Skip to main content

Modeling Uncertainty in Knowledge Representation

  • Chapter
  • 657 Accesses

Abstract

The classical view in cognitive psychology holds that an object is either an instance of a concept or it is not. In terms of mathematics, every concept is a crisp set. However, as we have discussed above, many concepts do not have clear boundaries or definitions. Different objects have different degrees of membership or typicality with respect to a certain concept. In this section, we give a review of studies that investigate how graded membership, vagueness and uncertainty are modeled. Several extensions to existing ontology models or description logics involves fuzzy sets, therefore we will start by briefly reviewing the basic notions of fuzzy set theory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   129.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zadeh L (1965) Fuzzy Sets. Inform Control, 8: 338–353.

    Article  MathSciNet  MATH  Google Scholar 

  2. Klir J, Yuan B (1995) Fuzzy Sets and Fuzzy Logic: Theory and Applications.,Prentice Hall, Upper Saddle River.

    MATH  Google Scholar 

  3. Yamakawa T (1988) High-speed Fuzzy Controller Hardware System. Inform Sciences 45(2): 113–128.

    Article  MathSciNet  Google Scholar 

  4. Yamakawa T (1989) Stabilization of an Inverted Pendulum by a High-speed Logic Controller Hardware System. Fuzzy Sets Syst, 326(2): 161–180.

    Article  Google Scholar 

  5. Bordogna G, Pasi G (2001) Modeling Vagueness in Information Retrieval. In: Agosti M, Crestani F, Pasi G (eds) Lectures on Information Retrieval, Lecture Notes in Computer Science, vol 1980. Springer, New York, pp 207–241.

    Chapter  Google Scholar 

  6. Bosc P, Pivert O (1994) Fuzzy Queries and Relational Databases. In: Proceedings of the 1994 ACM Symposium on Applied Computing, pp 170–174.

    Google Scholar 

  7. Chianese A, Picariello A, Sansone L et al (2004) Managing Uncertainties in Image Databases: A Fuzzy Approach. Multimedia Tools Appl 23(3): 237–252.

    Article  Google Scholar 

  8. Leung KS, Lam W (1988) Fuzzy Concepts in Expert Systems. Computer 21(9): 43–56.

    Article  Google Scholar 

  9. Sedbrook TA (1998) A Collaborative Fuzzy Expert System for the Web. SIGMIS Database 29(3): 19–30.

    Article  Google Scholar 

  10. Parry D (2004) A Fuzzy Ontology for Medical Document Retrieval. In: Hogan J, Montague P, Purvis M et al (eds) Proceedings of the Second Workshop on Australasian Information Security, Data Mining and Web Intelligence, and Software Internationalisation (ACSW Frontiers’ 04), vol 32. Australian Computer Society, Inc, Darlinghurst, Australia, pp 121–126.

    Google Scholar 

  11. Ding Z, Peng Y (2004) A Probabilistic Extension to Ontology Language OWL. In: Proceedings of the 37th Hawaii Int Conf on Sys Sci, p 10.

    Google Scholar 

  12. Stoilos G, Stamou G, Tzouvaras V et al (2005) Fuzzy Owl: Uncertainty and the Semantic Web. In: Proceedings of International Workshop of OWL: Experiences and Directions.

    Google Scholar 

  13. Dubois D, Prade H, Rossazza J (1991) Vagueness, Typicality, and Uncertainty in Class Hierarchies. Int J Intell Syst 6: 167–183.

    Article  Google Scholar 

  14. Tamma V, Bench-Capon T (2002) An Ontology Model to Facilitate Knowledge Sharing in Multi-agent Systems. Knowl Eng Rev 17(1): 41–60.

    Article  Google Scholar 

  15. Koller D, Levy A, Pfeffer A (1997) P-classic: A Tractable Probabilistic Description Logic. In: Proceedings of the Fourteenth National Conference on AI, pp 390–397.

    Google Scholar 

  16. Straccia U (1998) A Fuzzy Description Logic. In: Proceedings of the Fifteenth National Conference on Artificial Intelligence and the Tenth Annual Conference on Innovative Applications of Artificial Intelligence, pp 594–599.

    Google Scholar 

  17. Stoilos G, Stamou G, Tzouvaras V et al (2005) The Fuzzy Description Logic f-SHIN. In: Proceedings of the International Workshop on Uncertainty Reasoning for the Semantic Web.

    Google Scholar 

  18. Holldobler S, Khang TD, Storr HP (2004) A Fuzzy Description Logic With Hedges as Concept Modifiers. In: Proceedings of InTechVJFuzzy2002, pp 25–34.

    Google Scholar 

  19. Straccia U (2005) Towards a Fuzzy Description Logic for the Semantic Web. In: Proceedings of the Second European Semantic Web Conference, pp 167–181.

    Google Scholar 

  20. Zadeh LA (1988) Fuzzy Logic. Computer 21(4): 83–93.

    Article  Google Scholar 

  21. Klir GJ, Yuan B (1995) Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice Hall, Upper Saddle River.

    MATH  Google Scholar 

  22. Cross V, Voss CR (1999) Fuzzy Ontologies for Multilingual Document Exploitation. In: Proceedings of the 1999 Conference of NAFIPS, pp 392–397.

    Google Scholar 

  23. Parry D (2004) A Fuzzy Ontology for Medical Document Retrieval. In: The Australasian Workshop on DataMining and Web Intelligence, pp 121–126.

    Google Scholar 

  24. Giordano L, Gliozzi V, Olivetti N et al (2008) Alc+t: Reasoning About Typicality in Description Logics. In: Proceedings of 23rd Convegno Italiano di Logica Computazionale.

    Google Scholar 

  25. Giordano L, Gliozzi V, Olivetti N et al (2010) Preferential vs Rational Description Logics: Which One for Reasoning About Typicality? In: 19th European Conference on Artificial Intelligence, Lisbon, Portugal, 16–20 August 2010. IOS Press, Amsterdam, pp 1069–1070.

    Google Scholar 

  26. Cai Y, Leung HF (2010) A Fuzzy Description Logic with Automatic Object Membership Measurement. In: KSEM, pp 76–87.

    Google Scholar 

  27. Cross V (2004) Fuzzy Semantic Distance Measures Between Ontological Concepts. In: Proceedings of the 2004 Conference of North American Fuzzy Information Processing Society (NAFIPS), pp 392–397.

    Google Scholar 

  28. Doan A, Madhavan J, Dhamankar R et al (2003) Learning to Match Ontologies on the Semantic Web. The VLDB Journal 12(4): 303–319.

    Article  Google Scholar 

  29. Kalfoglou Y, Schorlemmer M (2003) Ontology Mapping: The State of the Art. Knowl Eng Rev 18(1): 1–31.

    Article  Google Scholar 

  30. Rodriguez MA, Egenhofer MJ (2003) Determining Semantic Similarity Among Entity Classes From Different Ontologies. IEEE Trans on Knowl and Data Eng 15(2): 442–456.

    Article  Google Scholar 

  31. Varelas G, Voutsakis E, Raftopoulou P et al (2005) Semantic Similarity Methods in Wordnet and Their Application to Information Retrieval on the Web. In: WIDM’ 05: Proceedings of the 7th Annual ACM International Workshop on Web Information and Data Management, ACM Press, New York, pp 10–16.

    Chapter  Google Scholar 

  32. Kong CY, Wang CL, Lau FCM (2004) Ontology Mapping in Pervasive Computing Environment. In: EUC, pp 1014–1023.

    Google Scholar 

  33. Lesot MJ (2005) Similarity, Typicality and Fuzzy Prototypes for Numerical Data. In: 6th European Congress on Systems Science, Workshop “Similarity and resemblance”.

    Google Scholar 

  34. Van Rijsbergen (1979) Information Retrieval. Butterworths, London.

    Google Scholar 

  35. Rada, Roy, Mili H, Bicknell E et al (1989) Development and Application of a Metric on Semantic Nets. IEEE T Sys Man Cyb 19: 17–30.

    Article  Google Scholar 

  36. Kim Y, Kim J (1990) A Model of Knowledge-based Information Retrieval With Hierarchical Concept Graph. J Doc 46: 113–116.

    Article  Google Scholar 

  37. Lee J, Kim M (1993) Information Retrieval Based on Conceptual Distance in a Is-a Hierarchy. J Doc 49: 188–207.

    Article  Google Scholar 

  38. Resnik P (1995) Using Information Content to Evaluate Semantic Similarity in a Taxonomy. In: Proceedings of the International Joint Conference on Artificial Intelligence, pp 448–453.

    Google Scholar 

  39. Tversky A (1977) Features of Similarity. Psychological Review 84(4): 327–352.

    Article  Google Scholar 

  40. McCarthy J (1986) Notes on Formalizing Contexts. In: Proceedings of the Fifth National Conference on Artificial Intelligence, pp 555–560.

    Google Scholar 

  41. Giunchiglia F (1993) Contextual Reasoning. In: Proceedings of the IJCAI’93 Workshop on Using Knowledge in Its Context, Chambert, France.

    Google Scholar 

  42. Akman V, Surav M (1996) Steps Toward Formalizing Context. AI Mag 17(3): 55–72.

    Google Scholar 

  43. Buvac S, Mason IA (1993) Propositional Logic of Context. In: Proceedings of the Eleventh National Conference on Artificial Intelligence, Washington DC, pp 412–419.

    Google Scholar 

  44. Obrst L, Nichols D (2005) Context and Ontologies: Contextual Indexing of Ontological Expressions. In: AAAI 2005 Workshop on Context and Ontologies.

    Google Scholar 

  45. Grossi D, Dignum F, Meyer JJC (2004) Contextual Taxonomies. In: Proceedings of Fifth InternationanalWorkshop on Computational Logic in Multi-Agent Systems.

    Google Scholar 

  46. Grossi D, Dignum F, Meyer JJC (2005) Context in Categorization. In: Workshop on Context Representation and Reasoning.

    Google Scholar 

  47. Khriyenko O, Terziyan V (2005) Context Description Framework for the Semantic Web. In: Proceedings of CRR-05.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cai, Y., Au Yeung, Cm., Leung, Hf. (2012). Modeling Uncertainty in Knowledge Representation. In: Fuzzy Computational Ontologies in Contexts. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25456-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25456-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25455-0

  • Online ISBN: 978-3-642-25456-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics