Skip to main content

Universal Entanglement Between an Oscillator and Continuous Fields

  • Chapter
  • First Online:
  • 897 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In the previous two chapters, we have studied the optomechanical entanglement between the optical cavity modes and the mechanical oscillator, both of which have finite degrees of freedom. In this chapter, we study the entanglement between a mechanical oscillator and a coherent continuous optical field which contains infinite degrees of freedom. This system is interesting because it lies in the heart of all optomechanical systems. With a rigorous functional analysis, we develop a new mathematical framework for treating quantum entanglement that involves infinite degrees of freedom. We show that quantum entanglement is always present between the oscillator and the continuous optical field-even when the environmental temperature is high, and the oscillator is highly classical. Such a universal entanglement is also shown to be able to survive more than one mechanical oscillation period, if the characteristic frequency of the optomechanical interaction is larger than that of the thermal noise. In addition, we introduce effective optical modes, which are ordered by their entanglement strength, to better understand the entanglement structure, in analogy with the energy spectrum of an atomic system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    An introduction of this method in solving a similar problem can be found in the appendix of Ref. [30].

References

  1. G. Adesso, F. Illuminati, Entanglement in continuous-variable systems: recent advances and current perspectives. J. Phys. A: Math. Theor. 40(28), 7821 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. O. Arcizet, P.-.F. Cohadon, T. Briant, M. Pinard, A. Heidmann, Radiation-pressure cooling and optomechanical instability of a micromirror. Nature 444, 71–74 (2006)

    Article  ADS  Google Scholar 

  3. D.G. Blair, E.N. Ivanov, M.E. Tobar, P.J. Turner, van F. Kann, I.S. Heng, High sensitivity gravitational wave antenna with parametric transducer readout. Phys. Rev. Lett. 74, 1908 (1995)

    Article  ADS  Google Scholar 

  4. D. Bouwmeester, A. Ekert, A. Zeilinger, The Physics of Quantum Information (Springer, Berlin, 2002)

    Google Scholar 

  5. V.B. Braginsky, F.Y. Khalili, Quantum Measurement (Cambridge University Press, Cambridge, 1992)

    Book  MATH  Google Scholar 

  6. Z.h.a.o. Chunnong, J.u. Li, M.i.a.o. Haixing, G.r.a.s. Slawomir, F.a.n. Yaohui, B.l.a.i.r. David G., Three-mode optoacoustic parametric amplifier: a tool for macroscopic quantum experiments. Phys. Rev. Lett. 102, 243902 (2009)

    Article  Google Scholar 

  7. P.F. Cohadon, A. Heidmann, M. Pinard, Cooling of a mirror by radiation pressure. Phys. Rev. Lett. 83, 3174 (1999)

    Article  ADS  Google Scholar 

  8. LIGO Scientific Collaboration, Observation of a kilogram-scale oscillator near its quantum ground state. New J. Phys. 11(7), 073032 (2009)

    Google Scholar 

  9. T. Corbitt, Y. Chen, E. Innerhofer, H. Mueller-Ebhardt, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, N. Mavalvala, An all-optical trap for a gram-scale mirror. Phys. Rev. Lett. 98, 150802–4 (2007)

    Google Scholar 

  10. T. Corbitt, C. Wipf, T. Bodiya, D. Ottaway, D. Sigg, N. Smith, S. Whitcomb, N. Mavalvala, Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mK. Phys. Rev. Lett. 99, 160801–4 (2007)

    Article  ADS  Google Scholar 

  11. S. Danilishin, H. Mueller-Ebhardt, H. Rehbein, K. Somiya, R. Schnabel, K. Danzmann, T. Corbitt, C. Wipf, N. Mavalvala, Y. Chen, Creation of a quantum oscillator by classical control. arXiv:0809.2024, 2008

    Google Scholar 

  12. L. Diosi, Laser linewidth hazard in optomechanical cooling. Phys. Rev. A 78, 021801 (2008)

    Article  ADS  Google Scholar 

  13. L.-.M. Duan, G. Giedke, J.I. Cirac, P. Zoller, Inseparability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2722 (2000)

    Article  ADS  Google Scholar 

  14. I. Favero, C. Metzger, S. Camerer, D. Konig, H. Lorenz, J.P. Kotthaus, K. Karrai, Optical cooling of a micromirror of wavelength size. Appl. Phys. Lett. 90, 104101–3 (2007)

    Article  ADS  Google Scholar 

  15. A. Ferreira, A. Guerreiro, V. Vedral, Macroscopic thermal entanglement due to radiation pressure. Phys. Rev. Lett. 96, 060407 (2006)

    Article  ADS  Google Scholar 

  16. C. Gardiner, P. Zoller, Quantum Noise (Springer, Berlin, 2004)

    MATH  Google Scholar 

  17. C. Genes, A. Mari, P. Tombesi, D. Vitali, Robust entanglement of a micromechanical resonator with output optical fields. Phys. Rev. A 78, 032316 (2008)

    Article  ADS  Google Scholar 

  18. C. Genes, D. Vitali, P. Tombesi, Simultaneous cooling and entanglement of mechanical modes of a micromirror in an optical cavity. New J. Phys. 10(9), 095009 (2008)

    Article  ADS  Google Scholar 

  19. S. Gigan, H.R. Böhm, M. Paternostro, F. Blaser, G. Langer, J.B. Hertzberg, K.C. Schwab, D. Bäuerle, M. Aspelmeyer, A. Zeilinger, Self-cooling of a micromirror by radiation pressure. Nature 444, 67–70 (2006)

    Google Scholar 

  20. S. Gröblacher, S. Gigan, H.R. Böhm, A. Zeilinger, M. Aspelmeyer, Radiation-pressure self-cooling of a micromirror in a cryogenic environment. EPL (Europhys. Lett.) 81(5), 54003 (2008)

    Google Scholar 

  21. S. Gröblacher, J.B. Hertzberg, M.R. Vanner, G.D. Cole, S. Gigan, K.C. Schwab, M. Aspelmeyer, Demonstration of an ultracold microoptomechanical oscillator in a cryogenic cavity. Nat. Phys. 5, 485–488 (2009)

    Google Scholar 

  22. M.J. Hartmann, M.B. Plenio, Steady state entanglement in the mechanical vibrations of two dielectric membranes. Phys. Rev. Lett. 101, 200503 (2008)

    Article  ADS  Google Scholar 

  23. M. Horodecki, P. Horodecki, R. Horodecki, Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1–8 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. G. Jourdan, F. Comin, J. Chevrier, Mechanical mode dependence of bolometric backaction in an atomic force microscopy microlever. Phys. Rev. Lett. 101, 133904–4 (2008)

    Article  ADS  Google Scholar 

  25. D. Kleckner, D. Bouwmeester, Sub-kelvin optical cooling of a micromechanical resonator. Nature 444, 75–78 (2006)

    Article  ADS  Google Scholar 

  26. S. Mancini, D. Vitali, P. Tombesi, Optomechanical cooling of a macroscopic oscillator by homodyne feedback. Phys. Rev. Lett. 80, 688 (1998)

    Article  ADS  Google Scholar 

  27. S. Mancini, V. Giovannetti, D. Vitali, P. Tombesi, Entangling macroscopic oscillators exploiting radiation pressure. Phys. Rev. Lett 88, 120401 (2002)

    Article  ADS  Google Scholar 

  28. F. Marquardt, J.P. Chen, A.A. Clerk, S.M. Girvin, Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007)

    Article  ADS  Google Scholar 

  29. C.H. Metzger, K. Karrai, Cavity cooling of a microlever. Nature 432, 1002–1005 (2004)

    Article  ADS  Google Scholar 

  30. H. Miao, S. Danilishin, H. Mueller-Ebhardt, H. Rehbein, K. Somiya, Y. Chen, Probing macroscopic quantum states with a sub-Heisenberg accuracy. Phys. Rev. A 81, 012114 (2010)

    Article  ADS  Google Scholar 

  31. H. Miao, S. Danilishin, Y. Chen Universal quantum entanglement between an oscillator and continuous fields. arXiv:0908.1053, 2009

    Google Scholar 

  32. C.M. Mow-Lowry, A.J. Mullavey, S. Gossler, M.B. Gray, D.E. Mc- Clelland, Cooling of a gram-scale cantilever flexure to 70 mK with a servo-modified optical spring. Phys. Rev. Lett. 100, 010801–4 (2008)

    Article  ADS  Google Scholar 

  33. H. Mueller-Ebhardt, H. Rehbein, R. Schnabel, K. Danzmann, Y. Chen, Entanglement of macroscopic test masses and the standard quantum limit in laser interferometry. Phys. Rev. Lett. 100, 013601 (2008)

    Article  ADS  Google Scholar 

  34. A. Naik, O. Buu, M.D. LaHaye, A.D. Armour, A.A. Clerk, M.P. Blencowe, K.C. Schwab, Cooling a nanomechanical resonator with quantum back-action. Nature 443, 193–196 (2006)

    Article  ADS  Google Scholar 

  35. A.D. O’Connell, M. Hofheinz, M. Ansmann, R.C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J.M. Martinis, A.N. Cleland, Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010)

    Article  ADS  Google Scholar 

  36. A. Peres, Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  37. S. Pirandola, S. Mancini, D. Vitali, P. Tombesi, Continuous-variable entanglement and quantum-state teleportation between optical and macroscopic vibrational modes through radiation pressure. Phys. Rev. A 68, 062317 (2003)

    Article  ADS  Google Scholar 

  38. M. Poggio, C.L. Degen, H.J. Mamin, D. Rugar, Feedback cooling of a cantilever’s fundamental mode below 5 mK. Phys. Rev. Lett 99, 017201–4 (2007)

    Article  ADS  Google Scholar 

  39. P. Rabl, C. Genes, K. Hammerer, M. Aspelmeyer, Phase-noise induced limitations on cooling and coherent evolution in optomechanical systems. Phys. Rev. A 80, 063819 (2009)

    Article  ADS  Google Scholar 

  40. S.W. Schediwy, C. Zhao, L. Ju, D.G. Blair, P. Willems, Observation of enhanced optical spring damping in a macroscopic mechanical resonator and application for parametric instability control in advanced gravitationalwave detectors. Phys. Rev. A 77, 013813–5 (2008)

    Article  ADS  Google Scholar 

  41. A. Schliesser, P. Del’Haye, N. Nooshi, K.J. Vahala, T.J. Kippenberg, Radiation pressure cooling of a micromechanical oscillator using dynamical backaction. Phys. Rev. Lett. 97, 243905–4 (2006)

    Article  ADS  Google Scholar 

  42. A. Schliesser, R. Riviere, G. Anetsberger, O. Arcizet, T.J. Kippenberg, Resolved-sideband cooling of a micromechanical oscillator. Nat. Phys. 4, 415–419 (2008)

    Article  Google Scholar 

  43. A. Serafini, Multimode uncertainty relations and separability of continuous variable states. Phys. Rev. Lett. 96, 110402 (2006)

    Article  ADS  Google Scholar 

  44. R. Simon, Peres-horodecki separability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2726 (2000)

    Article  ADS  Google Scholar 

  45. J.D. Teufel, J.W. Harlow, C.A. Regal, K.W. Lehnert, Dynamical backaction of microwave fields on a nanomechanical oscillator. Phys. Rev. Lett. 101, 197203–4 (2008)

    Article  ADS  Google Scholar 

  46. J.D. Thompson, B.M. Zwickl, A.M. Jayich, F. Marquardt, S.M. Girvin, J.G.E. Harris, Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72–75 (2008)

    Article  ADS  Google Scholar 

  47. G. Vidal, R.F. Werner, Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  48. D. Vitali, S. Gigan, A. Ferreira, H.R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, M. Aspelmeyer, Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98, 030405 (2007)

    Google Scholar 

  49. S. Vyatchanin, Effective cooling of quantum system, Dokl. Akad. Nauk SSSR 234, 688 (1977)

    Google Scholar 

  50. R.F. Werner, M.M. Wolf, Bound entangled gaussian states. Phys. Rev. Lett. 86, 3658 (2001)

    Article  ADS  Google Scholar 

  51. I. Wilson-Rae, N. Nooshi, W. Zwerger, T.J. Kippenberg, Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett. 99, 093901 (2007)

    Article  ADS  Google Scholar 

  52. C. Zhao, L. Ju, H. Miao, S. Gras, Y. Fan, D.G. Blair, Three-mode optoacoustic parametric amplifier: a tool for macroscopic quantum experiments. Phys. Rev. Lett. 102, 243902 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haixing Miao .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Miao, H. (2012). Universal Entanglement Between an Oscillator and Continuous Fields. In: Exploring Macroscopic Quantum Mechanics in Optomechanical Devices. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25640-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25640-0_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25639-4

  • Online ISBN: 978-3-642-25640-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics