Skip to main content

High-Contrast Grating VCSELs

  • Chapter
  • First Online:
VCSELs

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 166))

  • 5253 Accesses

Abstract

We review a recent invention of single-layer one-dimensional high-index-contrast subwavelength grating (HCG) and its incorporation into a VCSEL structure. The HCG is approximately 50 times thinner than a conventional distributed Bragg reflector (DBR), but offers higher reflectivity with a much broader spectral width. It provides lithographically defined control of polarization, transverse mode and emission wavelength. Using this ultrathin reflector, the tunable mirror in a micro-mechanical HCG-VCSELs are fabricated with a \(10^{4}\) times volume reduction and more than two orders of magnitude improved tuning speed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Iga, Surface-emitting laser—its birth and generation of new optoelectronics field. IEEE J. Select. Topics Quantum Electron. 6, 1201–1215 (2000)

    Article  Google Scholar 

  2. F. Koyama, H. Uenohara, T. Sakaguchi, K. Iga, GaAlAs/GaAs MOCVD growth for surface emitting laser. Jpn. J. Appl. Phys. Part 1 26, 1077–1081 (1987)

    Article  Google Scholar 

  3. J.L. Jewell, S.L. McCall, Y.H. Lee, A. Scherer, A.C. Gossard, J.H. English, Lasing characteristics of GaAs microresonators. Appl. Phys. Lett. 54,1400 (1989)

    Google Scholar 

  4. L.A. Coldren, R.S. Geels, S.W. Corzine, J.W. Scott, Efficient vertical-cavity lasers. Opt. Quantum Electron. 24, 105–119 (1992)

    Google Scholar 

  5. M. Orenstein, A. Von Lehmen, C.J. Chang-Hasnain, N.G. Stoffel, L.T. Florez, J.P. Harbison, J. Wullert, A. Scherer, Matrix addressable vertical cavity surface emitting laser array. Electron. Lett. 27(5), 437–438 (1991)

    Article  ADS  Google Scholar 

  6. C.J. Chang-Hasnain, J.P. Harbison, C.E. Zah, M.W. Maeda, L.T. Florez, N.G. Stoffel, T.P. Lee, Multiple wavelength tunable surface emitting laser arrays. IEEE J. Quantum Electron. 27(6), 1368–1376 (1991)

    Article  ADS  Google Scholar 

  7. C.J. Chang-Hasnain, J.P. Harbison, G. Hasnain, A. Von Lehmen, L.T. Florez, N.G. Stoffel, Dynamic, polarization, and transverse mode characteristics of vertical cavity surface emitting lasers. IEEE J. Quantum Electron. 27(6), 1402–1409 (1991)

    Article  ADS  Google Scholar 

  8. M.W. Maeda, C.J. Chang-Hasnain, J.S. Patel, C. Lin, H.A. Johnson, J.A. Walker, Use of a multi-wavelength surface-emitting laser array in a 4-channel wavelength-division-multiplexed system experiment. IEEE Photon. Technol. Lett. 3(3), 268–269 (1991)

    Article  ADS  Google Scholar 

  9. K.H. Hahn, M.R. Tan, S.Y. Wang, Intensity noise of large area vertical cavity surface emitting lasers in multimode optical fibre links. Electron. Lett. 30(2), 139–140 (1994)

    Article  Google Scholar 

  10. C.F.R. Mateus, M.C.Y. Huang, Y. Deng, A.R. Neureuther, C.J. Chang-Hasnain, Ultrabroadband mirror using low-index cladded subwavelength grating. IEEE Photon. Technol. Lett. 16(2), 518–520 (2004)

    Article  ADS  Google Scholar 

  11. C.F.R. Mateus, M.C.Y. Huang, L. Chen, C.J. Chang-Hasnain, Y. Suzuki, Broadband mirror (1.12–1.62 \(\upmu {\rm m}\)) using single-layer sub-wavelength grating. IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004)

    Google Scholar 

  12. C.J. Chang-Hasnain, C.F.R. Mateus, M.C.Y. Huang, Ultra broadband mirror using subwavelength grating, US Patent 7,304,781

    Google Scholar 

  13. M.C.Y. Huang, Y. Zhou, C.J. Chang-Hasnain, A surface-emitting laser incorporating a high-index-contrast subwavelength grating. Nat. Photon. 1, 119–122 (2007)

    Article  ADS  Google Scholar 

  14. C. Chang-Hasnain, Y. Zhou, M. Huang, C. Chase, High-contrast grating VCSELs. IEEE J. Select. Topics Quantum Electron. 15, 869–878 (2009)

    Article  Google Scholar 

  15. C. Chase, Y. Zhou, C. Chang-Hasnain, Size effect of high contrast gratings in VCSELs. Opt. Express 17, 24002–24007 (2009)

    Article  ADS  Google Scholar 

  16. C. Chase, Y. Rao, W. Hofmann, C.J. Chang-Hasnain, 1550 nm high contrast grating VCSEL. Opt. Express 18(15), 15461–15466 (2010)

    Article  ADS  Google Scholar 

  17. V. Karagodsky, B. Pesala, C. Chase, W. Hofmann, F. Koyama, C.J. Chang-Hasnain, Monolithically integrated multi-wavelength VCSEL arrays using high-contrast gratings. Opt. Express 18(2), 694–699 (2010)

    Article  ADS  Google Scholar 

  18. F. Lu, F.G. Sedgwick, V. Karagodsky, C. Chase, C.J. Chang-Hasnain, Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings. Opt. Express 18(12), 12606–12614 (2010)

    Article  ADS  Google Scholar 

  19. D. Fattal, J. Li, Z. Peng, M. Fiorentino, R.G. Beausoleil, Flat dielectric grating reflectors with focusing abilities. Nat. Photon. 4, 466–470 (2010)

    Article  ADS  Google Scholar 

  20. M.C.Y. Huang, Y. Zhou, C.J. Chang-Hasnain, A nanoelectromechanical tunable laser. Nat. Photon. 2, 180–184 (2008)

    Google Scholar 

  21. P. Gilet, N. Olivier, P. Grosse, K. Gilbert, A. Chelnokov, I.-S. Chung, J. Mørk, High-index-contrast subwavelength grating, in Vertical-Cavity Surface-Emitting Lasers XIV, Proceedings of SPIE, vol. 7615 (2010), p. 76150-1

    Google Scholar 

  22. S. Boutami, B. Ben Bakir, J.-L. Leclercq, P. Viktorovitch, Compact and polarization controlled \(1.55\,\upmu\hbox{m}\) vertical-cavity surface emitting laser using single-layer photonic crystal mirror. Appl. Phys. Lett. 91(7), 071105-1–071105-3 (2007)

    Google Scholar 

  23. S. Boutami, B. Benbakir, X. Letartre, J.L. Leclercq, P. Regreny, P. Viktorovitch, Ultimate vertical Fabry-Perot cavity based on single-layer photonic crystal mirrors. Opt. Express 15(19), 12443–12449 (2007)

    Article  ADS  Google Scholar 

  24. I.-S. Chung, J. Mørk, P. Gilet, A. Chelnokov, Subwavelength grating-mirror VCSEL with a thin oxide gap. IEEE Photon. Technol. Lett. 20(2), 105–107 (2008)

    Article  ADS  Google Scholar 

  25. A. Haglund, S.J. Gustavsson, J. Vukusic, P. Jedrasik, A. Larsson, High-power fundamental-mode and polarisation stabilised VCSELs using sub-wavelength surface grating. Electron Lett. 41, 805–807 (2005)

    Article  Google Scholar 

  26. S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P.V. Daele, R. Baets, First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSELs. IEEE Photon. Technol. Lett. 10, 1205–1207 (1998)

    Article  ADS  Google Scholar 

  27. L. Zhuang, S. Schablitsky, R.C. Shi, S.Y. Chou, Fabrication and performance of thin amorphous Si subwavelength transmission grating for controlling vertical cavity surface emitting laser polarization. J. Vac. Sci. Technol. B 14, 4055–4057 (1996)

    Article  Google Scholar 

  28. M.G. Moharam, T.K. Gaylord, Rigorous coupled-wave analysis of planar-grating diffraction. J. Opt. Soc. Am. 71, 811–818 (1981)

    Article  ADS  Google Scholar 

  29. V. Karagodsky, F. Sedgwick, C.J. Chang-Hasnain, Theoretical analysis of subwavelength high contrast grating reflectors. Opt. Express 18(16), 16973–16988 (2010)

    Article  ADS  Google Scholar 

  30. V. Karagodsky, C. Chase, C.J. Chang-Hasnain, Matrix Fabry–Perot resonance mechanism in high-contrast gratings. Opt. Lett. 36(9), 1704–1706 (2011)

    Google Scholar 

  31. V. Karagodsky, F.G. Sedwick, C.J. Chang-Hasnain, New physics of subwavelength high contrast gratings. in Proceedings of Conf. on Lasers and Electro-Optics, CLEO ’11. Baltimore, MD, May 2011, paper QThD2

    Google Scholar 

  32. Y. Zhou, M.C.Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F.G. Sedgwick, C.J. Chang-Hasnain, High-index-contrast grating (HCG) and its applications in optoelectronic devices. IEEE J. Select. Topics Quantum Electron. 15(5), 1485–1499 (2009)

    Article  Google Scholar 

  33. C.J. Chang-Hasnain, VCSEL for metro communications, Chap. 13 in Optical Fiber Communications IV A: Components, ed. by I. Kaminow, T. Li (Academic Press, New York, 2002), pp. 666–698

    Google Scholar 

  34. A. Mizutani, N. Hatori, N. Nishiyama, F. Koyama, K. Iga, InGaAs/GaAs vertical-cavity surface emitting laser on GaAs (311)B substrate using carbon auto-doping. Jpn. J. Appl. Phys. 37, 1408–1412 (1998)

    Article  ADS  Google Scholar 

  35. S.J. Schablitsky, Z. Lei, R.C. Shi, S.Y. Chou, Controlling polarization of vertical-cavity surface-emitting lasers using amorphous silicon subwavelength transmission gratings. Appl. Phys. Lett. 69, 7–9 (1996)

    Article  ADS  Google Scholar 

  36. J.M. Ostermann, P. Debernardi, R. Michalzik, Optimized integrated surface grating design for polarization-stable VCSELs. IEEE J. Quantum Electron. 42, 690–698 (2006)

    Article  ADS  Google Scholar 

  37. A. Haglund, J.S. Gustavsson, J. Bengtsson, P. Jedrasik, A. Larsson, Design and evaluation of fundamental-mode and polarization-stabilized VCSELs with a subwavelength surface grating. IEEE J. Quantum Electron. 42, 231–240 (2006)

    Article  ADS  Google Scholar 

  38. R. Michalzik, J.M. Ostermann, P. Debernardi, Polarization-stable monolithic VCSELs, in Vertical-Cavity Surface-Emitting Lasers XII, ed. by C. Lei, J.K. Guenter, Proceedings of SPIE, vol. 6908 (2008), pp. 69080A-1–69080A-16

    Google Scholar 

  39. K.D. Choquette, K.M. Geib, C.I.H. Ashby, R.D. Twesten, O. Blum, H.Q. Hou, D.M. Follstaedt, B.E. Hammons, D. Mathes, R. Hull, Advances in selective wet oxidation of AlGaAs alloys. IEEE J. Select. Topics Quantum Electron. 3, 916–926 (1997)

    Article  Google Scholar 

  40. Y.A. Wu, G.S. Li, W. Yuen, C.J. Chang-Hasnain, C. Caneau, High-yield processing and single-mode operation of passive antiguide region vertical-cavity lasers. IEEE J. Select. Topics Quantum Electron. 3, 429–434 (1997)

    Article  Google Scholar 

  41. A.J. Danner, J.J. Raftery Jr., N. Yokouchi, K.D. Choquette, Transverse modes of photonic crystal vertical-cavity lasers. Appl. Phys. Lett. 84, 1031 (2004)

    Article  ADS  Google Scholar 

  42. M.C.Y. Huang, Y. Zhou, C.J. Chang-Hasnain, Single mode high-contrast subwavelength grating vertical cavity surface emitting lasers. Appl. Phys. Lett. 92, 171108 (2008)

    Article  ADS  Google Scholar 

  43. Y. Zhou, M.C.Y. Huang, C.J. Chang-Hasnain, Large fabrication tolerance for VCSELs using high-contrast grating. IEEE Photon. Technol. Lett. 20, 434–436 (2008)

    Article  ADS  Google Scholar 

  44. C. Chang-Hasnain, M. Maeda, N. Stoffel, J. Harbison, L. Florez, J. Jewell, Surface emitting laser arrays with uniformly separated wavelengths. Electron. Lett. 26, 940–941 (1990)

    Article  Google Scholar 

  45. L. Eng, K. Bacher, W. Yuen, J. Harris Jr., C. Chang-Hasnain, Multiple wavelength vertical cavity laser arrays on patterned substrates. IEEE J. Quantum Electron. 1, 624–628 (1995)

    Article  Google Scholar 

  46. F. Koyama, T. Mukaihara, Y. Hayashi, N. Ohnoki, N. Hatori, K. Iga, Wavelength control of vertical cavity surface-emitting lasers by using nonplanar MOCVD. IEEE Photon. Technol. Lett. 7, 10–12 (1995)

    Article  ADS  Google Scholar 

  47. T. Wipiejewski, M. Peters, E. Hegblom, L. Coldren, Vertical-cavity surface-emitting laser diodes with post-growth wavelength adjustment. IEEE Photon. Technol. Lett. 7, 727–729 (1995)

    Article  ADS  Google Scholar 

  48. W. Hofmann, E. Wong, G. Böhm, M. Ortsiefer, N.H. Zhu, M.C. Amann, \(1.55\,\upmu\hbox{m}\) VCSEL arrays for high-bandwidth WDM-PONs. IEEE Photon. Technol. Lett. 20, 291–293 (2008)

    Google Scholar 

  49. M.S. Wu, E.C. Vail, G.S. Li, W. Yuen, C.J. Chang-Hasnain, Widely and continuously tunable micromachined resonant cavity detector with wavelength tracking. IEEE Photon. Technol. Lett. 8(1), 98–100 (1996)

    Article  ADS  Google Scholar 

  50. C.J. Chang-Hasnain, Tunable VCSEL. IEEE J. Select. Topics Quantum Electron. 6, 978–987 (2000)

    Article  Google Scholar 

  51. S. Decai, W. Fan, P. Kner, J. Boucart, T. Kageyama, Z. Dongxu, R. Pathak, R.F. Nabiev, W. Yuen, Long wavelength-tunable VCSELs with optimized MEMS bridge tuning structure. IEEE Photon. Technol. Lett. 16, 714–716 (2004)

    Article  ADS  Google Scholar 

  52. F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M.C. Amann, P. Meissner, Continuously tunable long-wavelength MEMS-VCSEL with over 40 nm tuning range. IEEE Photon. Technol. Lett. 16, 2212–2214 (2004)

    Article  ADS  Google Scholar 

  53. M.C.Y. Huang, K.B. Cheng, Y. Zhou, B. Pesala, C.J. Chang-Hasnain, A.P. Pisano, Demonstration of piezoelectric actuated GaAs-based MEMS tunable VCSEL. IEEE Photon. Technol. Lett. 18, 1197–1199 (2006)

    Article  ADS  Google Scholar 

  54. B. Kögel, H. Halbritter, S. Jatta, M. Maute, G. Böhm, M.-C. Amann, M. Lackner, M. Schwarzott, F. Winter, P. Meissner, Simultaneous spectroscopy of \(\hbox{NH}_{3} \) and CO using a \(>50\,\hbox{nm}\) continuously tunable MEMS-VCSEL. IEEE Sens. J. 7(11), 1483–1489 (2007)

    Google Scholar 

  55. H. Halbritter, C. Sydlo, B. Kögel, F. Riemenschneider, H.L. Hartnagel, P. Meissner, Impact of micromechanics on the linewidth and chirp performance of MEMS-VCSELs. IEEE J. Select. Topics Quantum Electron. 13(2), 367–373 (2007)

    Article  Google Scholar 

  56. S. Jatta, B. Kögel, M. Maute, K. Zogal, F. Riemenschneider, G. Böhm, M.-C. Amann, P. Meißner, Bulk-micromachined VCSEL at \(1.55\,\upmu\hbox{m}\) with 76 nm single-mode continuous tuning range. IEEE Photon. Technol. Lett. 21(24), 1822–1824 (2009)

    Google Scholar 

Download references

Acknowledgments

The author wishes to acknowledge major contributions from former and current graduate students at UC Berkeley, C. Mateus, M. Huang, Y. Zhou, C. Chase, V. Karagodsky and Y. Rao; and fruitful collaborations with Profs. Fumio Koyama and Markus Amann. She also thanks the support of a National Security Science and Engineering Faculty Fellowship and National Science Foundation through CIAN NSF ERC under grant #EEC-0812072.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Connie J. Chang-Hasnain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chang-Hasnain, C.J. (2013). High-Contrast Grating VCSELs. In: Michalzik, R. (eds) VCSELs. Springer Series in Optical Sciences, vol 166. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24986-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24986-0_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24985-3

  • Online ISBN: 978-3-642-24986-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics