Skip to main content

Mechanisms of Thrombogenesis

  • Chapter
  • First Online:
Book cover Myeloproliferative Neoplasms

Part of the book series: Hematologic Malignancies ((HEMATOLOGIC))

Abstract

Thrombosis is a leading cause of morbidity and mortality in patients with polycythemia vera (PV) and essential thrombocythemia (ET). A number of mechanisms have been proposed to play a role in the pathogenesis of the acquired thrombophilic state in these diseases, including red blood cell, platelet, and leukocyte abnormalities. Published data demonstrate that neutrophil activation occurs in ET and PV patients in parallel with the appearance of laboratory signs of hemostatic system activation, suggesting an involvement of these cells in the pathogenesis of the thrombotic predisposition of these subjects. Recently, an increase in plasma procoagulant microparticles and the occurrence of an acquired activated protein C resistance have been identified as other two possible mechanisms of systemic hypercoagulability. The acquired point mutation in the pseudokinase domain of Janus kinase 2 (JAK2V617F) in these disorders is under evaluation as a risk factor for thrombosis. JAK2V617F is variably associated with thrombosis and, more consistently, with elevations in blood cell counts. A clear link appears to exist between leukocytosis, JAK2V617F, and the hemostatic system abnormalities underlying the activation of blood coagulation in patients with Bcl-negative myeloproliferative neoplasms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams BD et al (2010) Myeloproliferative disorders and the hyperviscosity syndrome. Hematol Oncol Clin North Am 24:585–602

    Article  PubMed  Google Scholar 

  • Afshar-Kharghan V, Thiagarajan P (2006) Leukocyte adhesion and thrombosis. Curr Opin Hematol 13:34–39

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Larran A et al (2004) Increased CD11b neutrophil expression in Budd-Chiari syndrome or portal vein thrombosis secondary to polycythaemia vera. Br J Haematol 124:329–335

    Article  PubMed  Google Scholar 

  • Alvarez-Larran A et al (2008) Increased platelet, leukocyte, and coagulation activation in primary myelofibrosis. Ann Hematol 87:269–276

    Article  PubMed  CAS  Google Scholar 

  • Arellano-Rodrigo E et al (2006) Increased platelet and leukocyte activation as contributing mechanisms for thrombosis in essential thrombocythemia and correlation with the JAK2 mutational status. Haematologica 91:169–175

    PubMed  CAS  Google Scholar 

  • Arellano-Rodrigo E et al (2009) Platelet turnover, coagulation factors, and soluble markers of platelet and endothelial activation in essential thrombocythemia: relationship with thrombosis occurrence and JAK2 V617F allele burden. Am J Hematol 84:102–108

    Article  PubMed  CAS  Google Scholar 

  • Baxter EJ et al (2005) Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365:1054–1061

    PubMed  CAS  Google Scholar 

  • Bucalossi A et al (1996) Reduction of antithrombin III, protein C, and protein S levels and activated protein C resistance in polycythemia vera and essential thrombocythemia patients with thrombosis. Am J Hematol 52:14–20

    Article  PubMed  CAS  Google Scholar 

  • Buss DH et al (1985) The incidence of thrombotic and hemorrhagic disorders in association with extreme thrombocytosis: an analysis of 129 cases. Am J Hematol 20:365–372

    Article  PubMed  CAS  Google Scholar 

  • Carobbio A et al (2007) Leukocytosis is a risk factor for thrombosis in essential thrombocythemia: interaction with treatment, standard risk factors, and Jak2 mutation status. Blood 109:2310–2313

    Article  PubMed  CAS  Google Scholar 

  • Carobbio A et al (2008) Leukocytosis and risk stratification assessment in essential thrombocythemia. J Clin Oncol 26:2732–2736

    Article  PubMed  CAS  Google Scholar 

  • Cervantes F et al (2006) Frequency and risk factors for thrombosis in idiopathic myelofibrosis: analysis in a series of 155 patients from a single institution. Leukemia 20:55–60

    Article  PubMed  CAS  Google Scholar 

  • Cortelazzo S et al (1995) Hydroxyurea for patients with essential thrombocythemia and a high risk of thrombosis. N Engl J Med 332:1132–1136

    Article  PubMed  CAS  Google Scholar 

  • De Stefano V et al (2010) Leukocytosis is a risk factor for recurrent arterial thrombosis in young patients with polycythemia vera and essential thrombocythemia. Am J Hematol 85:97–100

    PubMed  Google Scholar 

  • Duchemin J et al (2010) Increased circulating procoagulant activity and thrombin generation in patients with myeloproliferative neoplasms. Thromb Res 126:238–242

    Article  PubMed  CAS  Google Scholar 

  • Elliott MA, Tefferi A (2005) Thrombosis and haemorrhage in polycythaemia vera and essential thrombocythaemia. Br J Haematol 128:275–290

    Article  PubMed  CAS  Google Scholar 

  • Falanga A et al (1994) Hemostatic system activation in patients with lupus anticoagulant and essential thrombocythemia. Semin Thromb Hemost 20:324–327

    Article  PubMed  CAS  Google Scholar 

  • Falanga A et al (1999) Neutrophil activation and hemostatic changes in healthy donors receiving granulocyte colony-stimulating factor. Blood 93:2506–2514

    PubMed  CAS  Google Scholar 

  • Falanga A et al (2000) Polymorphonuclear leukocyte ­activation and hemostasis in patients with essential thrombocythemia and polycythemia vera. Blood 96:4261–4266

    PubMed  CAS  Google Scholar 

  • Falanga A et al (2005a) Pathogenesis of thrombosis in essential thrombocythemia and polycythemia vera: the role of neutrophils. Semin Hematol 42:239–247

    Article  PubMed  CAS  Google Scholar 

  • Falanga A et al (2005b) Leukocyte-platelet interaction in patients with essential thrombocythemia and polycythemia vera. Exp Hematol 33:523–530

    Article  PubMed  CAS  Google Scholar 

  • Falanga A et al (2007) V617F JAK-2 mutation in patients with essential thrombocythemia: relation to platelet, granulocyte, and plasma hemostatic and inflammatory molecules. Exp Hematol 35:702–711

    Article  PubMed  CAS  Google Scholar 

  • Finazzi G, Barbui T (2008) Evidence and expertise in the management of polycythemia vera and essential thrombocythemia. Leukemia 22:1494–1502

    Article  PubMed  CAS  Google Scholar 

  • Gangat N et al (2009) Leukocytosis at diagnosis and the risk of subsequent thrombosis in patients with low-risk essential thrombocythemia and polycythemia vera. Cancer 115:5740–5745

    Article  PubMed  Google Scholar 

  • Harrison CN (2005) Platelets and thrombosis in myeloproliferative diseases. Hematology Am Soc Hematol Educ Program 1:409–415

    Article  Google Scholar 

  • Harrison CN et al (2005) Hydroxyurea compared with anagrelide in high-risk essential thrombocythemia. N Engl J Med 353:33–45

    Article  PubMed  CAS  Google Scholar 

  • Huang PY, Hellums JD (1993) Aggregation and disaggregation kinetics of human blood platelets: Part I. Development and validation of a population balance method. Biophys J 65:334–343

    Article  PubMed  CAS  Google Scholar 

  • Jensen MK et al (2000) Increased platelet activation and abnormal membrane glycoprotein content and redistribution in myeloproliferative disorders. Br J Haematol 110:116–124

    Article  PubMed  CAS  Google Scholar 

  • Jensen MK et al (2001) Increased circulating platelet-leukocyte aggregates in myeloproliferative disorders is correlated to previous thrombosis, platelet activation and platelet count. Eur J Haematol 66:143–151

    Article  PubMed  CAS  Google Scholar 

  • Kralovics R et al (2005) A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 352:1779–1790

    Article  PubMed  CAS  Google Scholar 

  • Kubota Y et al (2004) Constitutively activated phosphatidylinositol 3-kinase primes platelets from patients with chronic myelogenous leukemia for thrombopoietin-induced aggregation. Leukemia 18:1127–1137

    Article  PubMed  CAS  Google Scholar 

  • Kwaan HC, Wang J (2003) Hyperviscosity in polycythemia vera and other red cell abnormalities. Semin Thromb Hemost 29:451–458

    Article  PubMed  Google Scholar 

  • Landolfi R et al (1992) Increased thromboxane biosynthesis in patients with polycythemia vera: evidence for aspirin-suppressible platelet activation in vivo. Blood 80:1965–1971

    PubMed  CAS  Google Scholar 

  • Landolfi R et al (1995) Bleeding and thrombosis in myeloproliferative disorders: mechanisms and treatment. Crit Rev Oncol Hematol 20:203–222

    Article  PubMed  CAS  Google Scholar 

  • Landolfi R et al (2004) Efficacy and safety of low-dose aspirin in polycythemia vera. N Engl J Med 350:114–124

    Article  PubMed  CAS  Google Scholar 

  • Landolfi R et al (2006) Thrombosis and bleeding in polycythemia vera and essential thrombocythemia: pathogenetic mechanisms and prevention. Best Pract Res Clin Haematol 19:617–633

    Article  PubMed  CAS  Google Scholar 

  • Landolfi R et al (2007) Leukocytosis as a major thrombotic risk factor in patients with polycythemia vera. Blood 109:2446–2452

    Article  PubMed  CAS  Google Scholar 

  • Levine RL et al (2005) Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7:387–397

    Article  PubMed  CAS  Google Scholar 

  • Lussana F et al (2009) Association of V617F Jak2 mutation with the risk of thrombosis among patients with essential thrombocythaemia or idiopathic myelofibrosis: a systematic review. Thromb Res 124:409–417

    Article  PubMed  CAS  Google Scholar 

  • Marchetti M, Falanga A (2008) Leukocytosis, JAK2V617F mutation, and hemostasis in myeloproliferative disorders. Pathophysiol Haemost Thromb 36:148–159

    Article  PubMed  Google Scholar 

  • Marchetti M et al (2008) Thrombin generation and activated protein C resistance in patients with essential thrombocythemia and polycythemia vera. Blood 112:4061–4068

    Article  PubMed  CAS  Google Scholar 

  • Michiels JJ et al (2006) Clinical and laboratory features, pathobiology of platelet-mediated thrombosis and bleeding complications, and the molecular etiology of essential thrombocythemia and polycythemia vera: therapeutic implications. Semin Thromb Hemost 32:174–207

    Article  PubMed  CAS  Google Scholar 

  • Palandri F et al (2011) Impact of leukocytosis on thrombotic risk and survival in 532 patients with essential thrombocythemia: a retrospective study. Ann Hematol 90:933–938

    Article  PubMed  Google Scholar 

  • Panova-Noeva M et al (2011) Platelet-induced thrombin generation by the calibrated automated thrombogram assay is increased in patients with essential thrombocythemia and polycythemia vera. Am J Hematol 86:337–342

    Article  PubMed  Google Scholar 

  • Pearson MJ, Lipowsky HH (2000) Influence of erythrocyte aggregation on leukocyte margination in postcapillary venules of rat mesentery. Am J Physiol Heart Circ Physiol 279:H1460–H1471

    PubMed  CAS  Google Scholar 

  • Pearson TC, Wetherley-Mein G (1978) Vascular occlusive episodes and venous haematocrit in primary proliferative polycythaemia. Lancet 2:1219–1222

    Article  PubMed  CAS  Google Scholar 

  • Posan E et al (1998) Reduced in vitro clot lysis and release of more active platelet PAI-1 in polycythemia vera and essential thrombocythemia. Thromb Res 90:51–56

    Article  PubMed  CAS  Google Scholar 

  • Rafail S et al (2008) Leptin induces the expression of functional tissue factor in human neutrophils and peripheral blood mononuclear cells through JAK2-dependent mechanisms and TNFalpha involvement. Thromb Res 122:366–375

    Article  PubMed  CAS  Google Scholar 

  • Robertson B et al (2007) Platelet and coagulation activation markers in myeloproliferative diseases: relationships with JAK2 V6I7 F status, clonality, and antiphospholipid antibodies. J Thromb Haemost 5:1679–1685

    Article  PubMed  CAS  Google Scholar 

  • Schafer AI (1984) Bleeding and thrombosis in the myeloproliferative disorders. Blood 64:1–12

    PubMed  CAS  Google Scholar 

  • Schafer AI (2004) Thrombocytosis. N Engl J Med 350:1211–1219

    Article  PubMed  CAS  Google Scholar 

  • Stuart MJ, Nagel RL (2004) Sickle-cell disease. Lancet 364:1343–1360

    Article  PubMed  Google Scholar 

  • Tefferi A (2011) Annual Clinical Updates in Hematological Malignancies: a continuing medical education series: polycythemia vera and essential thrombocythemia: 2011 update on diagnosis, risk-stratification, and management. Am J Hematol 86:292–301

    Article  PubMed  Google Scholar 

  • Thomas DJ et al (1977) Effect of haematocrit on cerebral blood-flow in man. Lancet 2:941–943

    Article  PubMed  CAS  Google Scholar 

  • Trappenburg MC et al (2009) Elevated procoagulant microparticles expressing endothelial and platelet markers in essential thrombocythemia. Haematologica 94:911–918

    Article  PubMed  CAS  Google Scholar 

  • Turitto VT, Weiss HJ (1980) Red blood cells: their dual role in thrombus formation. Science 207:541–543

    Article  PubMed  CAS  Google Scholar 

  • Turitto VT, Weiss HJ (1983) Platelet and red cell involvement in mural thrombogenesis. Ann N Y Acad Sci 416:363–376

    Article  PubMed  CAS  Google Scholar 

  • Villmow T et al (2002) Markers of platelet activation and platelet-leukocyte interaction in patients with myeloproliferative syndromes. Thromb Res 108:139–145

    Article  PubMed  CAS  Google Scholar 

  • Wieczorek I et al (1995) Low proteins C and S and activation of fibrinolysis in treated essential thrombocythemia. Am J Hematol 49:277–281

    Article  PubMed  CAS  Google Scholar 

  • Yedgar S et al (2002) The red blood cell in vascular occlusion. Pathophysiol Haemost Thromb 32:263–268

    Article  PubMed  CAS  Google Scholar 

  • Zhao R et al (2005) Identification of an acquired JAK2 mutation in polycythemia vera. J Biol Chem 280:22788–22792

    Article  PubMed  CAS  Google Scholar 

  • Zwicker JI et al (2009) Tumor-derived tissue factor-bearing microparticles are associated with venous thromboembolic events in malignancy. Clin Cancer Res 15:6830–6840

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Falanga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Falanga, A., Russo, L., Marchetti, M. (2012). Mechanisms of Thrombogenesis. In: Barbui, T., Tefferi, A. (eds) Myeloproliferative Neoplasms. Hematologic Malignancies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24989-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24989-1_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24988-4

  • Online ISBN: 978-3-642-24989-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics