Skip to main content

The Molecular Determination of a Bird’s Pattern

  • Chapter
  • First Online:
  • 699 Accesses

Abstract

When we contemplate a bird we only see the final product of an enormous succession of molecular interactions. From the fertilized egg to the adult organism millions of cell divisions take place, but a contrary phenomenon – programmed cell death – is equally necessary to give the final shape to every organ. Ceramids are among the molecules that are responsible for directing this program.

Equally well ordered is the growth of bird feathers and their replacement. Two well defined genes determine the growth of feathers, their differentiation and the time at which they are formed and discarded. Moreover hormones control their size, shape and colour. The chemical pigments in feathers do not have a random location, but are guided by proteins and other molecules, to their final destination on the bird’s body.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abzhanov A et al (2006) The calmodulin pathway and evolution of elongated beak morphology in Darwin’s finches. Nature 442:563–567

    Article  PubMed  CAS  Google Scholar 

  • Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281:1322–1326

    Article  PubMed  CAS  Google Scholar 

  • Bluhm CK (1988) Temporal patterns of pair formation and reproduction in annual cycles and associated endocrinology in waterfowl. In: Johnston RF (ed) Current ornithology, vol 5. Plenum Press, New York, pp 123–185

    Chapter  Google Scholar 

  • Burtt EH Jr et al (2010) Colourful parrot feathers resist bacterial degradation. Biol Lett 7:214–216

    Article  PubMed  Google Scholar 

  • Carrington C, Ambros V (2003) Role of microRNAs in plant and animal development. Science 301:336–338

    Article  PubMed  CAS  Google Scholar 

  • Chen PJ et al (1998) An exceptionally well-preserved theropod dinosaur from the Yixian formation of China. Nature 391:147–152

    Article  CAS  Google Scholar 

  • Doucet SM et al (2006) Iridescent plumage in satin bowerbirds: structure, mechanisms and nanostructural predictors of individual variation in colour. J Exp Biol 209(2):380–390

    Article  PubMed  Google Scholar 

  • Eckert R, Randall D (1978) Animal physiology. W.H. Freeman and Company, San Francisco

    Google Scholar 

  • Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516

    Article  PubMed  CAS  Google Scholar 

  • Gehring WJ et al (2009) Evolution of the Hox gene complex from an evolutionary ground state. Curr Top Dev Biol 88:35–61

    Article  PubMed  CAS  Google Scholar 

  • Gilbert SF (2000) Developmental biology. Sinauer Associates Publ., Sunderland

    Google Scholar 

  • Greenspan RJ et al (1994) Group report: how do genes set up behaviors? In: Greenspan RJ, Kyriacou CP (eds) Flexibility and constraint in behavioral systems. Wiley, Chichester, pp 65–80

    Google Scholar 

  • Ji Q et al (1998) Two feathered dinosaurs from northeast China. Nature 393:753–761

    Article  Google Scholar 

  • Kelsh RN et al (2009) Stripes and belly-spots – a review of pigment cell morphogenesis in vertebrates. Semin Cell Dev Biol 20:90–104

    Article  PubMed  CAS  Google Scholar 

  • Liang H et al (2003) Ceramides modulate programmed cell death in plants. Genes Dev 17:2636–2641

    Article  PubMed  CAS  Google Scholar 

  • Lind J et al (2010) Impaired predator evasion in the life history of birds: behavioral and physiological adaptations to reduced flight ability. In: Thompson CF (ed) Current ornithology, vol 17, pp 1–30

    Google Scholar 

  • McGraw KJ (2004) Multiple UV reflectance peaks in the iridescent neck feathers of pigeons. Naturwissenschaften 91(3):125–129

    Article  PubMed  CAS  Google Scholar 

  • Norell M et al (2002) Modern feathers on a non-avian dinosaur. Nature 416:36–37

    Article  PubMed  CAS  Google Scholar 

  • Plotkin HC, Odling-Smee FJ (1981) A multiple-level model of evolution and its implications for sociobiology. Behav Brain Sci 4:225–268

    Article  Google Scholar 

  • Pough FH et al (2005) Vertebrate life. Pearson Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Prum RO, Brush AH (2003) Which came first, the feather or the bird? Sci Am 60–69

    Google Scholar 

  • Prum RO, Torres RH (2003) A Fourier tool for the analysis of coherent light scattering by bio-optical nanostructures. Integr Comp Biol 43(4):591–602

    Article  PubMed  Google Scholar 

  • Rutz C et al (2010) The ecological significance of tool use in New Caledonian Crows. Science 329:1523–1526

    Article  PubMed  CAS  Google Scholar 

  • Shawkey MD et al (2006) Evolutionary transitions and mechanisms of matte and iridescent plumage coloration in grackles and allies (Icteridae). J R Soc Interf 3(11):777–786

    Article  Google Scholar 

  • Shen P et al (1995) An atlas of aromatase mRNA expression in the zebra finch brain. J Comp Neurol 360:172–184

    Article  PubMed  CAS  Google Scholar 

  • Stradi R et al (2001) The chemical structure of the pigments in Ara macao plumage. Comp Biochem Physiol B 130:57–63

    Article  PubMed  CAS  Google Scholar 

  • Sulston JE et al (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100:64–119

    Article  PubMed  CAS  Google Scholar 

  • Venter JC (2002) Whole-genome shotgun sequencing. In: Yudell M, DeSalle R (eds) The genomic revolution. Joseph Henry Press, Washington, DC, pp 48–63

    Google Scholar 

  • Xu X et al (1999) A therizinorsauroid dinosaur with integumentary structures from China. Nature 399:350–354

    Article  CAS  Google Scholar 

  • Yu M et al (2002) The morphogenesis of feathers. Nature 420:308–312

    Article  PubMed  CAS  Google Scholar 

  • Yu M et al (2004) The developmental biology of feather follicles. Int J Dev Biol 48:181–191

    Article  PubMed  CAS  Google Scholar 

  • Zhang F, Zhou Z (2000) A primitive enantiornithine bird and the origin of feathers. Science 290:1955–1959

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Lima-de-Faria .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lima-de-Faria, A. (2012). The Molecular Determination of a Bird’s Pattern. In: Molecular Geometry of Body Pattern in Birds. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25301-0_2

Download citation

Publish with us

Policies and ethics