Skip to main content

Hierarchical ECC-Based RFID Authentication Protocol

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((volume 7055))

Abstract

RFID (Radio Frequency Identification) technology enables readers to scan remote RFID tags, and label the objects and people to which they are attached. Current cryptographic authentication protocols deployed in heterogeneous environments are often not compatible, or reveal too much information to the RFID readers. To tackle this problem, we introduce the concept of RFID groups and propose a hierarchical RFID authentication protocol. By using this protocol, an RFID tag can tune its identification process to the type of reader it is communicating with. Only a subset of readers can learn the identity of a particular tag, while others can only acquire information on the group to which the tag belongs. Our protocol offers impersonation resistance and is narrow-strong privacy-preserving. Furthermore, we extend the concept to multiple level of subgroups, and demonstrate the feasibility of our proposed protocols for RFID tags.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avoine, G.: Adversarial Model for Radio Frequency Identification. In: Cryptology ePrint Archive, Report 2005/049 (2005), http://eprint.iacr.org/

  2. Bellare, M., Palacio, A.: GQ and Schnorr Identification Schemes: Proofs of Security against Impersonation under Active and Concurrent Attacks. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 162–177. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Brickell, E., Camenisch, J., Chen, L.: Direct Anonymous Attestation. In: Proceedings of the 11th ACM Conference on Computer and Communications Security (CCS 2004), pp. 132–145. ACM (2004)

    Google Scholar 

  4. Bringer, J., Chabanne, H.: Trusted-HB: A Low-Cost Version of HB  +  Secure Against Man-in-the-Middle Attacks. IEEE Transactions on Information Theory 54(9), 4339–4342 (2008)

    Article  MathSciNet  Google Scholar 

  5. Bringer, J., Chabanne, H., Dottax, E.: HB  + + : a Lightweight Authentication Protocol Secure against Some Attacks. In: Security, Privacy and Trust in Pervasive and Ubiquitous Computing (SecPerU 2006), pp. 28–33. IEEE Computer Society (2006)

    Google Scholar 

  6. Bringer, J., Chabanne, H., Icart, T.: Cryptanalysis of EC-RAC, a RFID Identification Protocol. In: Franklin, M., Hui, L., Wong, D. (eds.) CANS 2008. LNCS, vol. 5339, pp. 149–161. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Camenisch, J., Lysyanskaya, A.: Signature Schemes and Anonymous Credentials from Bilinear Maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004)

    Google Scholar 

  8. Chaum, D.: Security Without Identification: Transaction Systems to Make Big Brother Obsolete. Communications of the ACM 28(10), 1030–1044 (1985)

    Article  Google Scholar 

  9. Deursen, T., Radomirović, S.: Attacks on RFID Protocols. In: Cryptology ePrint Archive: Listing for 2008 (2008/310) (2008)

    Google Scholar 

  10. van Deursen, T., Radomirović, S.: EC-RAC: Enriching a Capacious RFID Attack Collection. In: Ors Yalcin, S.B. (ed.) RFIDSec 2010. LNCS, vol. 6370, pp. 75–90. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Fan, J., Hermans, J., Vercauteren, F.: On the Claimed Privacy of EC-RAC III. In: Ors Yalcin, S.B. (ed.) RFIDSec 2010. LNCS, vol. 6370, pp. 66–74. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Feldhofer, M., Dominikus, S., Wolkerstorfer, J.: Strong Authentication for RFID Systems Using the AES Algorithm. In: Joye, M., Quisquater, J.J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 357–370. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Frumkin, D., Shamir, A.: Un-Trusted-HB: Security Vulnerabilities of Trusted-HB. In: International Workshop on RFID Security (RFIDSEC 2009), pp. 62–71 (2009)

    Google Scholar 

  14. Garfinkel, S.L., Juels, A., Pappu, R.: RFID privacy: An overview of problems and proposed solutions. IEEE Security & Privacy 3(3), 34–43 (2005)

    Article  Google Scholar 

  15. Gilbert, H., Robshaw, M., Sibert, H.: An Active Attack Against HB  +  - a Provably Secure Lightweight Authentication Protocol. IET Electronic Letters 41(21), 1169–1170 (2005)

    Article  Google Scholar 

  16. Hein, D., Wolkerstorfer, J., Felber, N.: ECC Is Ready for RFID – A Proof in Silicon. In: Avanzi, R., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 401–413. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  17. Juels, A., Weis, S.: Defining Strong Privacy for RFID. In: Cryptology ePrint Archive, Report 2006/137 (2006), http://eprint.iacr.org/

  18. Juels, A., Weis, S.: Authenticating Pervasive Devices with Human Protocols. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 293–308. Springer, Heidelberg (2005)

    Google Scholar 

  19. Koblitz, N.: Elliptic Curve Cryptosystem. Math. Comp. 48, 203–209 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lee, Y.K., Batina, L., Singelée, D., Verbauwhede, I.: Low-Cost Untraceable Authentication Protocols for RFID (extended version). In: Wetzel, S., Rotaru, C.N., Stajano, F. (eds.) Proceedings of the 3rd ACM Conference on Wireless Network Security (WiSec 2010), pp. 55–64. ACM (2010)

    Google Scholar 

  21. Lee, Y.K., Batina, L., Verbauwhede, I.: Untraceable RFID Authentication Protocols: Revision of EC-RAC. In: IEEE International Conference on RFID, pp. 178–185. IEEE (2009)

    Google Scholar 

  22. Lee, Y.K., Sakiyama, K., Batina, L., Verbauwhede, I.: Elliptic Curve Based Security Processor for RFID. IEEE Transactions on Computer 57(11), 1514–1527 (2008)

    Article  MathSciNet  Google Scholar 

  23. Miller, V.: Use of Elliptic Curves in Cryptography. In: Williams, H. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

    Google Scholar 

  24. Ng, C.Y., Susilo, W., Mu, Y., Safavi-Naini, R.: RFID Privacy Models Revisited. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 251–266. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  25. Schnorr, C.-P.: Efficient Identification and Signatures for Smart Cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)

    Google Scholar 

  26. Vaudenay, S.: On Privacy Models for RFID. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 68–87. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Batina, L., Seys, S., Singelée, D., Verbauwhede, I. (2012). Hierarchical ECC-Based RFID Authentication Protocol. In: Juels, A., Paar, C. (eds) RFID. Security and Privacy. RFIDSec 2011. Lecture Notes in Computer Science, vol 7055. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25286-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25286-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25285-3

  • Online ISBN: 978-3-642-25286-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics