Skip to main content

The Use of Attached Microbial Communities to Assess Ecological Risks of Pollutants in River Ecosystems: The Role of Heterotrophs

  • Chapter
  • First Online:
Emerging and Priority Pollutants in Rivers

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 19))

Abstract

The aim of this chapter is to highlight the importance of microbial attached communities in the assessment of the effects of pollutants on freshwater ecosystems. We particularly focus on the role of heterotrophs in biofilms developing on different substrata. Firstly, an overview of the importance of microbial communities for the whole ecosystem processes is given, focusing on bacteria and fungi either living in consortia with autotrophs or as the microbial decomposing community on plant litter in river ecosystems. A series of detailed examples of direct effects of priority and emerging pollutants on bacteria in epilithic biofilms and on attached decomposers are included. Microbial ecological interactions between organisms in heterogeneous complex communities are highlighted describing the indirect effects observed in a series of study cases. A collection of laboratory and field study data is used to demonstrate the relevance of natural heterogeneous communities to obtain a more realistic approach to ecosystem processes. Finally, an upscaling from the effects observed at the microbial scale to the potential implication for ecosystems health and risk is included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allan JD (1995) Stream ecology. Structure and functioning of running waters. Chapman & Hall, London

    Google Scholar 

  2. Zehr J (2010) Microbes in Earth’s aqueous environments. Front Microbiol, Aquat Microbiol, Volume 1, Article 4. doi:10.3389/fmicb.2010.00004

    Google Scholar 

  3. Azam F, Fenche T, Field JG et al (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263

    Google Scholar 

  4. Descy J-P, Leporq B, Viroux L et al (2002) Phytoplankton production, exudation and bacterial reassimilation in the River Meuse (Belgium). J Plankton Res 24:161–166

    Google Scholar 

  5. Hart DR, Stone L, Berman T (2000) Seasonal dynamics of the Lake Kinneret food web: the importance of the microbial loop. Limnol Oceanogr 45:350–361

    CAS  Google Scholar 

  6. Fenchel T (2008) The microbial loop – 25 years later. J Exp Mar Biol Ecol 366:99–103

    Google Scholar 

  7. Pomeroy LR, Wiebe WJ (1988) Energetics of microbial food webs. Hydrobiologia 159:7–18

    Google Scholar 

  8. Edwards RT, Meyer JL, Findlay SEG (1990) The relative contribution of benthic and suspended bacteria to system biomass, production, and metabolism in a low-gradient blackwater river. J N Am Benthol Soc 9:216–228

    Google Scholar 

  9. Battin T, Butturini A, Sabater F (1999) Immobilization and metabolism of dissolved organic carbon by natural sediment biofilms in two climatically contrasting streams. Aquat Microb Ecol 19:297–305

    Google Scholar 

  10. Romaní AM, Sabater S (1999) Epilithic ectoenzyme activity in a nutrient-rich Mediterranean river. Aquat Sci 61:122–132

    Google Scholar 

  11. Lock MA (1993) Attached microbial communities in rivers. In: Ford TE (ed) Aquatic microbiology: an ecological approach. Blackwell, Oxford

    Google Scholar 

  12. Bärlocher F, Murdoch JH (1989) Hyporheic biofilms—a potential food source for interstitial animals. Hydrobiologia 184:61–67

    Google Scholar 

  13. Pusch M, Fiebig D, Brettar I et al (1998) The role of micro-organisms in the ecological connectivity of running waters. Freshwat Biol 40:453–495

    Google Scholar 

  14. Lamberti GA (1996) The role of periphyton in benthic food webs. In: Stevenson RJ, Bothwell ML, Lowe RL (eds) Algal ecology. Freshwater benthic ecosystems. Academic, San Diego, CA

    Google Scholar 

  15. Murray RE, Cooksey KE, Priscu JC (1986) Stimulation of bacterial DNA synthesis by algal exudates in attached algal-bacterial consortia. Appl Environ Microbiol 52:1177–1182

    CAS  Google Scholar 

  16. Artigas J (2008) The role of fungi and bacteria on the organic matter decomposition process in streams: interaction and relevance in biofilms. Ph.D. thesis

    Google Scholar 

  17. Diez J, Elosegi A, Chauvet E (2002) Breakdown of wood in the Agüera stream. Freshwat Biol 47:2205–2215

    Google Scholar 

  18. Gulis V, Suberkropp K (2003) Effect of inorganic nutrients on relative contributions of fungi and bacteria to carbon flow from submerged decomposing leaf litter. Microb Ecol 45:11–19

    CAS  Google Scholar 

  19. Pascoal C, Cássio F (2004) Contribution of fungi and bacteria to leaf litter decomposition in a polluted river. Appl Environ Microbiol 70:5266–5273

    CAS  Google Scholar 

  20. Findlay S, Tank J, Dye S et al (2002) A cross-system comparison of bacterial and fungal biomass in detritus pools of headwater streams. Microb Ecol 43:55–66

    CAS  Google Scholar 

  21. Stevenson RJ (1996) In: Stevenson RJ, Bothwell ML, Lowe RL (eds) Algal ecology, freshwater benthic ecosystems. Academic, San Diego, CA

    Google Scholar 

  22. Mathuriau C, Chauvet E (2002) Breakdown of litter in a neotropical stream. J N Am Benthol Soc 21:384–396

    Google Scholar 

  23. Findlay S, Strayer D, Goumbala C et al (1993) Metabolism of streamwater dissolved organic carbon in the shallow hyporheic zone. Limnol Oceanogr 38:1493–1499

    CAS  Google Scholar 

  24. Sabater S, Guasch H, Ricart M et al (2007) Monitoring the effect of chemicals on biological communities. The biofilm as an interface. Anal Bioanal Chem 387:1425–1434

    CAS  Google Scholar 

  25. Romaní AM (2010) Freshwater biofilms. In: Dürr S, Thomason JC (eds) Biofouling, 1st edn. Wiley-Blackwell, Oxford

    Google Scholar 

  26. Rier ST, Stevenson RJ (2002) Effects of light, dissolved organic carbon, and inorganic nutrients on the relationship between algae and heterotrophic bacteria in stream periphyton. Hydrobiologia 489:179–184

    CAS  Google Scholar 

  27. Francoeur SN, Wetzel RG (2003) Regulation of periphytic leucine-aminopeptidase activity. Aquat Microb Ecol 31:249–258

    Google Scholar 

  28. Bengtsson G (1992) Interactions between fungi, bacteria and beech leaves in a stream mesocosm. Oecologia 89:542–549

    Google Scholar 

  29. Mille-Lindblom C, Tranvik LJ (2003) Antagonism between bacteria and fungi on decomposing aquatic plant litter. Microb Ecol 45:173–182

    CAS  Google Scholar 

  30. Sabater S, Elosegi A (2009) Conceptos y técnicas en ecológia fluvial. Fundación BBVA, Bilbao

    Google Scholar 

  31. Ducklow H (2008) Microbial services: challenges for microbial ecologists in a changing world. Aquat Microb Ecol 53:13–19

    Google Scholar 

  32. Jessup CM, Kassen R, Forde SE et al (2004) Big questions, small worlds: microbial model systems in ecology. Trends Ecol Evol 19:189–197

    Google Scholar 

  33. Duarte S, Pascoal C, Alves A et al (2008) Copper and zinc mixtures induce shifts in microbial communities and reduce leaf litter decomposition in streams. Freshw Biol 53:91–102

    CAS  Google Scholar 

  34. Duarte S, Pascoal C, Cássio F (2009) Functional stability of stream-dwelling microbial decomposers exposed to copper and zinc stress. Freshw Biol 54:1638–1691

    Google Scholar 

  35. Ricart M, Guasch H, Alberch M et al (2010) Triclosan persistence through wastewater treatment plants and its potential toxic effects on river biofilms. Aquat Toxicol 100:346–353

    CAS  Google Scholar 

  36. Tlili A, Bérard A, Roulier JL et al (2010) PO 3−4 dependence of the tolerance of autotrophic and heterotrophic biofilm communities to copper and diuron. Aquat Toxicol 98:165–177

    CAS  Google Scholar 

  37. McMurry LM, Oethinger M, Levy SB (1998) Triclosan targets lipid synthesis. Nature 394:531–532

    CAS  Google Scholar 

  38. Lawrence JR, Swerhone GDW, Topp E et al (2007) Structural and functional responses of river biofilm communities to the nonsteroidal anti-inflammatory diclofenac. Environ Toxicol Chem 26:573–582

    CAS  Google Scholar 

  39. Blanck H, Admiraal W, Cleven RFMJ et al (2003) Variability in zinc tolerance, measured as incorporation of radio-labeled carbon dioxide and thymidine, in periphyton communities sampled from 15 European river stretches. Arch Environ Contam Toxicol 44:17–29

    CAS  Google Scholar 

  40. Boninneau C, Guasch H, Proia L et al (2010) Fluvial biofilms: a pertinent tool to assess β-blockers toxicity. Aquat Toxicol 96:225–233

    Google Scholar 

  41. Chenier MR, Beaumier D, Fortin N et al (2006) Influence of nutrient inputs, hexadecane and temporal variations on denitrification and community composition of river biofilms. Appl Environ Microbiol 72:575–584

    CAS  Google Scholar 

  42. Mahmoud HMA, Goulder R, Carvalho GR (2005) The response of epilithic bacteria to different metals regime in two upland streams: assessed by conventional microbiological methods and PCR-DGGE. Arch Hydrobiol 163:405–427

    CAS  Google Scholar 

  43. Watanabe K, Baker PW (2000) Environmentally relevant microorganisms. J Biosci Bioeng 89:1–11

    CAS  Google Scholar 

  44. Paje MLF, Kuhlicke U, Winkler M et al (2002) Inhibition of lotic biofilms by Diclofenac. Appl Microbiol Biotechnol 59:488–492

    CAS  Google Scholar 

  45. Pieper C, Risse D, Schmidt B et al (2010) Investigation of the microbial degradation of phenazone-type drugs and their metabolites by natural biofilms derived from river water using liquid chromatography/tandem mass spectrometry (LC-MS/MS). Water Res 44:4559–4569

    CAS  Google Scholar 

  46. Bärlocher F (2005) Freshwater fungal communities. In: Dighton J, Oudemans P, White J (eds) The fungal community, 3rd edn. CRC, Boca Raton, FL

    Google Scholar 

  47. Pascoal C, Cássio F (2008) Linking fungal diversity to the functioning of freshwater ecosystems. In: Sridhar KR, Bärlocher F, Hyde KD (eds) Novel techniques and ideas in mycology. Fungal Diversity Press, Hong Kong

    Google Scholar 

  48. Pascoal C, Cássio F, Marcotegui A et al (2005) The role of fungi, bacteria, and invertebrates in leaf litter breakdown in a polluted river. J N Am Benthol Soc 24:784–797

    Google Scholar 

  49. Baldy V, Gobert V, Guérold F et al (2007) Leaf litter breakdown budgets in streams of various trophic status: effects of dissolved inorganic nutrients on microorganisms and invertebrates. Freshw Biol 52:1322–1335

    CAS  Google Scholar 

  50. Krauss G-J, Wesenberg D, Ehrman J et al (2008) Fungal responses to heavy metals. In: Sridhar S, Bärlocher F, Hyde K (eds) Novel techniques and ideas in mycology. Fungal Diversity Press, Hong Kong

    Google Scholar 

  51. Sridhar KR, Krauss G, Bärlocher F et al (2001) Decomposition of alder leaves in two heavy metal-polluted streams in central Germany. Aquat Microb Ecol 26:73–80

    Google Scholar 

  52. Bermingham S, Maltby L, Cooke RC (1996) Effects of a coal mine effluent on aquatic hyphomycetes. II. Laboratory toxicity experiment. J Appl Ecol 33:1311–1321

    Google Scholar 

  53. Medeiros AO, Rocha P, Rosa CA et al (2008) Litter breakdown in a stream affected by drainage from a gold mine. Fund Appl Limnol 172:59–70

    CAS  Google Scholar 

  54. Niyogi DK, McKnight DM, Lewis WM Jr (2002) Fungal communities and biomass in mountain streams affected by mine drainage. Arch Hydrobiol 155:255–271

    Google Scholar 

  55. Dangles O, Gessner MO, Guerold F et al (2004) Impacts of stream acidification on litter breakdown: implications for assessing ecosystem functioning. J Appl Ecol 41:365–378

    CAS  Google Scholar 

  56. Baudoin JM, Guérold F, Felten V et al (2008) Elevated aluminium concentration in acidified headwater streams lowers aquatic hyphomycete diversity and impairs leaf-litter breakdown. Microb Ecol 56:260–269

    CAS  Google Scholar 

  57. Niyogi DK, Lewis WM Jr, McKnight DM (2001) Litter breakdown in mountain streams affected by mine drainage: biotic mediation of abiotic controls. Ecol Appl 11:506–516

    Google Scholar 

  58. Pascoal C, Cássio F, Marvanová L (2005) Anthropogenic stress may affect aquatic hyphomycete diversity more than leaf decomposition in a low order stream. Arch Hydrobiol 162:481–496

    Google Scholar 

  59. Pradhan A, Seena S, Pascoal C et al (2011) Can increased production and usage of metal nanoparticles be a threat to freshwater microbial decomposers? Microb Ecol 62:58–68

    CAS  Google Scholar 

  60. Lecerf A, Chauvet E (2008) Diversity and functions of leaf-decaying fungi in human-altered streams. Freshw Biol 53:1658–1672

    CAS  Google Scholar 

  61. Duarte S, Pascoal C, Cássio F (2004) Effects of zinc on leaf decomposition by fungi in streams: studies in microcosms. Microb Ecol 48:366–374

    CAS  Google Scholar 

  62. Abel TH, Bärlocher F (1984) Effects of cadmium on aquatic hyphomycetes. Appl Environ Microbiol 48:245–251

    CAS  Google Scholar 

  63. Moreirinha C, Duarte S, Pascoal C et al (2010) Effects of cadmium and phenanthrene mixtures on leaf-litter decomposition and associated aquatic fungi. Arch Environ Contam Toxicol 61(2):211–219

    Google Scholar 

  64. Medeiros AO, Duarte S, Pascoal C et al (2010) Effects of Zn, Fe and Mn on leaf litter breakdown by aquatic fungi: a microcosm study. Int Rev Hydrobiol 95:12–26

    CAS  Google Scholar 

  65. Sridhar KR, Krauss G, Bärlocher F et al (2000) Fungal diversity in heavy metal polluted waters in central Germany. In: Hyde KD, Ho WH, Pointing SB (eds) Aquatic mycology across the Millenium. Fungal Diversity Press, Hong Kong

    Google Scholar 

  66. Pascoal C, Marvanová L, Cássio F (2005) Aquatic hyphomycete diversity in streams of Northwest Portugal. Fungal Divers 19:109–128

    Google Scholar 

  67. Seena S, Pascoal C, Marvanová L et al (2010) DNA barcoding of fungi: a case study using ITS sequences for identifying aquatic hyphomycete species. Fungal Divers 44:77–87

    Google Scholar 

  68. Fernandes I, Pascoal C, Cássio F (2011) Intraspecific traits change biodiversity effects on ecosystem functioning under metal stress. Oecologia 164(4):1019–1028

    Google Scholar 

  69. Hodkinson M (1976) Interactions between aquatic fungi and DDT. In: Jones EBG (ed) Recent advances in aquatic mycology. Wiley, New York

    Google Scholar 

  70. Chandrashekar KR, Kaveriappa KM (1994) Effects of pesticides on sporulation and germination of conidia of aquatic hyphomycetes. J Environ Biol 15:315–324

    CAS  Google Scholar 

  71. Bärlocher F, Premdas PD (1988) Effects of pentachlorophenol on aquatic hyphomycetes. Mycologia 80:135–137

    Google Scholar 

  72. Junghanns C, Möder M, Krauss G et al (2005) Degradation of the xenoestrogen nonylphenol by aquatic fungi and their laccases. Microbiology 151:45–57

    CAS  Google Scholar 

  73. Martin C, Moeder M, Daniel X et al (2007) Biotransformation of the polycyclic musks HHCB and AHTN and metabolite formation by fungi occurring in freshwater environments. Environ Sci Technol 41:5395–5402

    CAS  Google Scholar 

  74. Junghanns C, Krauss G, Schlosser D (2008) Potential of fungi derived from diverse freshwater environments to decolourise synthetic azo and anthraquinone dyes. Bioresour Technol 99:1225–1235

    CAS  Google Scholar 

  75. Augustin T, Schlosser D, Baumbach R et al (2006) Biotransformation of 1-naphthol by a strictly aquatic fungus. Curr Microbiol 52:216–220

    CAS  Google Scholar 

  76. Freeman C, Lock MA (1995) The biofilm polysaccharide matrix: a buffer against changing organic substrate supply? Limnol Oceanogr 40:273–278

    CAS  Google Scholar 

  77. Wetzel RG (1993) Microcommunities and microgradients: linking nutrient regeneration, microbial mutualism, and high sustained aquatic primary production. Neth J Aquat Ecol 27:3–9

    Google Scholar 

  78. Rier ST, Kuehn KA, Francoeur SN (2007) Algal regulation of extracellular enzyme activity in stream microbial communities associated with inert substrata and detritus. J N Am Benthol Soc 26:439–449

    Google Scholar 

  79. Haack TK, McFeters GA (1982) Microbial dynamics of an epilithic mat community in a high alpine stream. Appl Environ Microbiol 43:702–707

    CAS  Google Scholar 

  80. Kaplan LA, Bott TL (1989) Diel fluctuations in bacterial activity on streambed substrata during vernal algal blooms: effects of temperature, water chemistry, and habitat. Limnol Oceanogr 34:718–733

    CAS  Google Scholar 

  81. Kühl M, Glud RN, Ploug H et al (1996) Microenvironmental control of photosynthesis and photosynthesis-coupled respiration in an epilithic syanobacterial biofilms. J Phycol 32:799–812

    Google Scholar 

  82. Cole JJ (1982) Interactions between bacteria and algae in aquatic ecosystems. Annu Rev Ecol Systemat 13:291–314

    Google Scholar 

  83. Croft MT, Lawrence AD, Raux-Deery E et al (2005) Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438:90–93

    CAS  Google Scholar 

  84. Lawrence JR, Chenier MR, Roy R et al (2004) Microscale and molecular assessment of impacts of nickel, nutrients, and oxygen level on structure and function of river biofilm communities. Appl Environ Microbiol 70:4326–4339

    CAS  Google Scholar 

  85. Sobczak WV, Burton TM (1996) Epilithic bacterial and algal colonization in a stream run, riffle, and pool: a test of biomass covariation. Hydrobiologia 332:159–166

    Google Scholar 

  86. Findlay S, Howe K (1993) Bacterial-algal relationships in streams of the Hubbard brook experimental forest. Ecology 74:2326–2336

    Google Scholar 

  87. Neely RK (1994) Evidence for positive interactions between epiphytic algae and heterotrophic decomposers during the decomposition of Typha latifolia. Arch Hydrobiol 129:443–457

    Google Scholar 

  88. Espeland EM, Wetzel RG (2001) Complexation, stabilization, and UV photolysis of extracellular and surface-bound glucosidase and alkaline phosphatase: implications for biofilm microbiota. Microb Ecol 42:572–585

    CAS  Google Scholar 

  89. Romaní AM, Guasch H, Muñoz I et al (2004) Biofilm structure and function and possible implications for riverine DOC dynamics. Microb Ecol 47:316–328

    Google Scholar 

  90. Scott JT, Back JA, Taylor JM et al (2008) Does nutrient enrichment decouple algal–bacterial production in periphyton? J N Am Benthol Soc 27:332–344

    Google Scholar 

  91. Ylla I, Borrego C, Romaní AM et al (2009) Availability of glucose and light modulates the structure and function of a microbial biofilms. FEMS Microbiol Ecol 69:27–42

    CAS  Google Scholar 

  92. Van Rensen JJS (1989) Herbicides interacting with photosystem II. In: Dodge AD (ed) Herbicides and plant metabolism. Cambridge University Press, Cambridge

    Google Scholar 

  93. Proia L, Morin S, Peipoch M et al (2011) Resistance and recovery of stream biofilms to Triclosan and Diuron pulses. Sci Total Environ 409:3129–3137

    CAS  Google Scholar 

  94. Ricart M, Barceló D, Geiszinger A et al (2009) Effects of low concentrations of the phenylurea herbicide diuron on biofilm algae and bacteria. Chemosphere 76:1392–1401

    CAS  Google Scholar 

  95. Lopez-Doval JC, Ricart M, Guasch H et al (2010) Does grazing pressure modify diuron toxicity in a biofilm community? Arch Environ Contam Toxicol 58:955–962

    CAS  Google Scholar 

  96. Pesce S, Fajon C, Bardot C et al (2006) Effects of the phenylurea herbicide diuron on natural riverine microbial communities in an experimental study. Aquat Toxicol 78:303–314

    CAS  Google Scholar 

  97. Tlili A, Dorigo U, Montuelle B et al (2008) Responses of chronically contaminated biofilms to short pulses of diuron. An experimental study simulating flooding events in a small river. Aquat Toxicol 87:252–263

    CAS  Google Scholar 

  98. Capdevielle M, Van Egmond R, Whelan M et al (2008) Consideration of exposure and species sensitivity of triclosan in the freshwater environment. Integr Environ Assess Manag 4:15–23

    CAS  Google Scholar 

  99. Franz S, Altenburger R, Heilmeier H et al (2008) What contributes to the sensitivity of microalgae to triclosan? Aquat Toxicol 90:102–108

    CAS  Google Scholar 

  100. Lawrence JR, Zhu B, Swerhone GDW et al (2009) Comparative microscale analysis of the effects of triclosan and triclocarban on the structure and function of river biofilm communities. Sci Total Environ 407:3307–3316

    CAS  Google Scholar 

  101. Wilson BA, Smith V, Denoyelles F Jr et al (2003) Effects of three pharmaceutical and personal care products on natural freshwater algal assemblages. Environ Sci Technol 37:1713–1719

    CAS  Google Scholar 

  102. Barranguet C, Van den Ende FP, Rutgers M et al (2003) Copper-induced modifications of the trophic relations in riverine algal-bacterial biofilms. Environ Toxicol Chem 22:1340–1349

    CAS  Google Scholar 

  103. Dorigo U, Leboulanger C, Bèrard A et al (2007) Lotic biofilm community structure and pesticide tolerance along a contamination gradient in a vineyard area. Aquat Microb Ecol 50:91–102

    Google Scholar 

  104. Brake SS, Hasiotis ST (2010) Eukaryote-dominated biofilms and their significance in acidic environments. Geomicrobiol J 27:534–558

    Google Scholar 

  105. Romaní AM, Fischer H, Mille-Lindblom C et al (2006) Interactions of bacteria and fungi on decomposing litter: differential extracellular enzyme activities. Ecology 87:2559–2569

    Google Scholar 

  106. Gulis V, Stephanovich AI (1999) Antibiotic effects of some aquatic hyphomycetes. Mycol Res 103:111–115

    Google Scholar 

  107. Pascoal C, Cássio F, Nikolcheva LG et al (2010) Realized fungal diversity increases functional stability of leaf-litter decomposition under zinc stress. Microb Ecol 59:84–93

    CAS  Google Scholar 

  108. Roussel H, Chauvet E, Bonzom JM (2008) Alteration of leaf decomposition in copper-contaminated freshwater mesocosms. Environ Toxicol Chem 27:637–644

    CAS  Google Scholar 

  109. Bermingham S, Fisher PJ, Martin A et al (1998) The effect of the herbicide mecoprop on Heliscus lugdunensis and its influence on the preferential feeding of Gammarus pseudolimnaeus. Microb Ecol 35:199–204

    CAS  Google Scholar 

  110. Bundschuh M, Hahn T, Gessner MO et al (2009) Antibiotics as a chemical stressor affecting an aquatic decomposer-detritivore system. Environ Toxicol Chem 28:197–203

    CAS  Google Scholar 

  111. Joubert LM, Wolfaardt GM, Botha A (2006) Microbial exopolymers link predator and prey in a model yeast biofilm system. Microb Ecol 52:187–197

    Google Scholar 

  112. Matz C, Kjelleberg S (2005) Off the hook-how bacteria survive protozoan grazing. Trends Microbiol 13:302–307

    CAS  Google Scholar 

  113. Friberg-Jensen UL, Wendt-Rasch WP et al (2003) Effects of the pyrethroid insecticide, cypermethrin, on a freshwater community studied under field conditions. I. Direct and indirect effects on abundance measures of organisms at different trophic levels. Aquat Toxicol 63:357–371

    CAS  Google Scholar 

  114. Mortimera M, Kasemets K, Kahrua A (2010) Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. Toxicology 269:182–189

    Google Scholar 

  115. Rico D, Martín-González A, Díaz S et al (2009) Heavy metals generate reactive oxygen species in terrestrial and aquatic ciliated protozoa. Comp Biochem Physiol C Toxicol Pharmacol 149:90–96

    Google Scholar 

  116. St. Denis CH, Pinheiro MDO, Power ME et al (2010) Effect of salt and urban water samples on bacterivory by the ciliate, Tetrahymena thermophila. Environ Pollut 158:502–507

    CAS  Google Scholar 

  117. Rehman A, Shakoori FR, Shakoori AR (2008) Heavy metal resistant freshwater ciliate, Euplotes mutabilis, isolated from industrial effluents has potential to decontaminate wastewater of toxic metals. Bioresour Technol 99:3890–3895

    CAS  Google Scholar 

  118. Rabiet M, Margoum C, Gouy V et al (2010) Assessing pesticide concentrations and fluxes in the stream of a small vineyard catchment—effect of sampling frequency. Environ Pollut 158:737–748

    CAS  Google Scholar 

  119. Sabater S, Tockner K (2010) Effects of hydrologic alterations on the ecological quality of river ecosystems. In: Sabater S, Barceló D (eds) Water scarcity in the Mediterranean: perspectives under global change. Springer, Berlin

    Google Scholar 

  120. Balvanera P, Pfisterer AB, Buchmann N et al (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett 9:1146–1156

    Google Scholar 

  121. Hector A, Bagchi R (2007) Biodiversity and ecosystem multifunctionality. Nature 448:188–191

    CAS  Google Scholar 

  122. Clements WH, Newman MC (2002) Community ecotoxicology. Wiley, Chichester

    Google Scholar 

  123. Solé M, Fetzer I, Wennrich R et al (2008) Aquatic hyphomycete communities as potential bioindicators for assessing anthropogenic stress. Sci Total Environ 389:557–565

    Google Scholar 

  124. Cheng ZL, Andre P, Chiang C (1997) Hyphomycetes and macroinvertebrates colonizing leaf litter in two belgian streams with contrasting water quality. Limnetica 13:57–63

    Google Scholar 

  125. Morin S, Proia L, Ricart M et al (2010) Effects of a bactericide on the structure and survival of benthic diatom communities. Vie Milieu 60:107–114

    Google Scholar 

  126. Cazelles B, Fontvieille D, Chau NP (1991) Self-purification in a lotic ecosystem: a model of dissolved organic carbon and benthic microorganisms dynamics. Ecol Model 58:91–117

    CAS  Google Scholar 

  127. Lawrence JR, Zhu B, Swerhone GDW et al. (2008) Community-Level Assessment of the Effects of the Broad-Spectrum Antimicrobial Chlorhexidine on the Outcome of River Microbial Biofilm Development. Appl Environ Microb 74:3541–3550

    CAS  Google Scholar 

  128. DeLorenzo ME, Lauth J, Pennington PL et al. (1999) Atrazine effects on the microbial food web in tidal creek. Aquat Toxicol 46:241–251

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Proia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Proia, L., Cassió, F., Pascoal, C., Tlili, A., Romaní, A.M. (2012). The Use of Attached Microbial Communities to Assess Ecological Risks of Pollutants in River Ecosystems: The Role of Heterotrophs. In: Guasch, H., Ginebreda, A., Geiszinger, A. (eds) Emerging and Priority Pollutants in Rivers. The Handbook of Environmental Chemistry(), vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25722-3_3

Download citation

Publish with us

Policies and ethics