Skip to main content

Reconstruction of Energy Surfaces from Friction Force Microscopy Measurements with the Jarzynski Equality

  • Chapter
  • First Online:
Scanning Probe Microscopy in Nanoscience and Nanotechnology 3

Part of the book series: NanoScience and Technology ((NANO))

  • 2413 Accesses

Abstract

Free energy is one of the most fundamental thermodynamic functions, determining relative phase stability and serving as a generating function for other thermodynamic quantities. The calculation of free energies is a challenging enterprise. In equilibrium statistical mechanics, the free energy is related to the canonical partition function. The partition function itself involves integrations over all degrees of freedom in the system and, in most cases, cannot be easily calculated directly. In 1997, Jarzynski proved a remarkable equality that allows computing the equilibrium free-energy difference between two states from the probability distribution of the nonequilibrium work done on the system to switch between the two states. The Jarzynski equality provides a powerful free-energy difference estimator from a set of irreversible experiments. This method is closely related to free-energy perturbation approach, which is also a computational technique for estimating free-energy differences. The ability to map potential profiles and topologies is of major significance to areas as diverse as biological recognition and nanoscale friction. This capability has been demonstrated for frictional studies where a force between the tip of the scanning force microscope and the surface is probed. The surface free-energy corrugation produces a detectable friction forces. Thus, friction force microscopy (FFM) should be able to discriminate between energetically different areas on the probed surface. Here, we apply the Jarzynski equality for the analysis of FFM measurements and thus obtain a variation of the free energy along a surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.W. Zwanzig, NonequilibriumStatistical Mechanics (Oxford University Press, New York, 2001)

    Google Scholar 

  2. C.M. Mate, G.M. McClelland, R. Erlandsson, S.Chiang, Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett. 59, 1942–1945 (1987)

    Google Scholar 

  3. T. Bouhacina, J.P. Aimé, S. Gauthier, D. Michel, V. Heroguez Tribological behavior of a polymer grafted on silanized silica probed with a nanotip. Phys. Rev. B 56, 7694–7703 (1997)

    Google Scholar 

  4. E. Gnecco, R. Bennewitz, T. Gyalog, C. Loppacher, M. Bammerlin, E. Meyer, H.-J. Güntherodt, Velocity dependence of atomic friction. Phys. Rev. Lett. 84, 1172–1175 (2000)

    Google Scholar 

  5. D. Tománek, W. Zhong, H. Thomas Calculation of an atomically modulated friction force in atomic-force microscopy. Europhys. Lett. 15, 887–892 (1991)

    Google Scholar 

  6. T. Gyalog, M. Bammerlin, R. Lüthi, E. Meyer, H. Thomas, Mechanism of atomic friction. Europhys. Lett. 31, 269–274 (1995)

    Google Scholar 

  7. T. Gyalog, H. Thomas Atomic friction Z. Phys. B 104, 669–674 (1997)

    Google Scholar 

  8. J.S. Helman, W. Baltensperger, J.A. Holyst Simple model for dry friction Phys. Rev. B 49, 3831–3838 (1994)

    Google Scholar 

  9. H. Hölscher, U.D. Schwarz, R. Wiesendanger Simulation of a scanned tip on a NaF(001) surface in friction force microscopy. Europhys. Lett. 36, 19–24 (1996)

    Google Scholar 

  10. O. Zwörner, H. Hölscher, U.D. Schwarz, R. Wiesendanger The velocity dependence of frictional forces in point contact friction Appl. Phys. A66, S263 (1998)

    Google Scholar 

  11. G.A. Tomlinson A molecular theory of friction Philos. Mag., Ser. 7, 905–939 (1929)

    Google Scholar 

  12. M. Rief, F. Oesterhelt, B. Heymann, H.E. Gaub Single molecule force spectroscopy on polysaccharides by atomic force microscopy Science 275, 1295–1297(1997)

    Google Scholar 

  13. M. Rief, J.M. Fernandez, H. Gaub, Elastically coupled two-level systems as a model for biopolymer extensibility. Phys. Rev. Lett. 81, 4764–4767 (1998)

    Google Scholar 

  14. R. Merkel, P. Nassoy, A. Leung, K. Ritchie, E. Evans, Energy landscapes of receptor–ligand bonds explored with dynamic force spectroscopy. Nature 397, 50–53 (1999)

    Google Scholar 

  15. J. Liphardt, S. Dumont, S. B. Smith, I. Tinoco Jr, C. Bustamante, Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski’s equality. Science 296, 1832–1835 (2002)

    Google Scholar 

  16. M.T. Woodside, P.C. Anthony, W.M. Behnke-Parks, K. Larizadeh, D. Herschlag, S.M. Block Direct measurement of the full, sequence-dependent folding landscape of a nucleic acid Science 314, 1001–1004 (2006)

    Google Scholar 

  17. E.L. Florin, V.T. Moy, H.E. Gaub Adhesion forces between individual ligand-receptor pairs Science 264 415–417 (1994)

    Google Scholar 

  18. R. Nevo, C. Stroh, F. Keinberger, D. Kaftan, V. Brumfeld, M. Elbaum, Z. Reich, P. Hinterdorfer, A molecular switch between alternative conformational states in the complex of Ran and importin β1. Nat. Struct. Biol. 10, 553–557 (2003)

    Google Scholar 

  19. F. Oesterhelt, D. Oesterhelt, M. Pfeiffer, A. Engel, H.E. Gaub, D.J. Muller Unfolding pathways of individual bacteriorhodopsins Science 288, 143–146 (2000)

    Google Scholar 

  20. J. Brujic, Z.R.I. Hermans, K.A. Walter, J.M. Fernandez Single-molecule force spectroscopy reveals signatures of glassy dynamics in the energy landscape of ubiquitin Nat Phys 2 282–286 (2006)

    Google Scholar 

  21. Y. Cui, C. Bustamante, Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure. Proc. Natl. Acad. Sci. U S A 97, 127–132 (2000)

    Google Scholar 

  22. M. Manosas, F. Ritort, Thermodynamic and kinetic aspects of RNA pulling experiments. Biophys. J. 88, 3224–3242 (2005)

    Google Scholar 

  23. O.K. Dudko, A.E. Filippov, J. Klafter, M. Urbakh, Dynamic force spectroscopy: a Fokker-Planck approach. Chem. Phys. Lett. 352, 499–504 (2002)

    Google Scholar 

  24. M.H. Muser, M. Urbakh, M.O. Robbins, Statistical mechanics of static and low-velocity kinetic friction. Adv. Chem. Phys. 126, 187–272 (2003)

    Google Scholar 

  25. M. Urbakh, J. Klafter, D. Gourdon, J. Israelachvili, The nonlinear nature of friction. Nature 430, 525–528 (2004)

    Google Scholar 

  26. C. Jarzynski, Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690–2693 (1997)

    Google Scholar 

  27. C. Jarzynski, Equilibrium free-energy differences from nonequilibrium measurements: a master-equation approach. Phys. Rev. E. 56, 5018–5035 (1997)

    Google Scholar 

  28. G. Hummer, A. Szabo Free energy reconstruction from nonequilibrium single-molecule pulling experiments Proc. Natl. Acad. Sci. U S A 98, 3658–3661 (2001)

    Google Scholar 

  29. N.C. Harris, Y. Song, C.H. Kiang, Experimental free energy surface reconstruction from single-molecule force spectroscopy using Jarzynski’s equality. Phys. Rev. Lett. 99, 068101/1-4 (2007)

    Google Scholar 

  30. H.J. Kreuzer, S.H. Payne, L. Livadaru, Stretching a macromolecule in an atomic force microscope: statistical mechanical analysis. Biophys. J. 80, 2505–2514 (2001)

    Google Scholar 

  31. O. Braun, A. Hanke, U. Seifert, Probing molecular free energy landscapes by periodic loading. Phys. Rev. Lett. 93, 158105/1-4 (2004)

    Google Scholar 

  32. S. Park, K. Schulten, Calculating potentials of mean force from steered molecular dynamics simulations. J. Chem. Phys. 120, 5946–5961 (2004)

    Google Scholar 

  33. D.D.L. Minh, Free-energy reconstruction from experiments performed under different biasing programs. Phys. Rev. Lett. E. 74, 061120/1-4 (2006)

    Google Scholar 

  34. A. Imparato, L. Peliti, Evaluation of free energy landscapes from manipulation experiments. J. Stat. Mech., P03005 (2006)

    Google Scholar 

  35. J. Preiner, H. Janovjak, C. Rankl, H. Knaus, D.A. Cisneros, A. Kedrov, F. Kienberger, D.J. Muller, P. Hinterdorfer, Free energy of membrane protein unfolding derived from single-molecule force measurements. Biophys. J. 93, 930–937 (2007)

    Google Scholar 

  36. O.K. Dudko, A.E. Filippov, J. Klafter, M. Urbakh, Beyond the conventional description of dynamic force spectroscopy of adhesion bonds. Proc. Natl. Acad. Sci. USA 100, 11378–11381 (2003)

    Google Scholar 

  37. E. Gnecco, R. Bennewitz, A. Socoliuc, E. Meyer Friction and wear on the atomic scale Wear 254, 859–862 (2003)

    Google Scholar 

  38. R.W. Zwanzig, High-temperature equation of state by a perturbation method. i. nonpolar gases. J. Chem. Phys. 22, 1420–1426 (1954)

    Google Scholar 

  39. G. Hummer, Fast-growth thermodynamic integration: error and efficiency analysis. J. Chem. Phys. 114, 7330–7337 (2001)

    Google Scholar 

  40. C. Jarzynski, Rare events and the convergence of exponentially averaged work values, Phys. Rev. E. 73, 046105/1-10 (2006)

    Google Scholar 

  41. R. Berkovich, J. Klafter, M. Urbakh, Analyzing friction forces with the Jarzynski equality. J. Phys.: Condens. Matter 20, 345008/1-7 (2008)

    Google Scholar 

  42. A.B. Adib, D.D.L. Minh, Optimized free energies from bidirectional single-molecule force spectroscopy. Phys. Rev. Lett. 100, 180602/1-4 (2008)

    Google Scholar 

  43. A. Socoliuc, R. Bennewitz, E. Gnecco, E. Meyer, Transition from stick-slip to continuous sliding in atomic friction: entering a new regime of ultralow friction. Phys. Rev. Lett. 92, 134301/1-4 (2004)

    Google Scholar 

  44. K. Pesz, B.J. Gabrys, S.J. Bartkiewicz, Analytical solution for the Feynman ratchet. Phys. Rev. Lett. E. 66, 061103/1-7 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berkovich, R., Klafter, J., Urbakh, M. (2012). Reconstruction of Energy Surfaces from Friction Force Microscopy Measurements with the Jarzynski Equality. In: Bhushan, B. (eds) Scanning Probe Microscopy in Nanoscience and Nanotechnology 3. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25414-7_12

Download citation

Publish with us

Policies and ethics