Skip to main content

Contact and Friction of One- and Two-Dimensional Nanostructures

  • Chapter
  • First Online:
  • 2389 Accesses

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Because their thickness dimension is very small compared with other dimensions, the one-dimensional (1D) nanostructures (such as nanowire, nanotube, and nanobelt) and two-dimensional (2D) nanostructures (such as graphene) are highly prone to bend. Because of their large bending flexurality, the 1D and 2D nanostructures exhibit different contact behavior from those chunky ones. Without considering the flexurality effect, the analysis on the experimental data of 1D and 2D nanostructures can lead to different and even contradicting results/conclusions on their mechanical properties. One focus of this chapter is on what can go wrong in the indentation and three-point bending tests of 1D nanostructures if the flexurality effect is not accounted. At the same time, the 1D and 2D nanostructures also exhibit abnormal friction behavior. The assumptions of the classical contact are reviewed, and their possible deficiencies and difficulties of being used to analyze the contact and friction of 1D/2D nanostructures are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Y. Zhu, C. Ke, H.D. Espinosa, Exp. Mech. 47, 7 (2007)

    Google Scholar 

  2. Z. Wang, Adv. Mater. 12, 1295 (2000)

    Google Scholar 

  3. S. Cuenot, C. Frétigny, S. Demoustier-Champagne, B. Nysten, Phys. Rev. B 69, 165410 (2004)

    Google Scholar 

  4. B. Wu, A. Heidelberg, J. Boland, J.E. Sader, X. Sun, Y. Li, Nano Lett. 6, 468 (2006)

    Google Scholar 

  5. Y. Chen, B. Dorgan, D. Mcllroy, D. Aston, J. Appl. Phys. 100, 104301 (2006)

    Google Scholar 

  6. X. Li, H. Gao, C.J. Murphy, K.K. Caswell, Nano Lett. 3, 1495 (2003)

    Google Scholar 

  7. G. Feng, W.D. Nix, Y. Yoon, C. Lee, J. Appl. Phys. 99, 074304 (2006)

    Google Scholar 

  8. C. Chen, Y. Shi, Y. Zhang, J. Zhu, Y. Yan, Phys. Rev. Lett. 96, 075505 (2006)

    Google Scholar 

  9. Y. Zhu, F. Xu, Q. Qin, W. Fung, W. Lu, Nano Lett. 9, 3934 (2009)

    Google Scholar 

  10. Y. Sohn, J. Park, G. Yoon, J. Song, S. Jee, J. Lee, S. Na, T. Kwon, K. Eom, Nanoscale Res. Lett. 5, 211 (2010)

    Google Scholar 

  11. M. Yu, T. Kowalewski, R.S. Ruoff, Phys. Rev. Lett. 85, 1456 (2000)

    Google Scholar 

  12. W. Shen, B. Jiang, B. Han, S. Xie, Phys. Rev. Lett. 84, 3634 (2000)

    Google Scholar 

  13. I. Palaci, S. Fedrigo, H. Brune, C. Klinke, M. Chen, E. Riedo, Phys. Rev. Lett. 94, 175502 (2005)

    Google Scholar 

  14. M. Minary-Jolandan M. Yu, J. Appl. Phys. 103, 073516 (2008)

    Google Scholar 

  15. G. Stan, C. Ciobanu, T. Thayer, G. Wang, J. Creighton, K. Purushotham, L. Bendersky, R. Cook, Nanotechnology 20, 035706 (2009)

    Google Scholar 

  16. M. Lucas, W. Mai, R. Yang, Z. Wang, E. Riedo, Nano Lett. 7, 1314 (2007)

    Google Scholar 

  17. X. Li, X. Wang, Q. Xiong, P. Eklund, Nano Lett. 5, 1982 (2005)

    Google Scholar 

  18. H. Ni, X. Li, Nanotechnology 17, 3591 (2006)

    Google Scholar 

  19. X. Bai, P. Gao, Z. Wang, E. Wang, Appl. Phys. Lett. 82, 4806 (2003)

    Google Scholar 

  20. W. Mai, Z. Wang, Appl. Phys. Lett. 89, 073112 (2006)

    Google Scholar 

  21. M. Lucas, Z. Wang, E. Riedo, Appl. Phys. Lett. 95, 051904 (2009)

    Google Scholar 

  22. S. Mao, M. Zhao, Z. Wang, Appl. Phys. Lett.83, 993 (2003)

    Google Scholar 

  23. Y. Zhang, Y. Zhao, J. Adhes. Sci. Tech. 25, 1107 (2011)

    Google Scholar 

  24. W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564 (1992)

    Google Scholar 

  25. I.N. Sneddon, Int. J. Eng. Sci. 3, 47 (1965)

    Google Scholar 

  26. W.C. Oliver, G.M. Pharr, J. Mater. Res. 19, 3 (2004)

    Google Scholar 

  27. Y. Zhang, Y. Zhao, J. Appl. Mech. 78, 011007 (2011)

    Google Scholar 

  28. Y. Zhang, J. Appl. Phys. 107, 123518 (2010)

    Google Scholar 

  29. R. Saha, W.D. Nix, Acta Mater. 50, 23 (2002)

    Google Scholar 

  30. K. Geng, F. Yang, E. Grulke, Mater. Sci. Eng. A 479, 157 (2008)

    Google Scholar 

  31. B. Bhushan, X. Ling, A. Jungen, C. Hierold, Phys. Rev. B 77, 265428 (2008)

    Google Scholar 

  32. C. Lee, Q. Li, W. Kalb, Z. Liu, H. Berger, R.W. Carpick, J. Hone, Science 328, 76 (2010)

    Google Scholar 

  33. D. Maugis, J. Colloid Interface Sci. 150, 243 (1992)

    Google Scholar 

  34. K.L. Johnson, J.A. Greenwood, J. Colloid Interface Sci. 192, 326 (1997)

    Google Scholar 

  35. Y. Zhang, J. Adhes. Sci. Tech. 22, 699 (2008)

    Google Scholar 

  36. Y. Zhang, J. Adhes. Sci. Tech. 25, 1435 (2011)

    Google Scholar 

  37. J.A. Greenwood, Proc. Roy. Soc. London Ser. A 453, 1277 (1997)

    Google Scholar 

  38. J.A. Greenwood, Phil. Mag. 89, 945 (2009)

    Google Scholar 

  39. J.N. Israelachvili,Intermolecular and Surface Forces. (Academic, London, 1985)

    Google Scholar 

  40. C. Argento, A. Jagota, W.C. Carter, J. Mech. Phys. Solids 45, 1161 (1997)

    Google Scholar 

  41. R.S. Bradley, Phil. Mag. 13, 853 (1932)

    Google Scholar 

  42. K.L. Johnson, Contact Mechanics. (Cambridge University Press, Cambridge, 1985)

    Google Scholar 

  43. P. Attard, J.L. Parker, Phys. Rev. A 46, 7959 (1992)

    Google Scholar 

  44. M.K. Chaudhury, T. Weaver, C.Y. Hui, E.J. Kramer, J. Appl. Phys., 80, 30 (1996)

    Google Scholar 

  45. L.M. Keer, J. Dundurs, K. Tsai, J. Appl. Mech. 39, 1115 (1972)

    Google Scholar 

  46. S.L. Pu, M. Hussain, J. Appl. Mech. 37, 859 (1970)

    Google Scholar 

  47. G.M. Gladwell, J. Appl. Mech.43, 263 (1976)

    Google Scholar 

  48. Y. Weitsman, J. Appl. Mech. 36, 505 (1969)

    Google Scholar 

  49. Y. Weitsman, J. Appl. Mech. 37, 1019 (1970)

    Google Scholar 

  50. Y. Weitsman, Int. J. Eng. Sci. 10, 73 (1972)

    Google Scholar 

  51. Y. Zhang, K.D. Murphy, Int. J. Solids Struct. 41, 6745 (2004)

    Google Scholar 

  52. Y. Zhang, Int. J. Mech. Sci. 50, 1035 (2008)

    Google Scholar 

  53. L. Ascione, A. Grimaldi, Meccanica 19, 223 (1984)

    Google Scholar 

  54. A.D. Kerr, J. Appl. Mech. 31, 491 (1964)

    Google Scholar 

  55. A.E. Giannakopoulos, J. Mech. Phys. Solids 54, 1305(2006)

    Google Scholar 

  56. F. Yang, Y.T. Cheng, J. Mater. Res. 24, 1976 (2009)

    Google Scholar 

  57. J. Salvetat, G.A.D. Briggs, J. Bonard, R. Bacsa, A.J. Kulik, T. Stöckli, N.A. Burnham, L. Forró, Phys. Rev. Lett. 82, 944 (1999)

    Google Scholar 

  58. Y. Chen, I. Stevenson, R. Pouy, L. Wang, D.N. Mcllroy, T. Pounds, M.G. Norton, D.E. Aston, Nanotechnology 18, 135708 (2007)

    Google Scholar 

  59. W. Fang, J.A. Wickert, J. Micromech. Microeng. 6, 301 (1996)

    Google Scholar 

  60. Y. Zhang, Y. Zhao, Microsyst. Technol. 12, 357 (2006)

    Google Scholar 

  61. G. Jing, H. Duan, X. Sun, Z. Zhang, J. Xu, Y. Li, J. Wang, D. Yu, Phys. Rev. B 73, 235409 (2006)

    Google Scholar 

  62. S. Cuenot, S. Demoustier-Champagne, B. Nysten, Phys. Rev. Lett. 85, 1690 (2000)

    Google Scholar 

  63. A. San Paulo, J. Bokor, R.T. Howe, R. He, P. Yang, D. Gao, C. Carraro, R. Maboudian, Appl. Phys. Lett. 87, 053111 (2005)

    Google Scholar 

  64. Y. Zhu, Q. Qin, Y. Gu, Z.L. Wang, Nanoscale Res. Lett. 5, 291 (2010)

    Google Scholar 

  65. G. Conache, S.M. Gray, A. Ribayrol, L.E. Fröberg, L. Samuelson, H. Pettersson, L. Montelius, Small 5, 203 (2009)

    Google Scholar 

  66. R.W. Carpick, D. Ogletree, M. Salmeron, Appl. Phys. Lett. 70, 1548 (1997)

    Google Scholar 

  67. M.A. Lantz, S.J. O’Shea, M.E. Welland, K.L. Johnson, Phys. Rev. B 55, 10776 (1997)

    Google Scholar 

  68. Y. Zhang, K.D. Murphy, in Scanning Probe Microscopy in Nanoscience and Nanotechnology, ed. by B. Bhushan (Springer, Berlin, 2010), Chapter 8

    Google Scholar 

  69. R.W. Carpick, M. Salmeron, Chem. Rev. 97, 1163–1194 (1997)

    Google Scholar 

  70. B.N.J. Persson, Sliding Friction: Physical Principles and Applications, 2nd edn. (Springer, Berlin, 2000)

    Google Scholar 

  71. E. Rabinowicz, Friction and Wear of Materials. (Wiley, New York, 1965)

    Google Scholar 

  72. B.V. Derjaguin. Z. Phys. 88, 661 (1934)

    Google Scholar 

  73. R.W. Carpick, N. Agrait, D.F. Ogletree, M. Salmeron, Langmuir,12, 3334 (1996)

    Google Scholar 

  74. J. Gao, W. Luedtke, D. Gourdon, M. Ruth, J.N. Israelachvili, U. Landman, J. Phys. Chem. B, 108, 3410 (2004)

    Google Scholar 

  75. G. He, M.H. Muser, M.O. Robbins, Science, 284, 1650 (1999)

    Google Scholar 

  76. M.O. Robbins, E.D. Smith, Langmuir12, 4543 (1996)

    Google Scholar 

  77. J. Krim, D.H. Solina, R. Chiarello, Phys. Rev. Lett. 66, 181 (1991)

    Google Scholar 

  78. C. Mak, J. Krim, Phys. Rev. B 58, 5157 (1998)

    Google Scholar 

  79. M. Cieplak, E.D. Smith, M.O. Robbins, Science265 1209 (1994)

    Google Scholar 

  80. M.S. Tomassone, J.B. Sokoloff, A. Widom, J. Krim, Phys. Rev. Lett. 79, 4798 (1997);

    Google Scholar 

  81. G.A. Tomlinson, Philos. Mag. Ser. 7, 905 (1929)

    Google Scholar 

  82. M.H. Muser, D. Shakhvorostov, Science, 328, 52 (2010)

    Google Scholar 

  83. M.H. Muser, Phys. Rev. Lett. 89, 224301 (2002)

    Google Scholar 

  84. A.R. Savkoor, G.A.D. Briggs, Proc. R. Soc. Lond. A. 356, 103 (1977)

    Google Scholar 

  85. K.L. Johnson, Proc. R. Soc. Lond. A.453, 163 (1997)

    Google Scholar 

  86. M. Ternes, C.P. Lutz, C.F. Hirjibehedin, F.J. Giessibl, A.J. Heinrich, Science, 319, 1066 (2008)

    Google Scholar 

  87. J.Y. Park, D.F. Ogletree, P.A. Thiel, M. Salmeron1, Science, 313, 186 (2006)

    Google Scholar 

  88. R.J. Cannara, M.J. Brukman, K. Cimatu, A.V. Sumant, S. Baldelli, R.W. Carpick, Science, 318, 780 (2007)

    Google Scholar 

  89. F.P. Bowden, D. Tabor, The Friction and Lubrication of Solids. (Clarendon Press, Oxford, 1954)

    Google Scholar 

  90. B. Bhushan, J.N. Israelachvili, U. Landman, Nature, 374, 607 (1995)

    Google Scholar 

  91. D. Xu, K. Ravi-Chandar, K.M. Liechti, J. Colloid Interface Sci. 318, 507 (1992)

    Google Scholar 

  92. A. Cottrell, Introduction to the Modern Theory of Metals. (Institute of Metals, London, 1988)

    Google Scholar 

  93. R. Szoszkiewicza, B. Bhushan, B.D. Huey, A.J. Kulik, G. Gremaud, J. Appl. Phys. 122, 144708 (2005)

    Google Scholar 

  94. J.A. Greenwood, J.J. Wu, Meccanica 36, 617 (2001)

    Google Scholar 

  95. J.A. Greenwood, J.B.P. Williamson, Proc. R. Soc. Lond. A.295, 300 (1966)

    Google Scholar 

  96. K.N. Fuller, D. Tabor, Proc. R. Soc. Lond. A. 345, 327 (1975)

    Google Scholar 

  97. J.R. Barber, M. Ciavarella, Int. J. Solids Struct. 37, 29 (2000)

    Google Scholar 

  98. A. Majumdar, B. Bhushan, ASME J. Tribol. 112, 205 (1990)

    Google Scholar 

  99. A. Majumdar, B. Bhushan, ASME J. Tribol. 113, 1 (1991)

    Google Scholar 

  100. B.N.J. Persson, Eur. Phys. J. E 8, 385 (2002)

    Google Scholar 

  101. C. Yang, U. Tartaglino, B.N.J. Persson, Eur. Phys. J. E 19, 47 (2006)

    Google Scholar 

  102. J.F. Archard, Proc. R. Soc. Lond. A.243, 190 (1957)

    Google Scholar 

  103. B. Bhushan, A.V. Kulkarni, Thin Solid Films278, 49 (1996)

    Google Scholar 

  104. W. Yang, H. Wang, Y. Huang, ASME J. Eng. Mater. Technol. 127, 383 (2005)

    Google Scholar 

  105. B. Luan, M.O. Robbins, Nature 435, 929 (2005)

    Google Scholar 

  106. F. Delrio, M.P. de Boer, J.A. Knapps, E. Reedy Jr., P. Clews, M. Dunn, Nature Mat. 4, 629 (2005)

    Google Scholar 

  107. Y.P. Zhao, L. Wang, Y.T.X. Yu, J. Adhes. Sci. Tech.17, 519 (2003)

    Google Scholar 

  108. M.R. Falvo, J. Steele, R.M. Taylor II, R. Superfine, Tribol. Lett. 9, 73 (2000)

    Google Scholar 

  109. M.R. Falvo, R.M. Taylor II, A. Helser, V. Chi, F.P. Brooks Jr., S. Washburn, R. Superfine, Nature 397, 236 (1999)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC nos. 10721202 and 11023001) and the Chinese Academy of Sciences (Grant no. KJCX2-EW-L03). We are also very thankful to Prof. Xinghua Shi of LNM and Dr. Weixue Tian of Caterpillar Champaign Simulation Center for proofreading the manuscript and their revision advices.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, Y., Zhao, Yp. (2012). Contact and Friction of One- and Two-Dimensional Nanostructures. In: Bhushan, B. (eds) Scanning Probe Microscopy in Nanoscience and Nanotechnology 3. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25414-7_13

Download citation

Publish with us

Policies and ethics