Skip to main content

Flüsse mit minimalen Kosten

  • Chapter
  • First Online:
Book cover Kombinatorische Optimierung

Part of the book series: Springer-Lehrbuch Masterclass ((MASTERCLASS))

  • 7188 Accesses

Zusammenfassung

In diesem Kapitel besprechen wir, wie man vorgeht, wenn zusätzlich die Kanten mit Kosten belegt sind. Zum Beispiel könnte man in der Anwendung des MAXIMUM-FLOW-PROBLEMS auf das JOB-ZUORDNUNGSPROBLEM (siehe Einführung in Kapitel 8) Kosten auf den Kanten einführen, um den Arbeitern verschiedene Gehälter zuzuordnen; das Ziel wäre dann, bis zu einem festgelegten Zeitpunkt und zu minimalen Gesamtkosten alle Jobs erledigt zu haben. Natürlich gibt es etliche weitere Anwendungen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.95
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arkin, E.M., Silverberg, E.B.: Scheduling jobs with fixed start and end times. Discrete Applied Mathematics 18, 1–8 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Armstrong, R.D., Jin, Z.: A new strongly polynomial dual network simplex algorithm. Mathematical Programming 78, 131–148 (1997)

    MathSciNet  MATH  Google Scholar 

  3. Busacker, R.G., Gowen, P.J.: A procedure for determining a family of minimum-cost network flow patterns. ORO Technical Paper 15. Operational Research Office, Johns Hopkins University, Baltimore (1961)

    Google Scholar 

  4. Cunningham, W.H.: A network simplex method. Mathematical Programming 11, 105–116 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dantzig, G.B.: Application of the simplex method to a transportation problem. In: T.C. Koopmans (Hrsg.) Activity Analysis and Production and Allocation, S. 359–373. Wiley, New York (1951)

    Google Scholar 

  6. Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for network flow problems. Journal of the ACM 19, 248–264 (1972)

    Article  MATH  Google Scholar 

  7. Fleischer, L., Skutella, M.: Quickest flows over time. SIAM Journal on Computing 36, 1600–1630 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ford, L.R., Fulkerson, D.R.: Constructing maximal dynamic flows from static flows. Operations Research 6, 419–433 (1958)

    Article  MathSciNet  Google Scholar 

  9. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton (1962)

    MATH  Google Scholar 

  10. Gale, D.: A theorem on flows in networks. Pacific Journal of Mathematics 7, 1073–1082 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goldberg, A.V., Tarjan, R.E.: Finding minimum-cost circulations by cancelling negative cycles. Journal of the ACM 36, 873–886 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goldberg, A.V., Tarjan, R.E.: Finding minimum-cost circulations by successive approximation. Mathematics of Operations Research 15, 430–466 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Grötschel, M., Lovász, L.: Combinatorial optimization. In: Graham, R.L., Grötschel, M., Lovász, L. (Hrsg.) Handbook of Combinatorics, Vol. 2. Elsevier, Amsterdam (1995)

    Google Scholar 

  14. Hassin, R.: The minimum cost flow problem: a unifying approach to dual algorithms and a new tree-search algorithm. Mathematical Programming 25, 228–239 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hitchcock, F.L.: The distribution of a product from several sources to numerous localities. Journal of Mathematical Physics 20, 224–230 (1941)

    MathSciNet  Google Scholar 

  16. Hoffman, A.J.: Some recent applications of the theory of linear inequalities to extremal combinatorial analysis. In: Bellman, R.E., Hall, M. (Hrsg.) Combinatorial Analysis, S. 113–128. AMS, Providence (1960)

    Chapter  Google Scholar 

  17. Hoppe, B., Tardos, É.: The quickest transshipment problem. Mathematics of Operations Research 25, 36–62 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Iri, M.: A new method for solving transportation-network problems. Journal of the Operations Research Society of Japan 3, 27–87 (1960)

    Google Scholar 

  19. Jewell, W.S.: Optimal flow through networks. Interim Technical Report 8, MIT (1958)

    Google Scholar 

  20. Karzanov, A.V., McCormick, S.T.: Polynomial methods for separable convex optimization in unimodular linear spaces with applications. SIAM Journal on Computing 26, 1245–1275 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Klein, M.: A primal method for minimum cost flows, with applications to the assignment and transportation problems. Management Science 14, 205–220 (1967)

    Article  MATH  Google Scholar 

  22. Klinz, B., Woeginger, G.J.: Minimum cost dynamic flows: the series-parallel case. Networks 43, 153–162 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Orden, A.: The transshipment problem. Management Science 2, 276–285 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ore, O.: Studies on directed graphs I. Annals of Mathematics 63, 383–406 (1956)

    Article  MathSciNet  Google Scholar 

  25. Orlin, J.B.: A faster strongly polynomial minimum cost flow algorithm. Operations Research 41, 338–350 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Orlin, J.B.: A polynomial time primal network simplex algorithm for minimum cost flows. Mathematical Programming 78, 109–129 (1997)

    MathSciNet  MATH  Google Scholar 

  27. Orlin, J.B., Plotkin, S.A., Tardos, É.: Polynomial dual network simplex algorithms. Mathematical Programming 60, 255–276 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. Plotkin, S.A., Tardos, É.: Improved dual network simplex. Proceedings of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms, S. 367–376 (1990)

    Google Scholar 

  29. Schulz, A.S., Weismantel, R., Ziegler, G.M.: 0/1-Integer Programming: optimization and augmentation are equivalent. In: Spirakis, P. (Hrsg.) Algorithms – ESA '95. LNCS, Bd. 979, S. 473–483. Springer, Berlin (1995)

    Google Scholar 

  30. Schulz, A.S., Weismantel, R.: The complexity of generic primal algorithms for solving general integer problems. Mathematics of Operations Research 27, 681–692 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tardos, É.: A strongly polynomial minimum cost circulation algorithm. Combinatorica 5, 247–255 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tolstoĭ, A.N.: Metody nakhozhdeniya naimen'shego summovogo kilometrazha pri planirovanii perevozok v prostanstve. In: Planirovanie Perevozok, Sbornik pervyĭ, Transpechat' NKPS, Moskow (1930), S. 23–55. (See Schrijver, A., On the history of the transportation and maximum flow problems, Mathematical Programming 91, 437–445 (2002))

    Google Scholar 

  33. Tomizawa, N.: On some techniques useful for solution of transportation network problems. Networks 1, 173–194 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  34. Vygen, J.: On dual minimum cost flow algorithms. Mathematical Methods of Operations Research 56, 101–126 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wagner, H.M.: On a class of capacitated transportation problems. Management Science 5, 304–318 (1959)

    Article  MathSciNet  MATH  Google Scholar 

Weiterführende Literatur

  1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows. Prentice-Hall, Englewood Cliffs (1993)

    MATH  Google Scholar 

  2. Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., Schrijver, A.: Combinatorial Optimization, Kap. 4. Wiley, New York (1998)

    MATH  Google Scholar 

  3. Goldberg, A.V., Tardos, É., Tarjan, R.E.: Network flow algorithms. In: Korte, B., Lovász, L., Prömel, H.J., Schrijver, A. (Hrsg.) Paths, Flows, and VLSI-Layout, S. 101–164. Springer, Berlin (1990)

    Google Scholar 

  4. Gondran, M., Minoux, M.: Graphs and Algorithms, Kap. 5. Wiley, Chichester (1984)

    MATH  Google Scholar 

  5. Jungnickel, D.: Graphs, Networks and Algorithms, 3. Aufl, Kap. 10, 11. Springer, Berlin (2007)

    Google Scholar 

  6. Lawler, E.L.: Combinatorial Optimization: Networks and Matroids, Kap. 4. Holt, Rinehart and Winston, New York (1976)

    MATH  Google Scholar 

  7. Ruhe, G.: Algorithmic Aspects of Flows in Networks. Kluwer Academic Publishers, Dordrecht (1991)

    Book  MATH  Google Scholar 

  8. Skutella, M.: An introduction to network flows over time. In: Cook, W.J., Lovász, L., Vygen, J. (Hrsg.) Research Trends in Combinatorial Optimization, S. 451–482. Springer, Berlin (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bernhard Korte or Jens Vygen .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Korte, B., Vygen, J. (2012). Flüsse mit minimalen Kosten. In: Kombinatorische Optimierung. Springer-Lehrbuch Masterclass. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25401-7_9

Download citation

Publish with us

Policies and ethics