itil T, Keskiner A, Kiremitci N, Holden JM (1967) Effect of phencyclidine in chronic schizophrenics. Can Psychiatr Assoc J 12:209–212

    PubMed  CAS  Google Scholar 

  • Javitt DC, Doneshka P, Zylberman I, Ritter W, Vaughan HG Jr (1993) Impairment of early cortical processing in schizophrenia: an event-related potential confirmation study. Biol Psychiatry 33:513–519

    Article  PubMed  CAS  Google Scholar 

  • Johnson JW, Ascher P (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325:529–531

    Article  PubMed  CAS  Google Scholar 

  • Jodo E, Suzuki Y, Katayama T, Hoshino KY, Takeuchi S, Niwa S, Kayama Y (2005) Activation of medial prefrontal cortex by phencyclidine is mediated via a hippocampo-prefrontal pathway. Cereb Cortex 15:663–669

    Article  PubMed  Google Scholar 

  • Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148:1301–1308

    PubMed  CAS  Google Scholar 

  • Jones PB, Barnes TR, Davies L, Dunn G, Lloyd H, Hayhurst KP, Murray RM, Markwick A, Lewis SW (2006) Randomized controlled trial of the effect on quality of life of second- vs first-generation antipsychotic drugs in schizophrenia: Cost Utility of the Latest Antipsychotic Drugs in Schizophrenia Study (CUtLASS 1). Arch Gen Psychiatry 63:1079–1087

    Article  PubMed  CAS  Google Scholar 

  • Kane JM (1992) Clinical efficacy of clozapine in treatment-refractory schizophrenia: an overview. Br J Psychiatry Suppl 17:41–45

    PubMed  Google Scholar 

  • Kapoor R, Lim KS, Cheng A, Garrick T, Kapoor V (2006) Preliminary evidence for a link between schizophrenia and NMDA-glycine site receptor ligand metabolic enzymes, d-amino acid oxidase (DAAO) and kynurenine aminotransferase-1 (KAT-1). Brain Res 1106:205–210

    Article  PubMed  CAS  Google Scholar 

  • Kaufman DL, Houser CR, Tobin AJ (1991) Two forms of the gamma-aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distributions and cofactor interactions. J Neurochem 56:720–723

    Article  PubMed  CAS  Google Scholar 

  • Kegeles LS, Abi-Dargham A, Zea-Ponce Y, Rodenhiser-Hill J, Mann JJ, Van Heertum RL, Cooper TB, Carlsson A, Laruelle M (2000) Modulation of amphetamine-induced striatal dopamine release by ketamine in humans: implications for schizophrenia. Biol Psychiatry 48:627–640

    Article  PubMed  CAS  Google Scholar 

  • Kim PM, Aizawa H, Kim PS, Huang AS, Wickramasinghe SR, Kashani AH, Barrow RK, Huganir RL, Ghosh A, Snyder SH (2005) Serine racemase: activation by glutamate neurotransmission via glutamate receptor interacting protein and mediation of neuronal migration. Proc Natl Acad Sci USA 102:2105–2110

    Article  PubMed  CAS  Google Scholar 

  • Kinney JW, Davis CN, Tabarean I, Conti B, Bartfai T, Behrens MM (2006) A specific role for NR2A-containing NMDA receptors in the maintenance of parvalbumin and GAD67 immunoreactivity in cultured interneurons. J Neurosci 2:1604–1615

    Article  CAS  Google Scholar 

  • Kirkpatrick B, Buchanan RW, Ross DE, Carpenter WT Jr (2001) Asparate disease within the syndrome of schizophrenia. Arch Gen Psychiatry 58:165–171

    Article  PubMed  CAS  Google Scholar 

  • Kleckner NW, Dingledine R (1988) Requirement for glycine in activation of NMDA receptors expressed in Xenopus oocytes. Science 241:835–837

    Article  PubMed  CAS  Google Scholar 

  • Knable MB, Barci BM, Webster MJ, Meador-Woodruff J, Torrey EF, Consortium SN (2004) Molecular abnormalities of the hippocampus in severe psychiatric illness: postmortem findings from the Stanley Neuropathology Consortium. Mol Psychiatry 9(609–20):544

    Article  Google Scholar 

  • Komuro H, Rakic P (1993) Modulation of neuronal migration by NMDA receptors. Science 260:95–97

    Article  PubMed  CAS  Google Scholar 

  • Kristiansen LV, Beneyto M, Haroutunian V, Meador-Woodruff JH (2006) Changes in NMDA receptor subunits and interacting PSD proteins in dorsolateral prefrontal and anterior cingulate cortex indicate abnormal regional expression in schizophrenia. Mol Psychiatry 11(737–47):705

    Article  Google Scholar 

  • Kristiansen LV, Meador-Woodruff JH (2005) Abnormal striatal expression of transcripts encoding NMDA interacting PSD proteins in schizophrenia, bipolar disorder and major depression. Schizophr Res 78:87–93

    Article  PubMed  Google Scholar 

  • Kristiansen LV, Patel SA, Haroutunian V, Meador-Woodruff JH (2010) Expression of the NR2B-NMDA receptor subunit and its Tbr-1/CINAP regulatory proteins in postmortem brain suggest altered receptor processing in schizophrenia. Synapse 64:495–502

    Article  PubMed  CAS  Google Scholar 

  • Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD et al (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 51:199–214

    Article  PubMed  CAS  Google Scholar 

  • Kubicki M, McCarley R, Westin CF, Park HJ, Maier S, Kikinis R, Jolesz FA, Shenton ME (2007) A review of diffusion tensor imaging studies in schizophrenia. J Psychiatr Res 41:15–30

    Article  PubMed  Google Scholar 

  • Kubicki M, Park H, Westin CF, Nestor PG, Mulkern RV, Maier SE, Niznikiewicz M, Connor EE, Levitt JJ, Frumin M, Kikinis R, Jolesz FA, McCarley RW, Shenton ME (2005) DTI and MTR abnormalities in schizophrenia: analysis of white matter integrity. Neuroimage 26:1109–1118

    Article  PubMed  CAS  Google Scholar 

  • Kuryatov A, Laube B, Betz H, Kuhse J (1994) Mutational analysis of the glycine-binding site of the NMDA receptor: structural similarity with bacterial amino acid-binding proteins. Neuron 12(6):1291–1300

    Article  PubMed  CAS  Google Scholar 

  • Lahti AC, Weiler MA, TamaraMichaelidis BA, Parwani A, Tamminga CA (2001) Effects of ketamine in normal and schizophrenic volunteers. Neuropsychopharmacology 25:455–467

    Article  PubMed  CAS  Google Scholar 

  • Lewis DA (1997) Development of the prefrontal cortex during adolescence: Insights into vulnerable neural circuits in schizophrenia. Neuropsychopharmacology 16:385–398

    Article  PubMed  CAS  Google Scholar 

  • Lewis DA, Hashimoto T (2007) Deciphering the disease process of schizophrenia: the contribution of cortical GABA neurons. Int Rev Neurobiol 78:109–131

    Article  PubMed  CAS  Google Scholar 

  • Lewis DA, Cho RY, Carter CS, Eklund K, Forster S, Kelly MA, Montrose D (2008) Subunit-selective modulation of GABA type A receptor neurotransmission and cognition in schizophrenia. Am J Psychiatry 165:1585–1593

    Article  PubMed  Google Scholar 

  • Li Q, Clark S, Lewis DV, Wilson WA (2002) NMDA receptor antagonists disinhibit rat posterior cingulate and retrosplenial cortices: a potential mechanism of neurotoxicity. J Neurosci 22:3070–3080

    PubMed  CAS  Google Scholar 

  • Li D, He L (2007) Association study between the NMDA receptor 2B subunit gene (GRIN2B) and schizophrenia: a HuGE review and meta-analysis. Genet Med 9:4–8

    Article  PubMed  CAS  Google Scholar 

  • Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, Li XY, Aghajanian G, Duman RS (2010) mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329:959–964

    Article  PubMed  CAS  Google Scholar 

  • Lieberman JA, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO, Keefe RS, Davis SM, Davis CE, Lebowitz BD, Severe J, Hsiao JK (2005) Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. New Engl J Med 353:1209–1223

    Article  PubMed  CAS  Google Scholar 

  • Lindahl JS, Kjellsen BR, Tigert J, Miskimins R (2008) In utero PCP exposure alters oligodendrocyte differentiation and myelination in developing rat frontal cortex. Brain Res 1234:137–147

    Article  PubMed  CAS  Google Scholar 

  • Lisman JE, Coyle JT, Green RW, Javitt DC, Benes FM, Heckers S, Grace AA (2008) Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends Neurosci 31:234–242

    Article  PubMed  CAS  Google Scholar 

  • Liu X, He G, Wang X, Chen Q, Qian X, Lin W, Li D, Gu N, Feng G, He L (2004) Association of DAAO with schizophrenia in the Chinese population. Neurosci Lett 369:228–233

    Article  PubMed  CAS  Google Scholar 

  • Luby ED, Cohen BD, Rosenbaum G, Gottlieb JS, Kelley R (1959) Study of a new schizophrenomimetic drug; sernyl. AMA Arch Neurol Psychiatry 81:363–369

    Article  PubMed  CAS  Google Scholar 

  • Madeira C, Freitas ME, Vargas-Lopes C, Wolosker H, Panizzutti R (2008) Increased brain D-amino acid oxidase (DAAO) activity in schizophrenia. Schizophr Res 101:76–83

    Article  PubMed  Google Scholar 

  • Martin LF, Freedman R (2007) Schizophrenia and the alpha7 nicotinic acetylcholine receptor. Int Rev Neurobiol 78:225–246

    Article  PubMed  CAS  Google Scholar 

  • Matsui T, Sekiguchi M, Hashimoto A, Tomita U, Nishikawa T, Wada K (1995) Functional comparison of D-serine and glycine in rodents: The effect on cloned NMDA receptors and the extracellular concentration. J Neurochem 65:454–458

    Article  PubMed  CAS  Google Scholar 

  • Mayer ML, Westbrook GL, Vyklický L Jr (1988) Sites of antagonist action on N-methyl-D-aspartic acid receptors studied using fluctuation analysis and a rapid perfusion technique. J Neurophysiol 60(2):645–663

    PubMed  CAS  Google Scholar 

  • Mei L, Xiong WC (2008) Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nat Rev Neurosci 9(6):437–452

    Article  PubMed  CAS  Google Scholar 

  • Meltzer HY (1997) Treatment-resistant schizophrenia–the role of clozapine. Curr Med Res Opin 14:1–20

    Article  PubMed  CAS  Google Scholar 

  • Mirnics K, Levitt P, Lewis DA (2006) Critical appraisal of DNA microarrays in psychiatric genomics. Biol Psychiatry 60:163–176

    Article  PubMed  CAS  Google Scholar 

  • Mitelman SA, Brickman AM, Shihabuddin L, Newmark RE, Hazlett EA, Haznedar MM, Buchsbaum MS (2007) A comprehensive assessment of gray and white matter volumes and their relationship to outcome and severity in schizophrenia. Neuroimage 37:449–462

    Article  PubMed  Google Scholar 

  • Moghaddam B, Adams BW (1998) Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science 281:1349–1352

    Article  PubMed  CAS  Google Scholar 

  • Morita Y, Ujike H, Tanaka Y, Otani K, Kishimoto M, Morio A, Kotaka T, Okahisa Y, Matsushita M, Morikawa A, Hamase K, Zaitsu K, Kuroda S (2007) A genetic variant of the serine racemase gene is associated with schizophrenia. Biol Psychiatry 61:1200–1203

    Article  PubMed  CAS  Google Scholar 

  • Newcomer JW, Farber NB, Jevtovic-Todorovic V, Selke G, Melson AK, Hershey T, Craft S, Olney JW (1999) Ketamine-induced NMDA receptor hypofunction as a model of memory impairment and psychosis. Neuropsychopharmacology 20:106–118

    Article  PubMed  CAS  Google Scholar 

  • Nilsson LK, Linderholm KR, Engberg G, Paulson L, Blennow K, Lindström LH, Nordin C, Karanti A, Persson P, Erhardt S (2005) Elevated levels of kynurenic acid in the cerebrospinal fluid of male patients with schizophrenia. Schizophr Res 80:315–322

    Article  PubMed  CAS  Google Scholar 

  • Numakawa T, Yagasaki Y, Ishimoto T, Okada T, Suzuki T, Iwata N, Ozaki N, Taguchi T, Tatsumi M, Kamijima K, Straub RE, Weinberger DR, Kunugi H, Hashimoto R (2004) Evidence of novel neuronal functions of dysbindin, a susceptibility gene for schizophrenia. Hum Mol Genet 13:2699–2708

    Article  PubMed  CAS  Google Scholar 

  • Ohnuma T, Kato H, Arai H, Faull RL, McKenna PJ, Emson PC (2000) Gene expression of PSD95 in prefrontal cortex and hippocampus in schizophrenia. Neuroreport; 11(14):3133–3137

    Article  PubMed  CAS  Google Scholar 

  • Passani LA, Vonsattel JP, Coyle JT (1997) Distribution of N-acetylaspartylglutamate immunoreactivity in human brain and its alteration in neurodegenerative disease. Brain Res 772:9–22

    Article  PubMed  CAS  Google Scholar 

  • Patil ST, Zhang L, Martenyi F, Lowe SL, Jackson KA, Andreev BV, Avedisova AS, Bardenstein LM, Gurovich IY, Morozova MA, Mosolov SN, Neznanov NG, Reznik AM, Smulevich AB, Tochilov VA, Johnson BG, Monn JA, Schoepp DD (2007) Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial. Nat Med 13:1102–1107

    Article  PubMed  CAS  Google Scholar 

  • Pearce IA, Cambray-Deakin MA, Burgoyne RD (1987) Glutamate acting on NMDA receptors stimulates neurite outgrowth from cerebellar granule cells. FEBS Lett 223:143–147

    Article  PubMed  CAS  Google Scholar 

  • Penn AA (2001) Early brain wiring: activity-dependent processes. Schizophr Bull 27:337–347

    Article  PubMed  CAS  Google Scholar 

  • Perry EK, Perry RH, Tomlinson BE (1982) The influence of agonal status on some neurochemical activities of postmortem human brain tissue. Neurosci Lett 29:303–307

    Article  PubMed  CAS  Google Scholar 

  • Petryshen TL, Middleton FA, Kirby A, Aldinger KA, Purcell S, Tahl AR, Morley CP, McGann L, Gentile KL, Rockwell GN, Medeiros HM, Carvalho C, Macedo A, Dourado A, Valente J, Ferreira CP, Patterson NJ, Azevedo MH, Daly MJ, Pato CN, Pato MT, Sklar P (2005) Support for involvement of neuregulin 1 in schizophrenia pathophysiology. Mol Psychiatry 10:366–374

    Article  PubMed  CAS  Google Scholar 

  • Philpot BD, Lim JH, Brunjes PC (1997) Activity-dependent regulation of calcium-binding proteins in the developing rat olfactory bulb. J Comp Neurol 387:12–26

    Article  PubMed  CAS  Google Scholar 

  • Pickard BS, Malloy MP, Christoforou A, Thomson PA, Evans KL, Morris SW, Hampson M, Porteous DJ, Blackwood DH, Muir WJ (2006) Cytogenetic and genetic evidence supports a role for the kainate-type glutamate receptor gene, GRIK4, in schizophrenia and bipolar disorder. Mol Psychiatry 11:847–857

    Article  PubMed  CAS  Google Scholar 

  • Pierri JN, Volk CL, Auh S, Sampson A, Lewis DA (2001) Decreased somal size of deep layer 3 pyramidal neurons in the prefrontal cortex of subjects with schizophrenia. Arch Gen Psychiatry 58:466–473

    Article  PubMed  CAS  Google Scholar 

  • Pratt JA, Winchester C, Egerton A, Cochran SM, Morris BJ (2008) Modelling prefrontal cortex deficits in schizophrenia: implications for treatment. Br J Pharmacol 153(Suppl 1):S465–S470

    PubMed  CAS  Google Scholar 

  • Porter RH, Eastwood SL, Harrison PJ (1997) Distribution of kainate receptor subunit mRNAs in human hippocampus, neocortex and cerebellum, and bilateral reduction of hippocampal GluR6 and KA2 transcripts in schizophrenia. Brain Res 751:217–231

    Article  PubMed  CAS  Google Scholar 

  • Radant AD, Bowdle TA, Cowley DS, Kharasch ED, Roy-Byrne PP (1998) Does ketamine-mediated N-methyl-D-aspartate receptor antagonism cause schizophrenia-like oculomotor abnormalities? Neuropsychopharmacology 19:434–444

    Article  PubMed  CAS  Google Scholar 

  • Ragland JD, Yoon J, Minzenberg MJ, Carter CS (2007) Neuroimaging of cognitive disability in schizophrenia: search for a pathophysiological mechanism. Int Rev Psychiatry 19:417–427

    Article  PubMed  CAS  Google Scholar 

  • Reynolds GP, Czudek C, Andrews HB (1990) Deficit and hemispheric asymmetry of GABA uptake sites in the hippocampus in schizophrenia. Biol Psychiatry 27:1038–1044

    Article  PubMed  CAS  Google Scholar 

  • Reynolds GP, Abdul-Monim Z, Neill JC, Zhang ZJ (2004) Calcium binding protein markers of GABA deficits in schizophrenia–postmortem studies and animal models. Neurotox Res 6:57–61

    Article  PubMed  Google Scholar 

  • Robinson MB, Blakely RD, Couto R, Coyle JT (1987) Hydrolysis of the brain dipeptide N-acetyl-L-aspartyl-L-glutamate. Identification and characterization of a novel N-acetylated a-linked acidic dipeptidase activity from rat brain. J Biol Chem 262:14498–14506

    PubMed  CAS  Google Scholar 

  • Sacchi S, Bernasconi M, Martineau M, Mothet JP, Ruzzene M, Pilone MS, Pollegioni L, Molla G (2008) pLG72 modulates intracellular D-serine levels through its interaction with D-amino acid oxidase: effect on schizophrenia susceptibility. J Biol Chem 283:22244–22256

    Article  PubMed  CAS  Google Scholar 

  • Salter MG, Fern R (2005) NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury. Nature 438:1167–1171

    Article  PubMed  CAS  Google Scholar 

  • Scarr E, Beneyto M, Meador-Woodruff JH, Dean B (2005) Cortical glutamatergic markers in schizophrenia. Neuropsychopharmacology 30(8):1521–1531

    Article  PubMed  CAS  Google Scholar 

  • Scheetz AJ, Constantine-Paton M (1994) Modulation of NMDA receptor function: implications for vertebrate neural development. FASEB J 8:745–752

    PubMed  CAS  Google Scholar 

  • Schell MJ, Molliver ME, Snyder SH (1995) D-Serine, an endogenous synaptic modulator: localization to astrocytes and glutamatestimulated release. Proc Natl Acad Sci USA 92:3948–3952

    Article  PubMed  CAS  Google Scholar 

  • Schleimer SB, Hinton T, Dixon G, Johnston GA (2004) GABA transporters GAT-1 and GAT-3 in the human dorsolateral prefrontal cortex in schizophrenia. Neuropsychobiology 50:226–230

    Article  PubMed  CAS  Google Scholar 

  • Schumacher J, Jamra RA, Freudenberg J, Becker T, Ohlraun S, Otte AC, Tullius M, Kovalenko S, Bogaert AV, Maier W, Rietschel M, Propping P, Nöthen MM, Cichon S (2004) Examination of G72 and D-amino-acid oxidase as genetic risk factors for schizophrenia and bipolar affective disorder. Mol Psychiatry 9:203–207

    Article  PubMed  CAS  Google Scholar 

  • Schwarcz R, Rassoulpour A, Wu HQ, Medoff D, Tamminga CA, Roberts RC (2001) Increased cortical kynurenate content in schizophrenia. Biol Psychiatry 50:521–530

    Article  PubMed  CAS  Google Scholar 

  • Seeman P (1987) Dopamine receptors and the dopamine hypothesis of schizophrenia. Synapse 1:133–152

    Article  PubMed  CAS  Google Scholar 

  • Seeman P (2002) Atypical antipsychotics: Mechanism of action. Can J Psychiatry 47:27–38

    PubMed  Google Scholar 

  • Segal M, Andersen P (2000) Dendritic spines shaped by synaptic activity. Curr Opin Neurobiol 10:582–586

    Article  PubMed  CAS  Google Scholar 

  • Sharp FR, Jasper P, Hall J, Noble L, Sagar SM (1991) MK-801 and ketamine induce heat shock protein HSP72 in injured neurons in posterior cingulate and retrosplenial cortex. Ann Neurol 30:801–809

    Article  PubMed  CAS  Google Scholar 

  • Sharp FR, Butman M, Koistinaho J, Aardalen K, Nakki R, Massa SM, Swanson RA, Sagar SM (1994) Phencyclidine induction of the hsp 70 stress gene in injured pyramidal neurons is mediated via multiple receptors and voltage gated calcium channels. Neuroscience 62(4): 1079–1092

    Article  PubMed  CAS  Google Scholar 

  • Shatz CJ (1990) Impulse activity and the patterning of connections during CNS development. Neuron 5:745–756

    Article  PubMed  CAS  Google Scholar 

  • Shi J, Badner JA, Gershon ES, Liu C (2008a) Allelic association of G72/G30 with schizophrenia and bipolar disorder: a comprehensive meta-analysis. Schizophr Res 98:89–97

    Article  PubMed  Google Scholar 

  • Shi J, Gershon ES, Liu C (2008b) Genetic associations with schizophrenia: Meta-analyses of 12 candidate genes. Schizophr Res 104:96–107

    Article  PubMed  Google Scholar 

  • Sikich L, Frazier JA, McClellan J, Findling RL, Vitiello B, Ritz L, Ambler D, Puglia M, Maloney AE, Michael E, De Jong S, Slifka K, Noyes N, Hlastala S, Pierson L, McNamara NK, Delporto-Bedoya D, Anderson R, Hamer RM, Lieberman JA (2008) Double-blind comparison of first- and second-generation antipsychotics in early-onset schizophrenia and schizo-affective disorder: findings from the treatment of early-onset schizophrenia spectrum disorders (TEOSS) study. Am J Psychiatry 165:1420–1431

    Article  PubMed  Google Scholar 

  • Sircar R (2003) Postnatal phencyclidine-induced deficit in adult water maze performance is associated with N-methyl-D-aspartate receptor upregulation. Int J Dev Neurosci 21:159–167

    Article  PubMed  CAS  Google Scholar 

  • Snyder SH (1981) Dopamine receptors, neuroleptics, and schizophrenia. Am J Psychiatry 138:460–464

    PubMed  CAS  Google Scholar 

  • Sokolov BP (1998) Expression of NMDAR1, GluR1, GluR7, and KA1 glutamate receptor mRNAs is decreased in frontal cortex of “neuroleptic-free” schizophrenics: evidence on reversible up-regulation by typical neuroleptics. J Neurochem 71(6):2454–2464

    Article  PubMed  CAS  Google Scholar 

  • Spokes EG (1979) An analysis of factors influencing measurements of dopamine, noradrenaline, glutamate decarboxylase and choline acetylase in human post-mortem brain tissue. Brain 02:333–346

    Article  Google Scholar 

  • Spokes EG, Garrett NJ, Rossor MN, Iversen LL (1980) Distribution of GABA in post-mortem brain tissue from control, psychotic and Huntington’s chorea subjects. J Neurol Sci 48(3):303–313

    Article  PubMed  CAS  Google Scholar 

  • Stefani MR, Moghaddam B (2005) Transient N-methyl-D-aspartate receptor blockade in early development causes lasting cognitive deficits relevant to schizophrenia. Biol Psychiatry 57:433–436

    Article  PubMed  CAS  Google Scholar 

  • Sweet RA, Bergen SE, Sun Z, Sampson AR, Pierri JN, Lewis DA (2004) Pyramidal cell size reduction in schizophrenia: evidence for involvement of auditory feedforward circuits. Biol Psychiatry 55:1128–1137

    Article  PubMed  Google Scholar 

  • Sweet RA, Henteleff RA, Zhang W, Sampson AR, Lewis DA (2009) Reduced dendritic spine density in auditory cortex of subjects with schizophrenia. Neuropsychopharmacology 34:374–389

    Article  PubMed  Google Scholar 

  • Takahashi M, Kakita A, Futamura T, Watanabe Y, Mizuno M, Sakimura K, Castren E, Nabeshima T, Someya T, Nawa H (2006) Sustained brain-derived neurotrophic factor up-regulation and sensorimotor gating abnormality induced by postnatal exposure to phencyclidine: comparison with adult treatment. J Neurochem 99:770–780

    Article  PubMed  CAS  Google Scholar 

  • Talbot K, Eidem WL, Tinsley CL, Benson MA, Thompson EW, Smith RJ, Hahn CG, Siegel SJ, Trojanowski JQ, Gur RE, Blake DJ, Arnold SE (2004) Dysbindin-1 is reduced in intrinsic, glutamatergic terminals of the hippocampal formation in schizophrenia. J Clin Invest 113:1353–1363

    PubMed  CAS  Google Scholar 

  • Tandon R, Keshavan MS, Nasrallah HA (2008) Schizophrenia, “just the facts” what we know in 2008. 2. Epidemiology and etiology. Schizophr Res 102:1–18

    Article  PubMed  Google Scholar 

  • Thune JJ, Uylings HB, Pakkenberg B (2001) No deficit in total number of neurons in the prefrontal cortex in schizophrenics. J Psychiatr Res 35:15–21

    Article  PubMed  CAS  Google Scholar 

  • Tkachev D, Mimmack ML, Huffaker SJ, Ryan M, Bahn S (2007) Further evidence for altered myelin biosynthesis and glutamatergic dysfunction in schizophrenia. Int J Neuropsychopharmacol 10:557–563

    Article  PubMed  CAS  Google Scholar 

  • Toyooka K, Iritani S, Makifuchi T, Shirakawa O, Kitamura N, Maeda K, Nakamura R, Niizato K, Watanabe M, Kakita A, Takahashi H, Someya T, Nawa H (2002) Selective reduction of a PDZ protein, SAP-97, in the prefrontal cortex of patients with chronic schizophrenia. J Neurochem 83:797–806

    Article  PubMed  CAS  Google Scholar 

  • Tsai G, Passani LA, Slusher BS, Carter R, Baer L, Kleinman JE, Coyle JT (1995) Abnormal excitatory neurotransmitter metabolism in schizophrenic brains. Arch Gen Psychiatry 52:829–836

    Google Scholar 

  • Tsai G, Yang P, Chung LC, Lange N, Coyle JT (1998) D-serine added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry 44:1081–1089

    Article  PubMed  CAS  Google Scholar 

  • Tsai GE, Lin PY (2010) Strategies to enhance N-methyl-D-aspartate receptor-mediated neurotransmission in schizophrenia, a critical review and meta-analysis. Curr Pharm Des 16:522–537

    Article  PubMed  CAS  Google Scholar 

  • Umbricht D, Schmid L, Koller R, Vollenweider FX, Hell D, Javitt DC (2000) Ketamine-induced deficits in auditory and visual context-dependent processing in healthy volunteers: implications for models of cognitive deficits in schizophrenia. Arch Gen Psychiatry 57:1139–1147

    Article  PubMed  CAS  Google Scholar 

  • Vierling-Claassen D, Siekmeier P, Stufflebeam S, Kopell N (2008) Modeling GABA alterations in schizophrenia: a link between impaired inhibition and altered gamma and beta range auditory entrainment. J Neurophysiol 99:2656–2671

    Article  PubMed  Google Scholar 

  • Volk DW, Austin MC, Pierri JN, Sampson AR, Lewis DA (2000) Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia. Arch Gen Psychiatry 57(3):237–245

    Article  PubMed  CAS  Google Scholar 

  • Volk DW, Pierri JN, Fritschy JM, Auh S, Sampson AR, Lewis DA (2002) Reciprocal alterations in pre- and postsynaptic inhibitory markers at chandelier cell inputs to pyramidal neurons in schizophrenia. Cereb Cortex 12:1063–1070

    Article  PubMed  Google Scholar 

  • Volk D, Austin M, Pierri J, Sampson A, Lewis D (2001) GABA transporter-1 mRNA in the prefrontal cortex in schizophrenia: Decreased expression in a subset of neurons. Am J Psychiatry 158:256–265

    Article  PubMed  CAS  Google Scholar 

  • Wang C, McInnis J, Ross-Sanchez M, Shinnick-Gallagher P, Wiley JL, Johnson KM (2001) Long-term behavioral and neurodegenerative effects of perinatal phencyclidine administration: implications for schizophrenia. Neuroscience 107:535–550

    Article  PubMed  CAS  Google Scholar 

  • Wang CZ, Yang SF, Xia Y, Johnson KM (2008) Postnatal phencyclidine administration selectively reduces adult cortical parvalbumin-containing interneurons. Neuropsychopharmacology 33(10):2442–2455

    Article  PubMed  CAS  Google Scholar 

  • Weickert CS, Straub RE, McClintock BW, Matsumoto M, Hashimoto R, Hyde TM, Herman MM, Weinberger DR, Kleinman JE (2004) Human dysbindin (DTNBP1) gene expression in normal brain and in schizophrenic prefrontal cortex and midbrain. Arch Gen Psychiatry 61:544–555

    Article  PubMed  CAS  Google Scholar 

  • Whitfield-Gabrieli S, Thermenos HW, Milanovic S, Tsuang MT, Faraone SV, McCarley RW, Shenton ME, Green AI, Nieto-Castanon A, LaViolette P, Wojcik J, Gabrieli JD, Seidman LJ (2009) Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proc Natl Acad Sci USA 106:1279–1284

    Article  PubMed  CAS  Google Scholar 

  • Williams NM, O’Donovan MC, Owen MJ (2005) Is the dysbindin gene (DTNBP1) a susceptibility gene for schizophrenia? Schizophr Bull 31:800–805

    Article  PubMed  Google Scholar 

  • Wilson GM, Flibotte S, Chopra V, Melnyk BL, Honer WG, Holt RA (2006) DNA copy-number analysis in bipolar disorder and schizophrenia reveals aberrations in genes involved in glutamate signaling. Hum Mol Genet 15:743–749

    Article  PubMed  CAS  Google Scholar 

  • Wolosker H, Sheth KN, Takahashi M, Mothet JP, Brady RO Jr, Ferris CD et al (1999a) Purification of serine racemase: biosynthesis of the neuromodulator D-serine. Proc Natl Acad Sci USA 96:721–725

    Article  PubMed  CAS  Google Scholar 

  • Wolosker H, Blackshaw S, Snyder SH (1999b) Serine racemase: a glial enzyme synthesizing D-serine to regulate glutamate-N-methyl-D-aspartate neurotransmission. Proc Natl Acad Sci USA 96:13409–13414

    Article  PubMed  CAS  Google Scholar 

  • Wonodi I, Stine OC, Sathyasaikumar KV, Roberts RC, Mitchell BD, Hong LE, Kajii Y, Thaker GK, Schwarcz R (2011) Downregulated kynurenine 3-monooxygenase gene expression and enzyme activity in schizophrenia and genetic association with schizophrenia endophenotypes. Arch Gen Psychiatry 68:665–674

    Article  PubMed  CAS  Google Scholar 

  • Woo TU, Walsh JP, Benes FM (2004) Density of glutamic acid decarboxylase 67 messenger RNA-containing neurons that express the N-methyl-D-aspartate receptor subunit NR2A in the anterior cingulate cortex in schizophrenia and bipolar disorder. Arch Gen Psychiatry 61(7):649–657

    Article  PubMed  CAS  Google Scholar 

  • Woo TU, Whitehead RE, Melchitzky DS, Lewis DA (1998) A subclass of prefrontal gamma-aminobutyric acid axon terminals are selectively altered in schizophrenia. Proc Natl Acad Sci USA 95:5341–5346

    Article  PubMed  CAS  Google Scholar 

  • Woo TU, Shrestha K, Amstrong C, Minns MM, Walsh JP, Benes FM (2007) Differential alterations of kainate receptor subunits in inhibitory interneurons in the anterior cingulate cortex in schizophrenia and bipolar disorder. Schizophr Res 96:46–61

    Article  PubMed  Google Scholar 

  • Wroblewska B, Wroblewski JT, Pshenichkin S, Surin A, Sullivan SE, Neale JH (1997) N-acetylaspartylglutamate selectively activates mGluR3 receptors in transfected cells. J Neurochem 69:174–181

    Article  PubMed  CAS  Google Scholar 

  • Wu EQ, Birnbaum HG, Shi L, Ball DE, Kessler RC, Moulis M, Aggarwal J (2005) The economic burden of schizophrenia in the United States in 2002. J Clin Psychiatry 66:1122–1129

    Article  PubMed  Google Scholar 

  • Yasumatsu N, Matsuzaki M, Miyazaki T, Noguchi J, Kasai H (2008) Principles of long-term dynamics of dendritic spines. J Neurosci 28:13592–13608

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZJ, Reynolds GP (2002) A selective decrease in the relative density of parvalbumin-immunoreactive neurons in the hippocampus in schizophrenia. Schizophr Res 55:1–10

    Article  PubMed  Google Scholar 

  • Zhang Y, Behrens MM, Lisman JE (2008) Prolonged exposure to NMDAR antagonist suppresses inhibitory synaptic transmission in prefrontal cortex. J Neurophysiol 100:959–965

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Some of the research findings discussed in this article were supported by USPHS grants to Joseph T. Coyle, MD, including R01MH51290 and P50MH06045. JTC holds a patent on the use of d-serine for the treatment of schizophrenia that is owned by Partners Healthcare and has consulted with Abbott, Bristol Meyer Squibb, Cephalon, and Lilly on drug discovery.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph T. Coyle M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Coyle, J.T., Basu, A., Benneyworth, M., Balu, D., Konopaske, G. (2012). Glutamatergic Synaptic Dysregulation in Schizophrenia: Therapeutic Implications. In: Geyer, M., Gross, G. (eds) Novel Antischizophrenia Treatments. Handbook of Experimental Pharmacology, vol 213. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25758-2_10

Download citation

Publish with us

Policies and ethics