Skip to main content

Abstract

Safety pharmacology studies are defined as:

“Those studies that investigate the potential undesirable pharmacodynamic effects of a substance on physiological functions in relation to exposure in the therapeutic range and above.” (ICH S7A International Guidelines on Safety Pharmacology Studies; Anon 2001)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Further Reading

  • Aiba A, Nakao H (2007) Conditional mutant mice using tetracycline-controlled gene expression system in the brain. Neurosci Res 58:113–117

    Article  PubMed  CAS  Google Scholar 

  • Anon (2001) ICH S7A: safety pharmacology studies for human pharmaceuticals. Available at: http://www.ich.org/cache/compo/276-254-1.html

  • Anon (2009) ICH M3(R2): guidance on nonclinical safety studies for the conduct of human clinical trials and marketing authorization for pharmaceuticals. Available at: http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Multidisciplinary/M3_R2/Step4/M3_R2__Guideline.pdf

  • Bailey KR, Rustay NR, Crawley JN (2006) Behavioral phenotyping of transgenic and knockout mice: practical concerns and potential pitfalls. ILAR J 47:124–131

    Article  PubMed  CAS  Google Scholar 

  • Banfor PN, Mittelstadt S, Amberg W, Behl B, Kempf-Grote A, Lange U, Larsen M, Marsh K, Ochse M, Sydor J, Vogg B, King A (2011) Use of drug efflux transporter knockout mice to differentiate peripheral from centrally-mediated cardiovascular effects. J Pharmacol Toxicol Methods 64:e52

    Article  Google Scholar 

  • Bass AS, Vargas HM, Valentin J-P, Kinter LB, Hammond T, Wallis R, Siegl PKS, Yamamoto K (2011) Safety pharmacology in 2010 and beyond: survey of significant events of the past10 years and a roadmap to the immediate-, intermediate- and long-term future in recognition of the tenth anniversary of the safety pharmacology society. J Pharmacol Toxicol Methods 64:7–15

    Article  PubMed  CAS  Google Scholar 

  • Bolon B (2004) Genetically engineered animals in drug discovery and development: a maturing resource for toxicologic research. Basic Clin Pharmacol Toxicol 95:154–161

    PubMed  CAS  Google Scholar 

  • Chaible LM, Corat MA, Abdelhay E, Dagli ML (2010) Genetically modified animals for use in research and biotechnology. Genet Mol Res 9:1469–1482

    Article  PubMed  CAS  Google Scholar 

  • Chalfie M (2009) GFP: lighting up life. Proc Natl Acad Sci USA 106:10073–10080

    Article  PubMed  CAS  Google Scholar 

  • Cheng J, Ma X, Gonzalez FJ (2011) Pregnane X receptor- and CYP3A4-humanized mouse models and their applications. Br J Pharmacol 163:461–468

    Article  PubMed  CAS  Google Scholar 

  • Cheung C, Gonzalez FJ (2008) Humanized mouse lines and their application for prediction of human drug metabolism and toxicological risk assessment. J Pharmacol Exp Ther 327:288–299

    Article  PubMed  CAS  Google Scholar 

  • Crawley JN (2008) Behavioral phenotyping strategies for mutant mice. Neuron 57:809–818

    Article  PubMed  CAS  Google Scholar 

  • Forster R, Ancian P, Fredholm M, Simianer H, Whitelaw B, under the auspices of the Steering Group of the RETHINK Project (2010) The minipig as a platform for new technologies in toxicology. J Pharmacol Toxicol Meth 62:227–235

    Google Scholar 

  • Friedel RH, Wurst W, Wefers B, Kühn R (2011) Generating conditional knockout mice. Methods Mol Biol Transl Mouse Methods Protoc 693:205–231

    Article  CAS  Google Scholar 

  • Furth PA, St Onge L, Boger H, Gruss P, Gossen M, Kistner A, Bujard H, Hennighausen L (1994) Temporal control of gene expression in transgenic mice by a tetracycline-responsive promoter. Proc Natl Acad Sci USA 91:9302–9306

    Article  PubMed  CAS  Google Scholar 

  • Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, Jenkins SS, Wood A, Cui X, Meng X, Vincent A, Lam S, Michalkiewicz M, Schilling R, Foeckler J, Kalloway S, Weiler H, Menoret S, Anegon I, Davis GD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jacob HJ, Buelow R (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325:433

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez FJ (2007) Animal models for human risk assessment: the peroxisome proliferator-activated receptor alpha-humanized mouse. Nutr Rev 65:S2–S6

    Article  PubMed  Google Scholar 

  • Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA 89:5547–5551

    Article  PubMed  CAS  Google Scholar 

  • Gossen M, Bonin AL, Bujard H (1993) Control of gene activity in higher eukaryotic cells by prokaryotic regulatory elements. Trends Biochem Sci 18:471–475

    Article  PubMed  CAS  Google Scholar 

  • Hamlin RL, Kijtawornrat A (2008) Use of the rabbit with a failing heart to test for torsadogenicity. Pharmacol Ther 119:179–185

    Article  PubMed  CAS  Google Scholar 

  • Hassanain HH (2009a) Overexpression of Rac-D in the heart leads to cardiomyopathy: a novel model for drug study. J Pharmacol Toxicol Methods 60:256

    Google Scholar 

  • Hassanain HH (2009b) Overexpression of profilin 1 in blood vessels leads to vascular remodeling and hypertension: A novel model for drug study. J Pharmacol Toxicol Methods 60:256

    Google Scholar 

  • Jiang XL, Gonzalez FJ, Yu AM (2011) Drug-metabolizing enzyme, transporter, and nuclear receptor genetically modified mouse models. Drug Metab Rev 43:27–40

    Article  PubMed  CAS  Google Scholar 

  • Keller KA, Banks C (2006) Multidose general toxicology studies. In: Keller K, Jacobson-Kram D (eds) Toxicological testing handbook: principles, applications and data interpretation, 2nd edn. Taylor & Francis, New York, pp 149–184

    Google Scholar 

  • Kleiman A, Tuckermann JP (2007) Glucocorticoid receptor action in beneficial and side effects of steroid therapy: lessons from conditional knockout mice. Mol Cell Endocrinol 275:98–108

    Article  PubMed  CAS  Google Scholar 

  • Kramer K, Kinter L, Brockway BP, Voss HP, Remie R, Van Zutphen BL (2001) The use of radiotelemetry in small laboratory animals: recent advances. Contemp Top Lab Anim Sci 40:8–16

    PubMed  CAS  Google Scholar 

  • Lau J, Minett MS, Zhao J, Dennehy U, Wang F, Wood JN, Bogdanov YD (2011) Temporal control of gene deletion in sensory ganglia using a tamoxifen-inducible Advillin-Cre-ERT2 recombinase mouse. Mol Pain 7:100

    Article  PubMed  CAS  Google Scholar 

  • Lin JH (2008) Applications and limitations of genetically modified mouse models in drug discovery and development. Curr Drug Metab 9:419–438

    Article  PubMed  CAS  Google Scholar 

  • Moore AM, Borschel GH, Santosa KA, Flagg ER, Tong AY, Kasukurthi R, Newton P, Yan Y, Hunter DA, Johnson PJ, Mackinnon SE (2012) A transgenic rat expressing green fluorescent protein (GFP) in peripheral nerves provides a new hindlimb model for the study of nerve injury and regeneration. J Neurosci Methods 204:19–27

    Article  PubMed  CAS  Google Scholar 

  • Normile D (2010) Molecular genetics. One-two punch elevates rats to the knockout ranks. Science 329:892

    Article  PubMed  CAS  Google Scholar 

  • Odening KE, Kirk M, Lorvidhaya P, Brunner M, Hyder O, Centracchio J, Schofield L, Donahay T, Chaves L, Peng X, Zehender M, Koren G (2008) Transgenic LQT1 and LQT2 rabbits provide a new model for safety screening for IKr or IKs blocking propensity of drugs. J Pharmacol Toxicol Methods 58:148–149

    Article  Google Scholar 

  • Olson H, Betton G, Robinson D, Thomas K, Monro A, Kolaja G, Lilly P, Sanders J, Sipes G, Bracken W, Dorato M, Van Deun K, Smith P, Berger B, Heller A (2000) Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul Toxicol Pharmacol 32:56–67

    Article  PubMed  CAS  Google Scholar 

  • Redfern WS, Valentin J-P (2011) Trends in safety pharmacology: posters presented at the annual meetings of the safety pharmacology society 2001–2010. J Pharmacol Toxicol Methods 64:102–110

    Article  PubMed  CAS  Google Scholar 

  • Redfern WS, Wakefield ID (2006) Safety pharmacology. In: Keller K, Jacobson-Kram D (eds) Toxicological testing handbook: principles, applications and data interpretation, 2nd edn. Taylor & Francis, New York, pp 33–78

    Google Scholar 

  • Redfern WS, Wakefield ID, Prior H, Pollard CE, Hammond TG, Valentin J-P (2002) Safety pharmacology – a progressive approach. Fund Clin Pharmacol 16:161–173

    Article  CAS  Google Scholar 

  • Redfern WS, Waldron G, Winter MJ, Butler P, Holbrook M, Wallis R, Valentin J-P (2008) Zebrafish assays as early safety pharmacology screens: paradigm shift or red herring? J Pharmacol Toxicol Methods 58:110–117

    Article  PubMed  CAS  Google Scholar 

  • Remy S, Tesson L, Usal C, Menoret S, Bonnamain V, Nerriere-Daguin V, Rossignol J, Boyer C, Nguyen TH, Naveilhan P, Lescaudron L, Anegon I (2010) New lines of GFP transgenic rats relevant for regenerative medicine and gene therapy. Transgenic Res 19:745–763

    Article  PubMed  CAS  Google Scholar 

  • Rutten K, De Vry J, Bruckmann W, Tzschentke TM (2011) Pharmacological blockade or genetic knockout of the NOP receptor potentiates the rewarding effect of morphine in rats. Drug Alcohol Depen 114:253–256

    CAS  Google Scholar 

  • Seeliger MW, Beck SC, Pereyra-Munoz N, Dangel S, Tsai JY, Luhmann UF, van de Pavert SA, Wijnholds J, Samardzija M, Wenzel A, Zrenner E, Narfstrom K, Fahl E, Tanimoto N, Acar N, Tonagel F (2005) In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy. Vision Res 45:3512–3519

    Article  PubMed  Google Scholar 

  • Song R, Yang RF, Wu N, Su RB, Li J, Peng XQ, Li X, Gaal J, Xi ZX, Gardner EL (2012) YQA14: a novel dopamine D3 receptor antagonist that inhibits cocaine self-administration in rats and mice, but not in D3 receptor-knockout mice. Addict Biol 17:259–273

    Article  PubMed  CAS  Google Scholar 

  • Spergel DJ, Kruth U, Shimshek DR, Sprengel R, Seeburg PH (2001) Using reporter genes to label selected neuronal populations in transgenic mice for gene promoter, anatomical, and physiological studies. Prog Neurobiol 63:673–686

    Article  PubMed  CAS  Google Scholar 

  • Stanley LA, Horsburgh BC, Ross J, Scheer N, Wolf CR (2009) Drug transporters: gatekeepers controlling access of xenobiotics to the cellular interior. Drug Metab Rev 41:27–65

    Article  PubMed  CAS  Google Scholar 

  • Stark KL, Gross C, Richardson-Jones J, Zhuang X, Hen R (2007) A novel conditional knockout strategy applied to serotonin receptors. Handbook Exp Pharmacol 178:347–363

    Article  CAS  Google Scholar 

  • Strom SC, Davila J, Grompe M (2010) Chimeric mice with humanized liver: tools for the study of drug metabolism, excretion, and toxicity. Methods Mol Biol 640:491–509

    Article  PubMed  CAS  Google Scholar 

  • Sun H, Levesque P, Li D (2008) KCNA5-deficient mice do not have enhanced arrhythmia susceptibility. J Pharmacol Toxicol Methods 58:149

    Article  Google Scholar 

  • Tesson L, Cozzi J, Menoret S, Remy S, Usal C, Fraichard A, Anegon I (2005) Transgenic modifications of the rat genome. Transgenic Res 14:531–546

    Article  PubMed  CAS  Google Scholar 

  • Tesson L, Usal C, Menoret S, Leung E, Niles BJ, Remy S, Santiago Y, Vincent AI, Meng X, Zhang L, Gregory PD, Anegon I, Cost GJ (2011) Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol 29:695–696

    Article  PubMed  CAS  Google Scholar 

  • Tong C, Li P, Wu NL, Yan Y, Ying QL (2010) Production of p53 gene knockout rats by homologous recombination in embryonic stem cells. Nature 467(7312):211–213

    Article  PubMed  CAS  Google Scholar 

  • Törnell J, Snaith M (2002) Transgenic systems in drug discovery: from target identification to humanized mice. Drug Discov Today 7:461–470

    Article  PubMed  Google Scholar 

  • Ueta Y, Dayanithi G, Fujihara H (2011) Hypothalamic vasopressin response to stress and various physiological stimuli: visualization in transgenic animal models. Horm Behav 59:221–226

    Article  PubMed  CAS  Google Scholar 

  • Valentin J-P, Hammond TG (2008) Safety and secondary pharmacology: successes, threats, challenges and opportunities. J Pharmacol Toxicol Methods 58:77–87

    Article  PubMed  CAS  Google Scholar 

  • Valentin J-P, Bialecki R, Ewart L, Hammond TG, Leishmann D, Lindgren S, Martinez V, Pollard C, Redfern WS, Wallis R (2009) A framework to assess the translation of safety pharmacology data to humans. J Pharmacol Toxicol Methods 60:152–158

    Article  PubMed  CAS  Google Scholar 

  • Wolf CR, Henderson CJ (1998) Use of transgenic animals in understanding molecular mechanisms of toxicity. J Pharm Pharmacol 50:567–574

    Article  PubMed  CAS  Google Scholar 

  • Yorgason JG, Kalinec GM, Luxford WM, Warren FM, Kalinec F (2010) Acetaminophen ototoxicity after acetaminophen/hydrocodone abuse: evidence from two parallel in vitro mouse models. Otolaryngol Head Neck Surg 142:814–819

    Article  PubMed  Google Scholar 

  • Yoshizato K, Tateno C, Utoh R (2012) Mice with liver composed of human hepatocytes as an animal model for drug testing. Curr Drug Discov Technol 9:63–76

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Will S. Redfern .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Redfern, W.S., Valentin, JP. (2013). Transgenic Animals. In: Vogel, H.G., Maas, J., Hock, F.J., Mayer, D. (eds) Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25240-2_21

Download citation

Publish with us

Policies and ethics