Skip to main content

Landslide Susceptibility Mapping Using a Spatial Multi Criteria Evaluation Model at Haraz Watershed, Iran

  • Chapter
  • First Online:
Terrigenous Mass Movements

Abstract

The purpose of this study is to prepare landslide susceptibility map using a spatial multi criteria evaluation approach (SMCE) in a landslide-prone area (Haraz) in Iran. In the first stage, landslide locations were identified in the study area from interpretation of aerial photographs, and field surveys. In the second stage, twelve data layers were used as landslide conditioning factors for susceptibility mapping. These factors are slope, aspect, altitude, lithology, land use, distance from rivers, distance from roads, distance from faults, topographic wetness index, stream power index, stream transport index, and plan curvature. Next, landslide-susceptible areas were analyzed using the SMCE approach and mapped using landslide conditioning factors. For verification, the results of the analyses was compared with the field-verified landslide locations. Additionally, the receiver operating characteristics (ROC) curves for all landslide susceptibility models were drawn and the area under curve values was calculated. Landslide locations were used to validate results of the landslide susceptibility map generated using the SMCE approach and the verification results showed a 76.84% accuracy. According to the results of the AUC evaluation, the produced map has exhibited good performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akgun A (2011) A comparision of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at Izmir, Turkey. Landslides doi:10.1007/s10346-011-0283-7

  • Akgun A, Bulut F (2007) GIS-based landslide susceptibility for Arsin-Yomra (Trabzon, 381 North Turkey) region. Environ Geol 51:1377–1387

    Article  Google Scholar 

  • Akgun A, Dag S, Bulut F (2008) Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihood frequency ratio and weighted linear combination models. Environ Geol 54(6):1127–1143

    Article  Google Scholar 

  • Akgun A, Turk N (2010) Landslide susceptibility mapping for Ayvalik (Western Turkey) 379 and its vicinity by multicriteria decision analysis. Env Earth Sci 61(3):595–611

    Article  Google Scholar 

  • Anbalgan R (1992) Land hazard evaluation and zonation mapping in mountainous terrain. Eng Geol 32:269–277

    Article  Google Scholar 

  • Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65(1/2):15–31

    Article  Google Scholar 

  • Ayalew L, Yamagishi H, Marui H, Kanno T (2005) Landslide in Sado Island of Japan: Part II. GIS-based susceptibility mapping with comparison of results from two methods and verifications. Eng Geol 81:432–445

    Article  Google Scholar 

  • Baeza C, Lantada N, Moya J (2010) Validation and evaluation of two multivariate statistical models for predictive shallow landslide susceptibility mapping of the Eastern Pyrenees (Spain). Environ Earth Sci 61:507–523

    Article  Google Scholar 

  • Bai S, Lü G, Wang J, Zhou P, Ding L (2010) GIS-based rare events logistic regression for landslide-susceptibility mapping of Lianyungang, China. Environ Earth Sci 62(1):139–149

    Article  Google Scholar 

  • Brabb EE, Pampeyan EH (1972) Preliminary map of landslide deposits in San Mateo County, California. US Geological Survey Miscellaneous Field Studies, Map MF-360, scale 1:62.500 (reprinted in 1978)

    Google Scholar 

  • Carrara A, Cardinali M, Detti R, Guzzetti F, Pasqui V, Reichenbach P (1991) GIS techniques and statistical models in evaluating landslide hazard. Earth Surf Proc Land 16:427–445

    Article  Google Scholar 

  • Castellanos AEA (2008) Multi-Scale landslide risk assessment in Cuba. PhD thesis, ITC, ITC.Nl

    Google Scholar 

  • Castellanos E, Van Westen CJ (2007) Generation of a landslide risk index map for Cuba using spatial multi-criteria evaluation. Landslide 4:311–325

    Article  Google Scholar 

  • Cevik E, Topal T (2003) GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). Environ Geol 44:949–962

    Article  Google Scholar 

  • Chauhan S, Sharma M, Arora MK, Gupta NK (2010) Landslide susceptibility zonation through ratings derived from artificial neural network. Int J Appl Earth Observ Geoinf 12:340–350

    Article  Google Scholar 

  • Clerici A, Perego S, Tellini C, Vescovi P (2002) A procedure for landslide susceptibility zonation by the conditional analysis method. Geomorphology 48:349–364

    Article  Google Scholar 

  • Dai FC, Lee CF, Xu ZW (2001) Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environ Geol 40(3):381–391

    Article  Google Scholar 

  • Dai FC, Lee CF (2002) Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 42:213–228

    Article  Google Scholar 

  • Dai FC, Lee CF (2001) Terrain-based mapping of landslide susceptibility using a geographical information systems: a case study. Can Geotech J 38:911–923

    Article  Google Scholar 

  • Dobrovolny E (1971) Landslide susceptibility in and near anchorage as interpreted from topographic and geologic maps, in the great Alaska earthquake of 1964-Geology volume. Publication 1603. U.S. Geological survey open file report 86-329, National Research Council, Committee on the Alaska Earthquake, National Academy of Sciences, USA, pp 735–745

    Google Scholar 

  • Duman TY, Can T, Gokceoglu C, Nefeslioglu HA, Sonmez H (2006) Application of logistic regression for landslide susceptibility zoning of Cekmece Area, Istanbul, Turkey. Env Geol 51:241–256

    Article  Google Scholar 

  • Ercanoglu M, Gokceoglu C (2004) Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey). Eng Geol 75:229–250

    Article  Google Scholar 

  • Ercanoglu M, Gokceoglu C (2002) Assessment of landslide susceptibility for a landslide-prone area (north of Yenice, NW Turkey) by fuzzy approach. Environ Geol 41:720–730

    Article  Google Scholar 

  • Ermini L, Catani F, Casagli N (2005) Artificial neural networks applied to landslide susceptibility assessment. Geomorphology 66:327–343

    Article  Google Scholar 

  • Fernández CI, Castillo TF, Hamdouni RE, Montero JC (1999) Verification of landslide susceptibility mapping: a case study. Earth Surf Proc Land 24(6):537–544

    Article  Google Scholar 

  • Gokceoglu C, Sonmez H, Nefeslioglu HA, Duman TY, Can T (2005) The 17 March 2005 Kuzulu landslide (Sivas, Turkey) and landslide-susceptibility map of its near vicinity. Eng Geol 81:65–83

    Article  Google Scholar 

  • Gokceoglu C, Aksoy H (1996) Landslide susceptibility mapping of the slopes in the residual soils of the Mengen region (Turkey) by deterministic stability analyses and image processing techniques. Eng Geol 44:147–161

    Article  Google Scholar 

  • Gritzner ML, Marcus WA, Aspinall R, Custer SG (2001) Assessing landslide potential using GIS, soil wetness modeling and topographic attributes, Payette River, Idaho. Geomorphology 37:149–165

    Article  Google Scholar 

  • Guzzetti F, Carrarra A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: are view of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181–216

    Article  Google Scholar 

  • Hanley JA, McNeil BJ (1983) A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 148:839–843

    Google Scholar 

  • Hengl T, Gruber S, Shrestha DP (2003) Digital terrain analysis in ILWIS. International Institute for Geo-Information Science and Earth Oservation Enschede, The Netherlands, p 62

    Google Scholar 

  • Herwijnen MV (1999) Spatial Decision Support for Environmental Management. Vrije Universiteit, Amsterdam 274

    Google Scholar 

  • ITC (2001) ILWIS 3.0 academic-user’s guide. ITC, Enschede, p 520

    Google Scholar 

  • Jakob M (2000) The impacts of logging on landslide activity at Clayoquot Sound, British Columbia. Catena 38:279–300

    Article  Google Scholar 

  • Komac M (2006) A landslide susceptibility model using analytical hierarchy process method and multivariate statistics in perialpine-Slovenia. Geomorphology 74:17–28

    Article  Google Scholar 

  • Kanungo DP, Arora MK, Sarkar S, Gupta RP (2006) A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Eng Geol 85(3–4):347–366

    Article  Google Scholar 

  • Lee S (2005) Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data. Int J Remote Sens 26:1477–1491

    Article  Google Scholar 

  • Lee S, Choi J, Min K (2004a) Probabilistic landslide hazard mapping using GIS and remote sensing data at Boun, Korea. Int J Remote Sens 25:2037–2052

    Article  Google Scholar 

  • Lee S, Min K (2001) Statistical analysis of landslide susceptibility at Yongin, Korea. Environ Geol 40:1095–1113

    Article  Google Scholar 

  • Lee S, Pradhan B (2007) Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides 4:33–41

    Article  Google Scholar 

  • Lee S, Pradhan B (2006) Probabilistic landslide risk mapping at Penang Island. Malays J Earth Syst Sci 115(6):1–12

    Google Scholar 

  • Lee S, Ryu JH, Won JS, Park H (2004b) Determination and application of the weights for landslide susceptibility mapping using an artificial neural network. Eng Geol 71:289–302

    Article  Google Scholar 

  • Lee S, Ryu JH, Lee MJ, Won JS (2006) The application of artificial neural networks to landslide susceptibility mapping at Janghung, Korea. Math Geol 38(2):199–219

    Article  Google Scholar 

  • Luzi L, Pergalani F (1999) Slope instability in static and dynamic conditions for urban planning: the ‘‘Oltre Po Pavese’’ case history (Region Lombardia-Italy). Nat Hazards 20:57–82

    Article  Google Scholar 

  • Maharaj RJ (1993) Landslide processes and landslide susceptibility analysis from an upland watershed: a case study from St. Andrew, Jamaica, West Indies. Eng Geol 34: 53–79

    Article  Google Scholar 

  • Malczewski J (1999) GIS and multi criteria decision analysis. Wiley, New York. ISBN: 978-0-471-32944-2, P 408

    Google Scholar 

  • Mejia-Navarro M, Garcia LA (1996) Natural hazard and risk assessment using decision support systems, application: Glenwood Springs, Colorado. Environ Eng Geosci 2(3):299–324

    Google Scholar 

  • Mejia-Navarro M, Wohl EE (1994) Geological hazard and risk evaluation using GIS: methodology and model applied to Medellin, Colombia. Bull Assoc Eng Geol 31:459–481

    Google Scholar 

  • Melchiorre C, Matteucci M, Remondo J (2006) Artificial neural networks and robustness analysis in landslide susceptibility zonation, IEEE. 2006 International Joint Conference on Neural Networks Sheraton Vancouver Wall Centre Hotel, Vancouver, 16–21 July, pp 4375–4381

    Google Scholar 

  • Mohammadi M (2008) Mass movement hazard analysis and presentation of suitable regional model using GIS (Case Study: A part of Haraz Watershed), M.Sc. Thesis, Tarbiat Modarres University International Campus, Iran, P 80

    Google Scholar 

  • Moore ID, Burch GJ (1986) Sediment transport capacity of sheet and rill flow: application of unit stream power theory. Water Res Res 22:1350–1360

    Article  Google Scholar 

  • Moore ID, Gessler PE, Nielsen GA, Peterson GA (1993) Soil attribute prediction using terrain analysis. Soil Sci Soc Am J 57:443–452

    Article  Google Scholar 

  • Moore ID, Grayson RB, Ladson AR (1991) Digital terrain modeling: a review of hydrological, geomorphological, and biological applications. Hydrol Process 5:3–30

    Article  Google Scholar 

  • Nefeslioglu HA, Sezer E, Gokceoglu C, Bozkir AS, Duman TY (2010) Assessment of landslide susceptibility by decision trees in the metropolitan area of Istanbul, Turkey, Mathematical Problems in Engineering, Article ID 901095, p 15, doi:10.1155/2010/901095

  • Nefeslioglu HA, Duman TY, Durmaz S (2008) Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Eastern Black Sea region of Turkey). Geomorphology 94:401–418

    Article  Google Scholar 

  • Ocakoglu F, Gokceoglu C, Ercanoglu M (2002) Dynamics of a complex mass movement triggered by heavy rainfall: a case study from NW Turkey. Geomorphology 42(3):329–341

    Article  Google Scholar 

  • Oh HJ, Lee S, Chotikasathien W, Kim CH, Kwon JH (2009) Predictive landslide susceptibility mapping using spatial information in the Pechabun area of Thailand. Environ Geol 57:641–651

    Article  Google Scholar 

  • Pachauri AK, Pant M (1992) Landslide hazard mapping based on geological attributes. Eng Geol 32:81–100

    Article  Google Scholar 

  • Pachauri AK, Gupta PV, Chander R (1998) Landslide zoning in a part of the Garhwal Himalayas. Environ Geol 36(3–4):325–334

    Article  Google Scholar 

  • Pourghasemi HR (2008) Landslide hazard assessment using fuzzy logic (Case Study: A part of Haraz Watershed), M.Sc. Thesis, Tarbiat Modarres University International Campus, Iran, pp 92

    Google Scholar 

  • Pradhan B (2010a) Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia. Adv Space Res 45(10):1244–1256

    Article  Google Scholar 

  • Pradhan B (2010b) Manifestation of an advanced fuzzy logic model coupled with Geoinformation techniques for landslide susceptibility analysis. Environ Ecol Stat 18(3):471–493

    Article  Google Scholar 

  • Pradhan B (2010c) Application of an advanced fuzzy logic model for landslide susceptibility analysis. Int J Comput Intell Sys 3(3):370–381

    Article  Google Scholar 

  • Pradhan B (2011) Use of GIS-based fuzzy logic relations and its cross application to produce landslide susceptibility maps in three test areas in Malaysia. Environ Earth Sci 63:329–349

    Article  Google Scholar 

  • Pradhan B, Buchroithner MF (2010) Comparison and validation of landslide susceptibility maps using an artificial neural network model for three test areas in Malaysia. Environ Eng Geosci 16(2):107–126

    Article  Google Scholar 

  • Pradhan B, Lee S (2009) Landslide risk analysis using artificial neural network model focusing on different training sites. Int J Phys Sci 3(11):1–15

    Google Scholar 

  • Pradhan B, Lee S (2010a) Regional landslide susceptibility analysis using back-propagation neural network model at Cameron Highland, Malaysia. Landslides 7(1):13–30

    Article  Google Scholar 

  • Pradhan B, Lee S (2010b) Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modeling. Environ Modell Softw 25:747–759

    Article  Google Scholar 

  • Pradhan B, Lee S (2010c) Delineation of landslide hazard areas using frequency ratio, logistic regression and artificial neural network model at Penang Island, Malaysia. Environ Earth Sci 60:1037–1054

    Article  Google Scholar 

  • Pradhan B, Sezer E, Gokceoglu C, Buchroithner MF (2010) Landslide susceptibility mapping by neuro-fuzzy approach in a landslide prone area (Cameron Highland, Malaysia). IEEE T Geosci Remote 48(12):4164–4177

    Article  Google Scholar 

  • Radbruch DH (1970) Map of relative amounts of landslides in California. US Geological Survey Open-File Report 70-1485, pp 36, map scale 1:500.000. US Geological Survey Open-File Report, pp 85–585

    Google Scholar 

  • Saaty T (1980) The analytical hierarchy Process. McGraw-Hill, New York

    Google Scholar 

  • Saaty TL (1997) A scaling method for priorities in hierarchical structures. J Math Psychol 15:234–281

    Article  Google Scholar 

  • Saha AK, Gupta RP, Sarkar I, Arora MK, Csaplovics E (2005) An approach for GIS-based statistical landslide susceptibility zonation with a case study in the Himalayas. Landslides 2:61–69

    Article  Google Scholar 

  • Saito H, Nakayama D, Matsuyama H (2009) Comparison of landslide susceptibility based on a decision-tree model and actual landslide occurrence: the Akaishi mountains, Japan. Geomorphology 109:108–121

    Article  Google Scholar 

  • Schuster RL, Fleming RW (1986) Economic losses and fatalities due to landslides. Bull Assoc Eng Geol 23:11–28

    Google Scholar 

  • Sezer EA, Pradhan B, Gokceoglu C (2011) Manifestation of an adaptive neuro-fuzzy model on landslide susceptibility mapping: Klang valley, Malaysia. Expert Syst App 38(7):8208–8219

    Article  Google Scholar 

  • Sharifi MA, Herwijnen MV (2003) Spatial decision support systems. International Instiute for Geo-Information Science and Earth Observation (ITC). p 201

    Google Scholar 

  • Sharifi MA, Retsios V (2004) Site selection for waste disposal through spatial multiple criteria decision analysis. J Telecommun Inf Technol 3:1–11

    Google Scholar 

  • Shou KJ, Wang CF (2003) Analysis of the Chiufengershan landslide triggered by the 1999 Chi–Chi earthquake in Taiwan. Eng Geol 68:237–250

    Article  Google Scholar 

  • Tangestani MH (2009) A comparative study of dempster–shafer and fuzzy models for landslide susceptibility mapping using a GIS: an experience from zagros Mountains, SW Iran. J Asian Earth Sci 35:66–73

    Article  Google Scholar 

  • Van Den Eeckhaut M, Vanwalleghem T, Poesen J, Govers G, Verstraeten G, Vandekerckhove L (2006) Prediction of landslide susceptibility using rare events logistic regression: a case-study in the Flemish Ardennes (Belgium). Geomorphology 76:392–410

    Article  Google Scholar 

  • Van Westen CJ, Bonilla JBA (1990) Mountain hazard analysis using PC-based GIS. 6th IAEG Congress, vol 1. Balkema, Rotterdam, pp 265–271

    Google Scholar 

  • Varnes DJ (1978) Slope movement types and processes. In: Schuster RL, Krizek RJ (eds) Landslides analysis and control. Special Report, Transportation Research Board. vol 176 National Academy of Sciences, New York, pp 12–33

    Google Scholar 

  • Wan S (2009) A spatial decision support system for extracting the core factors and thresholds for landslide susceptibility map. Eng Geol 108:237–251

    Article  Google Scholar 

  • Wang R (2008) An expert knowledge-based approach to landslide susceptibility mapping using GIS and fuzzy logic, A dissertation submitted in partial fulfillment of the requirement for the degree of Docto of Philosophy, University of Wisconsin-Madison, p 175

    Google Scholar 

  • Wilson JP, Gallant JC (2000) Terrain analysis principles and applications. Wiley, New York

    Google Scholar 

  • Wood EF, Sivapalan M, Beven KJ (1990) Similarity and scale catchment storm response. Rev Geophisics 28:1–18

    Article  Google Scholar 

  • Yalcin A (2005) An investigation on Ardesen (Rize) region on the basis of landslide susceptibility, KTU, PhD Thesis (in Turkish)

    Google Scholar 

  • Yalcin A (2008) GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Anderson (Turkey): comparision of results and confirmations. Catena 1:1–12

    Article  Google Scholar 

  • Yeon YK, Han JG, Ryu KH (2010) Landslide susceptibility mapping in Injae, Korea, using a decision tree. Eng Geol 116:274–283

    Article  Google Scholar 

  • Yesilnacar E, Topal T (2005) Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Eng Geol 79(3–4):251–266

    Article  Google Scholar 

  • Yilmaz I (2009) Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from kat landslides (Tokat-Turkey). Comp Geosci 35(6):1125–1138

    Article  Google Scholar 

  • Zhou G, Esaki T, Mitani Y, Xie M, Mori J (2003) Spatial probabilistic modeling of slope failure using an integrated GIS Monte Carlo simulation approach. Eng Geol 68:373–386

    Article  Google Scholar 

  • Zweig MH, Campbell G (1993) Receiver-operating characteristics (ROC) plots. Clin Chem 39:561–577

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswajeet Pradhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pourghasemi, H.R., Pradhan, B., Gokceoglu, C., Deylami Moezzi, K. (2012). Landslide Susceptibility Mapping Using a Spatial Multi Criteria Evaluation Model at Haraz Watershed, Iran. In: Pradhan, B., Buchroithner, M. (eds) Terrigenous Mass Movements. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25495-6_2

Download citation

Publish with us

Policies and ethics