Skip to main content

Producing Density and Crosswind Data from Satellite Dynamics Observations

  • Chapter
  • First Online:
Thermospheric Density and Wind Determination from Satellite Dynamics

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this chapter, the tools and models discussed in the previous chapters will be used to derive density and wind data sets from satellite dynamics observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bowman BR (2002) True satellite ballistic coefficient determination for HASDM. In: AIAA/AAS astrodynamics specialist conference and exhibit, 5–8 August 2002, Monterey, California, AIAA 2002–4887

    Google Scholar 

  2. Bowman BR, Moe K (2005) Drag coefficient variability at 175–500 km from the orbit decay analyses of spheres. In: AAS/AIAA astrodynamics specialist conference, 7–11 August 2005, Lake Tahoe, CA, AAS 05–257

    Google Scholar 

  3. Brouwer D (1959) Solution of the problem of artificial satellite theory without drag. Astron J 64(1274):378–397

    Article  Google Scholar 

  4. Bruinsma S, Tamagnan D, Biancale R (2004) Atmospheric densities derived from CHAMP/STAR accelerometer observations. Planet Space Sci 52(4):297–312. doi: 10.1016/ j.pss.2003.11.004

    Google Scholar 

  5. Bruinsma S, Biancale R (2003) Total densities derived from accelerometer data. J Spacecraft Rockets 40(2):230–236

    Article  Google Scholar 

  6. Bruinsma SL, Forbes JM (2007) Global observation of travelling atmospheric disturbances (TADs) in the thermosphere. Geophys Res Lett 34(L14103). doi: 10.1029/2007GL030243

  7. Bruinsma SL, Forbes JM (2008) Medium- to large-scale density variability as observed by CHAMP. Space Weather 6:S08002. doi: 10.1029/2008SW000411

  8. Bruinsma SL, Forbes JM (2009) Properties of traveling atmospheric disturbances (TADs) inferred from CHAMP accelerometer observations. Advan Space Res 43(3):369–376. doi: 10.1016/j.asr.2008.10.031

    Article  Google Scholar 

  9. Bruinsma SL, Forbes JM (2010) Anomalous behavior of the thermosphere during solar minimum observed by CHAMP and GRACE. J Geophys Res 115(A11323). doi: 10.1029/2010JA015605

  10. Burke WJ, Lin CS, Hagan MP, Huang CY, Weimer DR, Wise JO, Gentile LC, Marcos FA (2009) Storm time global thermosphere: a driven-dissipative thermodynamic system. J Geophys Res 114(A06306) doi: 10.1029/2008JA013848

  11. Case K, Kruizinga GLH, Wu SC (2004) GRACE level 1B data product user handbook. JPL D-22027

    Google Scholar 

  12. Cefola PJ, Nazarenko AI, Proulx RJ, Yurasov VS (2003) Atmospheric density correction using two line element sets as the observation data. In: AAS/AIAA astrodynamics specialists conference, 3–7 August 2003, Big Sky, Montana, AAS 03–626

    Google Scholar 

  13. Doornbos E, Scharroo R, Klinkrad H, Zandbergen R, Fritsche B (2002) Improved modelling of surface forces in the orbit determination of ERS and Envisat. Can J Remote Sens 28(4):535–543

    Article  Google Scholar 

  14. Doornbos E (2006) NRTDM final report—Near Real-Time Density Model (NRTDM)—ESOC contract 18576/04/D/HK(SC). Delft Institute for Earth-Oriented Space Research

    Google Scholar 

  15. Doornbos E, Klinkrad H, Scharroo R, Visser P (2007) Thermosphere density model calibration in the orbit determination and prediction of ERS-2 and Envisat. In: Lacoste H (ed) Envisat symposium 23–27 April 2007. Montreux, Switzerland, ESA SP-636

    Google Scholar 

  16. Doornbos E, Klinkrad H, Visser P (2008) Use of two-line element data for thermosphere neutral density model calibration. Advan Space Res 41(7):1115–1122. doi: 10.1016/j.asr.2006.12.025

    Article  Google Scholar 

  17. Doornbos E, Förster M, Fritsche B, Helleputte T van, IJssel J van den, Koppenwallner G, Lühr H, Rees D, Visser P (2009) ESTEC contract 21022/07/NL/HE Air density models derived from multi-satellite drag observations—final report. DEOS / TU Delft scientific report 01/2009, TU Delft

    Google Scholar 

  18. Doornbos E, Van den IJsse J, Lühr H, Förster M, Koppenwallner G (2010) Neutral density and crosswind determination from arbitrarily oriented multiaxis accelerometers on satellites. J Spacecraft Rockets 47(4):580–589. doi: 10.2514/1.48114

    Article  Google Scholar 

  19. Drob DP, Emmert JT, Crowley G, Picone JM, Shepherd GG, Skinner W, Hays P, Niciejewski RJ, Larsen M, She CY, Meriwether JW, Hernandez G, Jarvis MJ, Sipler DP, Tepley CA, O’Brien MS, Bowman JR, Wu Q, Murayama Y, Kawamura S, Reid IM, Vincent RA (2008) An empirical model of the earth’s horizontal wind fields: HWM07. J Geophys Res 113(A12304). doi: 10.1029/2008JA013668

  20. Emmert JT (2009) A long-term data set of globally averaged thermospheric total mass density. J Geophys Res 114(A06315). doi: 10.1029/2009JA014102

  21. Emmert JT, Picone JM (2010) Climatology of globally averaged thermospheric mass density. J Geophys Res 115(A09326). doi: 10.1029/2010JA015298

  22. Emmert JT, Picone JM, Lean JL, Knowles SH (2004) Global change in the thermosphere: Compelling evidence of a secular decrease in density. J Geophy Res 109(A2):A02301. doi: 10.1029/2003JA010176

    Google Scholar 

  23. Emmert JT, Meier RR, Picone JM, Lean JL, Christensen AB (2006) Thermospheric density 2002–2004: TIMED/GUVI dayside limb observations and satellite drag. J Geophys Res 111(A10S16). doi: 10.1029/2005JA011495

  24. Emmert JT, Picone JM, Meier RR (2008) Thermospheric global average density trends, 1967–2007, derived from orbits of 5,000 near-earth objects. Geophys Res Lett 35(L05101). doi: 10.1029/2007GL032809

  25. Flury J, Bettadpur S, Tapley BD (2008) Precise accelerometry onboard the GRACE gravity field satellite mission. Advan Space Res 42(8):1414–1423. doi: 10.1016/j.asr.2008.05.004

    Article  Google Scholar 

  26. Forbes JM, Lu G, Bruinsma S, Nerem S, Zhang X (2005) Thermosphere density variations due to the 15–24 April 2002 solar events from CHAMP/STAR accelerometer measurements. J Geophys Res 110(A12S27). doi: 10.1029/2004JA010856

  27. Forbes JM, Bruinsma SL, Miyoshi Y, Fujiwara H (2008) A solar terminator wave in thermosphere neutral densities measured by the CHAMP satellite. Geophys Res Lett 35(L14802). doi: 10.1029/2008GL034075

  28. Forbes JM, Bruinsma SL, Zhang X, Oberheide J (2009) Surface-exosphere coupling due to thermal tides. Geophys Res Lett 36(L15812). doi: 10.1029/2009GL038748

  29. Förste Ch (2002) Format description: The CHAMP data format. CH-GFZ-FD-001

    Google Scholar 

  30. Förster M, Rentz S, Köhler W, Liu H, Haaland SE (2008) IMF dependence of high-latitude thermospheric wind pattern derived from CHAMP cross-track measurements. Ann Geophys 26(6):1581–1595

    Article  Google Scholar 

  31. Förster M, Doornbos E, Van Helleputte T , Haaland SE, Rentz S, Lühr H (2009) Magnetic forcing of the high-latitude upper atmosphere. In: Proceedings of ESA’s second swarm international science meeting, 24–26 June 2009, Potsdam, Germany

    Google Scholar 

  32. Guo J, Wan W, Forbes JM, Sutton E, Nerem RS, Woods TN, Bruinsma S, Liu L (2007) Effects of solar variability on thermosphere density from CHAMP accelerometer data. J Geophys Res 112(A10308). doi: 10.1029/2007JA012409

  33. Häusler K, Lühr H (2009) Nonmigrating tidal signals in the upper thermospheric zonal wind at equatorial latitudes as observed by CHAMP. Ann Geophys 27(6):2643–2652

    Article  Google Scholar 

  34. Häusler K, Lühr H, Rentz S, Köhler W (2007) A statistical analysis of longitudinal dependencies of upper thermospheric zonal winds at dip equator latitudes derived from CHAMP. J Atmos Solar-Terr Phys 69(12):1419–1430. doi: 10.1016/j.jastp.2007.04.004

    Article  Google Scholar 

  35. Helleputte T. van, Doornbos E, Visser P (2009) CHAMP and GRACE accelerometer calibration by GPS-based orbit determination. Advan Space Res 43(12):1890–1896. doi: 10.1016/ j.asr.2009.02.017

    Google Scholar 

  36. Hoots FR, Roehrich RL (1980) Spacetrack report no. 3: models for propagation of NORAD element sets. Aerospace Defense Center Peterson Air Force Base. Obtained from http://www.celestrak.com/

  37. van den IJssel J, Visser P (2005) Determination of non-gravitational accelerations from GPS satellite-to-satellite tracking of CHAMP. Advan Space Res 36(3):418–423. doi: 10.1016/ j.asr.2005.01.107

  38. van den IJssel J, Visser P (2007) Performance of GPS-based accelerometry: CHAMP and GRACE. Advan Space Res 39(10):1597–1603. doi: 10.1016/j.asr.2006.12.027

    Article  Google Scholar 

  39. van den IJssel J, Visser P (2010) Performance of gps-based accelerometry: a simulation experimen. Advan Space Res 45(2):225–238. doi: 10.1016/j.asr.2009.09.012

    Article  Google Scholar 

  40. Keating GM, Tolson RH, Bradford MS (2000) Evidence of long term global decline in the earth’s thermospheric densities apparently related to anthropogenic effects. Geophys Res Lett 27(10):1523–1526

    Article  Google Scholar 

  41. King-Hele D (1987) Satellite orbits in an atmosphere, theory and applications. Blackie, Glasgow

    Google Scholar 

  42. König R, Michalak G, Neumayer KH, Schmidt R, Zhu SY, Meixner H, Reigber C (2005) Recent developments in CHAMP orbit determination at GFZ. In: Earth observation with CHAMP, results from three years in orbit. pp 65–70

    Google Scholar 

  43. Lane MH, Cranford KH (1969) An improved analytical drag theory for the artificial satellite problem. In: Astrodynamics conference, 20–22 August 1969 AIAA. Princeton, NJ, number AIAA 69–925

    Google Scholar 

  44. Lathuillère C, Menvielle M (2010) Comparison of the observed and modeled low- to mid-latitude thermosphere response to magnetic activity: effects of solar cycle and disturbance time delay. Advan Space Res 45(9):1093–1100. doi: 10.1016/j.asr.2009.08.016

    Article  Google Scholar 

  45. Lathuillère C, Menvielle M, Marchaudon A, Bruinsma S (2008) A statistical study of the observed and modeled global thermosphere response to magnetic activity at middle and low latitudes. J Geophys Res 113(A07311). doi: 10.1029/2007JA012991

  46. Lean JL, Picone JM, Emmert JT, Moore G (2006) Thermospheric densities derived from spacecraft orbits: application to the Starshine satellites. J Geophys Res 111(A04301). doi: 10.1029/2005JA011399

  47. Lei J, Thayer JP, Forbes JM, Sutton EK, Nerem RS, Temmer M, Veronig AM (2008) Global thermospheric density variations caused by high-speed solar wind streams during the declining phase of solar cycle 23. J Geophys Res 113(A11303). doi: 10.1029/2008JA013433

  48. Liu H, Lühr H (2005) Strong disturbances of the upper thermospheric density due to magnetic storms: CHAMP observations. J Geophys Res 110(A09829). doi: 10.1029/2004JA010908

  49. Liu H, Lühr H, Henize V, Köhler W (2005) Global distribution of the thermospheric total mass density derived from CHAMP. J Geophys Res 110(A04301) doi: 10.1029/2004JA010741

  50. Liu H, Lühr H, Watanabe S, Köhler W, Henize V, Visser P (2006) Zonal winds in the equatorial upper thermosphere: decomposing the solar flux, geomagnetic activity, and seasonal dependencies. J Geophys Res 111(A07307). doi: 10.1029/2005JA011415

  51. Liu H, Lühr H, Watanabe S (2007a) Climatology of the equatorial thermospheric mass density anomaly. J Geophys Res 112(A05305). doi: 10.1029/2006JA012199

  52. Liu H, Lühr H, Watanabe S, Köhler W, Manoj C (2007b) Contrasting behavior of the thermosphere and ionosphere in response to the 28 Oct 2003 solar flare. J Geophys Res 112(A077305), doi: /10.1029/2007JA012313

    Google Scholar 

  53. Liu H, Lühr H, Watanabe S (2009) A solar terminator wave in thermospheric wind and density simultaneously observed by CHAMP. Geophys Res Lett 36(L10109). doi: 10.1029/2009GL038165

  54. Liu R, Lühr H, Doornbos E, Ma S-Y (2010) Thermospheric mass density variations during geomagnetic storms and a predicition model based on the merging electric field. Ann Geophys 28:1633–1645. doi: 10.5194/angeo-28-1633-2010

    Article  Google Scholar 

  55. Lühr H, Rother M, Köhler W, Ritter P, Grunwaldt L (2004) Thermospheric upwelling in the cusp region: evidence from CHAMP observations. Geophys Res Lett 31(6) doi: 10.1029/2003GL019314

  56. Lühr H., Rentz S., Ritter P., Liu H., Häusler K (2007a) Average thermospheric wind pattern over the polar regions, as observed by CHAMP. Ann Geophys 25(5):1093–1101

    Article  Google Scholar 

  57. Lühr H, Häusler K, Stolle C (2007b) Longitudinal variation of F region electron density and thermospheric zonal wind caused by atmospheric tides. Geophys Res Lett 34(L16102). doi: 10.1029/2007GL030639

  58. Ma R, Xu J, Wang W, Lei J, Liu H-L, Maute A, Hagan ME (2010) Variations of the nighttime thermospheric mass density at low and middle latitudes. J Geophys Res 115(A12301). doi: 10.1029/2010JA015784

  59. Marcos FA, Forbes JM (1985) Thermospheric winds from the satellite electrostatic triaxial accelerometer system. J Geophys Res 90:6543–6552

    Article  Google Scholar 

  60. McCarthy DD, Petit G (2003) IERS conventions (2003). IERS technical note, no. 32. International Earth Rotation and Reference Systems Service (IERS)

    Google Scholar 

  61. Menvielle M, Lathuillère C, Bruinsma S, Viereck R (2007) A new method for studying the thermospheric density variability derived from CHAMP/STAR accelerometer data for magnetically active conditions. Ann Geophys 25:1949–1958

    Article  Google Scholar 

  62. Miyoshi Y, Fujiwara H, Forbes JM, Bruinsma SL (2009) Solar terminator wave and its relation to the atmospheric tide. J Geophys Res 114(A07303). doi: 10.1029/2009JA014110

  63. Montenbruck O, Gill E (2000) Satellite orbits models, methods and applications. Springer, Berlin

    Book  Google Scholar 

  64. Müller S, Lühr H, Rentz S (2009) Solar and magnetospheric forcing of the low latitude thermospheric mass density as observed by CHAMP. Ann Geophys 27(5):2087–2099

    Article  Google Scholar 

  65. Oberheide J, Forbes JM, Häusler K, Wu Q, Bruinsma SL (2009) Tropospheric tides from 80 to 400 km: propogation, interannual variability, and solar cycle effects. J Geophys Res 114(D00I05). doi: 10.1029/2009JD012388

  66. Pardini C, Anselmo L (1994) SATRAP: satellite reentry analysis program. Internal Report C94-17, Istituto CNUCE, CNR, Pisa, 30 Agosto 1994

    Google Scholar 

  67. Pardini C, Anselmo L, Moe K, Moe MM (2010) Drag and energy accommodation coefficients during sunspot maximum. Advan Space Res 45(5):638–650. doi: 10.1016/j.asr.2009.08.034

    Article  Google Scholar 

  68. Perosanz R (2003) On board evaluation of the STAR accelerometer. In: Christoph R et al.(eds) First CHAMP mission results for gravity magnetic and atmospheric studies, Springer, Berlin, pp 11–18

    Chapter  Google Scholar 

  69. Picone JM, Hedin AE, Drob DP, Aikin AC (2002) NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J Geophys Res 107(A12). doi: 10.1029/2002JA009430

  70. Picone JM, Emmert JT, Lean J (2005) Thermospheric densities derived from spacecraft orbits-I. Accurate processing of two-line element sets. J Geophys Res 110(A03301). doi: 10.1029/2004JA010585

  71. Pilinski MD, Argrow BM, Palo SE (2011) Drag coefficients of satellites with concave geometries: comparing models and observations. J Spacecraft Rockets 48(2):312–324

    Article  Google Scholar 

  72. Rentz S, Lühr H (2008) Climatology of the cusp-related thermospheric mass density anomaly, as derived from CHAMP observations. Ann Geophys 26(9):2807–2823

    Article  Google Scholar 

  73. Ritter P, Lühr H, Doornbos E (2010) Substorm-related thermospheric density and wind disturbances derived from CHAMP observations. Ann Geophys 28:1207–1220. doi: 10.5194/angeo-28-1207-2010

    Article  Google Scholar 

  74. Sutton EK, Forbes JM, Nerem RS (2005) Global thermospheric neutral density and wind response to the severe 2003 geomagnetic storms from CHAMP accelerometer data. J Geophys Res 110(A09S40). doi: 10.1029/2004JA010985

  75. Sutton EK, Forbes JM, Knipp DJ (2009) Rapid response of the thermosphere to variations in joule heating. J Geophys Res 114(A04319). doi: 10.1029/2008JA013667

  76. Sutton EK, Nerem RS, Forbes JM (2007) Density and winds in the thermosphere deduced from accelerometer data. J Spacecraft Rockets 44(6):1210–1219. doi: 10.2514/1.28641

    Article  Google Scholar 

  77. Tapley BD, Schutz BE, Born GH (2004) Statistical orbit determination. Elsevier Academic, New York

    Google Scholar 

  78. Tapley BD, Ries JC, Bettadpur S, Cheng M (2007) Neutral density measurements from the gravity recovery and climate experiment accelerometers. J Spacecraft Rockets 6(44):1220–1225. doi: 10.2514/1.28843

    Article  Google Scholar 

  79. Touboul P, Foulon B, Rodrigues M, Marque JP (2004) In orbit nano-g measurements, lessons for future space missions. Aerosp Sci Technol (8):431–441

    Article  Google Scholar 

  80. Vallado DA (2001) Fundamentals of astrodynamics and applications, 2nd edn. Microcosm Press, El Segundo

    Google Scholar 

  81. Vallado DA, Crawford P (2008) SGP4 orbit determination. In: 2008 AIAA/AAS astrodynamics specialist conference

    Google Scholar 

  82. Vallado DA, Crawford P, Hujsak R, Kelso TS (2006) Revisiting spacetrack report \(\sharp 3.\) In: AIAA astrodynamics specialists conference and exhibit, AIAA 2006–6753

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Doornbos, E. (2012). Producing Density and Crosswind Data from Satellite Dynamics Observations. In: Thermospheric Density and Wind Determination from Satellite Dynamics. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25129-0_4

Download citation

Publish with us

Policies and ethics