Skip to main content

Analysis of Self-Heating Effects in Sub-Micron Silicon Devices with Electrothermal Monte Carlo Simulations

  • Conference paper
  • First Online:
  • 1629 Accesses

Part of the book series: Mathematics in Industry ((TECMI,volume 17))

Abstract

In order to investigate the role of self-heating effects on the electrical characteristics of sub-micron devices, we have implemented a Monte Carlo device simulator that includes the self-consistent solution of the heat transport equation, obtained in the framework of Extended Irreversible Thermodynamics. The lattice temperature is fed back into the electron transport solver through temperature-dependent scattering tables. Simulation results for a n +nn + diode are shown.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wachutka, G.K.: Rigorous thermodynamic treatment of heat generation and conduction in semiconductor device modeling. IEEE Trans. CAD 9(11), 1141–1149 (1990)

    Google Scholar 

  2. Pop, E., Sinha, S., Goodson, K.: Heat generation and transport in nanometer scale transistors. Proc. IEEE 94(8), 1587–1601 (2006)

    Google Scholar 

  3. Sverdrup, P.G., Sinha, S., Asheghi, M., Uma, S., Goodson, K.E.: Measurement of ballistic phonon conduction near hotspots in silicon. Appl. Phys. Lett. 78(21), 3331–3333 (2001)

    Google Scholar 

  4. Jou, D., Casas-Vázquez, J., Lebon, G.: Extended Irreversible Thermodynamics. Springer, Berlin (2001)

    Google Scholar 

  5. Alvarez, F.X., Jou, D.: Memory and nonlocal effects in heat transport: from diffusive to ballistic regimes. Appl. Phys. Lett. 90, 083109 (2007)

    Google Scholar 

  6. Lai, J., Majumdar, A.: Concurrent thermal and electrical modeling of sub-micrometric silicon devices. J. Appl. Phys 79(9), 7353–7361 (1996)

    Google Scholar 

  7. Jacoboni, C., Reggiani, L.: The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev. Mod. Phys. 55(3), 645–705 (1983)

    Google Scholar 

  8. Rowlette, J.A., Goodson, K.E.: Fully coupled nonequilibrium electronphonon transport in nanometer-scale silicon FETs. IEEE Trans. Elec. Dev. 55, 220–232 (2008)

    Google Scholar 

  9. Sadi, T, Kelsall, R, Pilgrim, N.: Simulation of electron transport in InGaAs/AlGaAs HEMTs using an electrothermal Monte Carlo Method. IEEE Trans. Elec. Dev. 53, 1768–1774 (2006)

    Google Scholar 

  10. Raleva, K., Vasileska, D., Goodnick, S.M., Dzekov, T.: Modeling thermal effects in nano-devices., J. Comp. Electr. 8(3), 226–230 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orazio Muscato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Muscato, O., Di Stefano, V. (2012). Analysis of Self-Heating Effects in Sub-Micron Silicon Devices with Electrothermal Monte Carlo Simulations. In: Günther, M., Bartel, A., Brunk, M., Schöps, S., Striebel, M. (eds) Progress in Industrial Mathematics at ECMI 2010. Mathematics in Industry(), vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25100-9_8

Download citation

Publish with us

Policies and ethics