Skip to main content

Atomic Force Microscopy for DNA SNP Identification

  • Chapter
  • First Online:
  • 2354 Accesses

Part of the book series: NanoScience and Technology ((NANO))

Abstract

The knowledge of the effects of single-nucleotide polymorphisms (SNPs) in the human genome greatly contributes to better comprehension of the relation between genetic factors and diseases. Sequence analysis of genomic DNA in different individuals reveals positions where variations that involve individual base substitutions can occur. Single-nucleotide polymorphisms are highly abundant and can have different consequences at phenotypic level. Several attempts were made to apply atomic force microscopy (AFM) to detect and map SNP sites in DNA strands. The most promising approach is the study of DNA mutations producing heteroduplex DNA strands and identifying the mismatches by means of a protein that labels the mismatches. MutS is a protein that is part of a well-known complex of mismatch repair, which initiates the process of repairing when the MutS binds to the mismatched DNA filament. The position of MutS on the DNA filament can be easily recorded by means of AFM imaging.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A.J. Brookes, Gene 234, 177 (1999)

    Google Scholar 

  2. The International-HapMap-Consortium. Nature 426, 789–796 (2003)

    Google Scholar 

  3. D.G. Wang, et al., Science 280, (1998)

    Google Scholar 

  4. P.Y. Kwok, Single Nucleotide Polymorphisms: Methods and Protocols. Methods in Molecular Biology, vol. 212 (Humana Press, Totowa, 2003)

    Google Scholar 

  5. P.Y. Kwok, X. Chen, Curr. Issues Mol. Biol. 5(2), 43–60 (2003)

    Google Scholar 

  6. E. Angeli, R. Buzio, G. Firpo, R. Magrassi, V. Mussi, L. Repetto, U. Valbusa, Tumori 96, 206 (2008)

    Google Scholar 

  7. V. Mussi, P. Fanzio, L. Repetto, G. Firpo, P. Scaruffi, S. Stigliani, G. P. Tonini, U. Valbusa, Nanotechnology 21, 145102 (2010)

    Google Scholar 

  8. V. Mussi, P. Fanzio, L. Repetto, G. Firpo, P. Scaruffi, S. Stigliani, M. Menotta, M. Magnani, G.P. Tonini, U. Valbusa, J. Phys.: Condensed Matter 22, 454104 (2010)

    Google Scholar 

  9. V. Mussi, P. Fanzio, L. Repetto, G. Firpo, S. Stigliani, G.P. Tonini, U. Valbusa, Biosens. Bioelectron. 29, 125–131 (2011)

    Google Scholar 

  10. C.R. Clemmer, T.P. Beebe, Science 251, 640 (1991)

    Google Scholar 

  11. E. Shapir, H. Cohen, A. Calzolari, C. Cavazzoni, D.A. Ryndyk, G. Cuniberti, A. Kotlyar, R. Di Felice, D. Porath, Nat Mater. 7, 68 (2008)

    Google Scholar 

  12. Y. Song, L. Wang, S. Zhao, W. Lian, Z. Li, J. Microsc. 234, 130 (2009)

    Google Scholar 

  13. H. Tanaka, C. Hamai, T. Kanno, T. Kawai, Surf. Sci. 432, 611 (1999)

    Google Scholar 

  14. H. Tanaka, T. Kawai, Surf. Sci. 539, 531 (2003)

    Google Scholar 

  15. H. Tanaka, T. Kawai, Nat. Nano. 4, 518 (2009)

    Google Scholar 

  16. A. Stanislawska-Sachadyn, P. Sachadyn, Acta. Biochim. Pol. 52(3), 575–583 (2005)

    Google Scholar 

  17. R. Wagner, P. Debie, M. Radman, Nucleic Acids Res. 23, 3944 (1995)

    Google Scholar 

  18. A.T. Woolley, C. Guillemette, C. Li Cheung, D.E. Housman, C.M. Lieber, Nat Biotech. 18, 760 (2000)

    Google Scholar 

  19. I. Tessmer, Y. Yang, J. Zhai, C. Du, P. Hsieh, M.M. Hingorani, D.A. Erie. 283, 36646–36654 (2008)

    Google Scholar 

  20. D.G. Wang, et al., Science 280, 1077 (1998)

    Google Scholar 

  21. R.D. Kolodner, Trends Biochem. Sci. 20, 397 (1995)

    Google Scholar 

  22. T.A. Kunkel, D.A. Erie, Annu. Rev. Biochem. 74, 681–710 (2005)

    Google Scholar 

  23. D. Gresham, B. Curry, A. Ward, D.B. Gordon, L. Brizuela, L. Kruglyak, D. Botstein, Proc. Natl. Acad. Sci. 107, 1482 (2010)

    Google Scholar 

  24. V. Ierardi, F. Giacopelli, R. Ravazzolo, U. Valbusa, in AFM BioMed Conference, Red Island, Croatia, 2010, p. 106

    Google Scholar 

  25. M. Tanigawa, M. Gotoh, M. Machida, T. Okada, Nucleic Acids Res. 28, e38 (2000)

    Google Scholar 

  26. J. Brown, T. Brown, K.R. Fox, Biochem. J. 354, 627 (2001)

    Google Scholar 

  27. M. Cho, M.S. Han, C. Ban, Chem. Commun. 38, 4573–4575 (2008)

    Google Scholar 

  28. B. Kramer, W. Kramer, H.J. Fritz, Cell 38(3), 879–87 (1984)

    Google Scholar 

  29. B.O. Parker, G. Marinus, Proc. Natl. Acad. Sci. USA 89, 1730 (1992)

    Google Scholar 

  30. M. Radman, R. Wagner, Annu. Rev. Genet. 20, (1986)

    Google Scholar 

  31. S.S. Su, R.S. Lahue, K.G. Au. P. Modrich, J. Bio. Chem. 263(14), 6829–6835 (1988)

    Google Scholar 

  32. M. Jones, R. Wagner, M. Radman. Genetics 115, 605 (1987)

    Google Scholar 

  33. D.J. Allen, A. Makhov, M. Grilley, J. Taylor, R. Thresher, P. Modrich, J.D. Griffith. EMBO J. 16, 4467 (1997)

    Google Scholar 

  34. C. Ban, M. Junop, W. Yang, Cell 97, 85 (1999)

    Google Scholar 

  35. L.J. Blackwell, D. Martik, K.P. Bjornson, E.S. Bjornson, P. Modrich. J. Biol. Chem. 273, 32055 (1998)

    Google Scholar 

  36. S. Gradia, D. Subramanian, T. Wilson, S. Acharya, A. Makhov, J. Griffith, R. Fishel, Mol. Cell. 3, 255 (1999)

    Google Scholar 

  37. J. Jiang, L. Bai, J.A. Surtees, Z. Gemici, M.D. Wang, E. Alani. Mol. Cell. 20, 771 (2005)

    Google Scholar 

  38. M.H. Lamers, A. Perrakis, J.H. Enzlin, H.H.K. Winterwerp, N. De Wind, T.K. Sixma, Nature 407, 711 (2000)

    Google Scholar 

  39. G. Obmolova, C. Ban, P. Hsieh, W. Yang, Nature 407, 703 (2000)

    Google Scholar 

  40. A. Pluciennik, P. Modrich, Proc. Natl. Acad. Sci. USA 104, 12709 (2007)

    Google Scholar 

  41. J. Gorman, A. Chowdhury, J.A. Surtees, J. Shimada, D.R. Reichman, E. Alani, E.C. Greene, Mol. Cell. 28, 359 (2007)

    Google Scholar 

  42. N. Almqvist, L. Backman, S. Fredriksson, Micron 25, 227 (1994)

    Google Scholar 

  43. J.H. Lü, Colloids Surf B: Biointerfaces. 39, 177 (2004)

    Google Scholar 

  44. L.S. Shlyakhtenko, A.A. Gall, J.J. Weimer, D.D. Hawn, Y.L. Lyubchenko. Biophys. J. 77, 568 (1999)

    Google Scholar 

  45. A.T. Woolley, R.T. Kelly. Nano Lett. 1, 345 (2001)

    Google Scholar 

  46. F. Zhao, J. Xu, S. Liu. Thin Solid Films. 516, 7555 (2008)

    Google Scholar 

  47. C. Rivetti, M. Guthold, C. Bustamante. J. Mol. Biol. 264, 919 (1996)

    Google Scholar 

  48. D. Pastré, O. Piétrement, S. Fusil, F. Landousy, J. Jeusset, M.-O- David, L. Hamon, E. Le Cam, A. Zozime, Biophys. J. 85, 2507 (2003)

    Google Scholar 

  49. C. Niederhauser, C. Höfelein, B. Wegmüller, J. Lüthy, U. Candrian, Genome Res. 4, 117 (1994)

    Google Scholar 

  50. M. Mandelkern, J. G. Elias, D. Eden, D. M. Crothers, J. Mol. Biol.. 152, 153 (1981)

    Google Scholar 

  51. P. Markiewicz, M.C. Goh, 66, 3186 (1995)

    Google Scholar 

  52. Y. Fang, J.H. Hoh, T.S. Spisz, Nucleic Acids Res. 27(8), 1943–1949 (1999)

    Google Scholar 

  53. H.G. Hansma, I. Revenko, K. Kim, D.E. Laney, Nucleic Acids Res. 24, 713 (1996)

    Google Scholar 

  54. C. Rivetti, S. Codeluppi, Ultramicroscopy 87, 55–66 (2001)

    Google Scholar 

  55. A. Schulz, N. Mücke, J. Langowski, K. Rippe, J. Mol. Biol. 283, 821 (1998)

    Google Scholar 

  56. K.A. Eckert, T.A. Kunkel, Genome Res. 1, 17 (1991)

    Google Scholar 

  57. H.B. Sun, H. Yokota, Anal. Chem. 72, 3138 (2000)

    Google Scholar 

  58. T.M. Lohman, W. Bujalowski, T.S. Robert, in Methods in Enzymology, vol. 208 (Academic Press, San Diego, 1991), pp. 258–290

    Google Scholar 

  59. Y. Yang, L.E. Sass, C. Du, P. Hsieh, D.A. Erie. Nucleic Acids Res. 33, 4322 (2005)

    Google Scholar 

  60. N. Sammeta, T.S. McClintock, J. Comp. Neurol. 518, 1825 (2010)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Renato Buzio, Chiara Biale, Francesca Giacopelli, Roberto Ravazzolo, Patrizia Guida, Barbara Setina, and Luca Repetto for their helpful comments. This work has been supported by Ministero dell’Università e della Ricerca (MIUR), Italy, with the FIRB 2003 National Project Nanomed.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Valbusa, U., Ierardi, V. (2012). Atomic Force Microscopy for DNA SNP Identification. In: Bhushan, B. (eds) Scanning Probe Microscopy in Nanoscience and Nanotechnology 3. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25414-7_4

Download citation

Publish with us

Policies and ethics