Skip to main content

Single-Mode VCSELs

  • Chapter
  • First Online:
VCSELs

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 166))

Abstract

The only active transverse mode in a truly single-mode VCSEL is the fundamental mode with a near Gaussian field distribution. A single-mode VCSEL produces a light beam of higher spectral purity, higher degree of coherence and lower divergence than a multimode VCSEL and the beam can be more precisely shaped and focused to a smaller spot. Such beam properties are required in many applications. In this chapter, after discussing applications of single-mode VCSELs, we introduce the basics of fields and modes in VCSELs and review designs implemented for single-mode emission from VCSELs in different materials and at different wavelengths. This includes VCSELs that are inherently single-mode as well as inherently multimode VCSELs where higher-order modes are suppressed by mode selective gain or loss. In each case we present the current state-of-the-art and discuss pros and cons. At the end, a specific example with experimental results is provided and, as a summary, the most promising designs based on current technologies are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.A. Tatum, VCSEL proliferation, in Vertical-Cavity Surface-Emitting Lasers XI, ed. byK.D. Choquette, J.K. Guenter, Proceedings of SPIE, vol. 6484 (2007), p. 648403-1

    Google Scholar 

  2. W. Hofmann, M.C. Amann, \(1.55\,{\upmu}\hbox{m}\) VCSEL arrays for high bandwidth WDM-PONs. IEEE Photon. Technol. Lett. 20(4), 291 (2008)

    Article  ADS  Google Scholar 

  3. K.A. Persson, C. Carlsson, A. Alping, Å. Haglund, J.S. Gustavsson, P. Modh, A. Larsson, WCDMA radio-over-fibre transmission experiment using singlemode VCSEL and multimode fibre. Electron. Lett. 46(6), 372 (2006)

    Article  Google Scholar 

  4. M. Grabherr, R. King, R. Jäger, D. Wiedenmann, P. Gerlach, D. Duckeck, C. Wimmer,Volume production of polarization controlled single-mode VCSELs, in Vertical-CavitySurface-Emitting Lasers XII, ed. by C. Lei, J.K. Guenter, Proceedings of SPIE, vol. 6908 (2008), p. 690803-1

    Google Scholar 

  5. N. Mukoyama, H. Otoma, J. Sakurai, N. Ueki, H. Nakayama, VCSEL array based light exposure system for laser printing, in Vertical-Cavity Surface-Emitting Lasers XII, ed. by C. Lei, J.K. Guenter, Proceedings of SPIE, vol. 6908 (2008), p. 69080H-1

    Google Scholar 

  6. D.K. Serkland, G.M. Peake, K.M. Geib, R. Lutwak, R.M. Garvey, M. Varghese, M. Mescher, VCSELs for atomic clocks, in Vertical-Cavity Surface-Emitting Lasers X, ed. by C. Lei,K.D. Choquette, Proceedings SPIE, vol. 6132 (2006), p. 613208-1

    Google Scholar 

  7. W. Hofmann, G. Böhm, M. Ortsiefer, M. Görblich, C. Lauer, N.H. Zhu, M.C. Amann, Long wavelength VCSELs for optical networks and trace gas monitoring, in Optoelectronic Devices: Physics, Fabrication and Application, ed. by J. Piprek, J.J. Wang, Proceedings of SPIE, vol. 6766 (2007), p. 67660F-1

    Google Scholar 

  8. J. Tatum, R. Chandler, B. Stapleton, VCSEL based reflective sensors tackle more demanding applications. Laser Focus World 39(9), 79 (2003)

    Google Scholar 

  9. K.D. Choquette, R.P. Schneider Jr., K.L. Lear, K.M. Geib, Low threshold voltage vertical cavity lasers fabricated by selective oxidation. Electron. Lett. 30(24), 2043 (1994)

    Article  Google Scholar 

  10. F.A. Kish, S.J. Carraci, N. Holonyak Jr., J.M. Dallesasse, K.C. Hsieh, M.J. Ries, S.C. Smith, R.D. Burnham, Planar native oxide index guided AlGaAs-GaAs quantum well heterostructure lasers. Appl. Phys. Lett. 59(14), 1755 (1991)

    Article  ADS  Google Scholar 

  11. G.R. Hadley, Effective index model for vertical cavity surface emitting lasers. Opt. Lett. 20(13), 1483 (1995)

    Article  ADS  Google Scholar 

  12. B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics, 2nd edn. (Wiley, Hoboken, 2007), p. 325

    Google Scholar 

  13. J.P. Zhang, K. Petermann, Numerical analysis of transverse modes in gain guided vertical cavity surface emitting lasers. IEE Proc.-Optoelectron. 142(1), 29 (1995)

    Article  Google Scholar 

  14. M. Farzaneh, R. Amataya, D. Lürssen, K.J. Greenberg, W.E. Rockwell, J.A. Hudgings, Temperature profiling of VCSELs by thermoreflectance microscopy. IEEE Photon. Technol. Lett. 19(8), 601 (2007)

    Article  ADS  Google Scholar 

  15. J.S. Gustavsson, J.A. Vukusic, J. Bengtsson, A. Larsson, A comprehensive model for the modal dynamics of vertical cavity surface emitting lasers. IEEE J. Quantum Electron. 38(2), 203 (2002)

    Article  ADS  Google Scholar 

  16. A.K. Jansenvan Doorn, M.P. van Exter, J.P. Woerdman, Effects of transverse anisotropy on VCSEL spectra. Electron. Lett. 30(23), 1941 (1994)

    Article  Google Scholar 

  17. K.D. Choquette, R.P. Schneider Jr., K.L. Lear, R.E. Leibenguth, Gain dependent polarization properties of vertical cavity lasers. IEEE J. Select. Topics Quantum Electron. 1(2), 661 (1995)

    Article  Google Scholar 

  18. J.G. McInerney, A. Mooradian, A. Lewis, A.V. Shchegrov, E.M. Strzelecka, D. Lee, J.P. Watson, M. Liebman, G.P. Carey, B.D. Cantos, W.R. Hitchens, D. Heald, High power surface emitting semiconductor laser with extended vertical compound cavity. Electron. Lett. 39(6), 523 (2003)

    Article  Google Scholar 

  19. C.J. Chang-Hasnain, M. Orenstein, A. Von Lehmen, L.T. Florez, J.P. Harbison, N.G. Stoffel, Transverse mode characteristics of vertical cavity surface emitting lasers. Appl. Phys. Lett. 57(3), 218 (1990)

    Article  ADS  Google Scholar 

  20. K.L. Lear, R.P. Schneider, K.D. Choquette, S.P. Kilcoyne, J.J. Figiel, J.C. Zolper, Vertical cavity surface emitting lasers with 21% efficiency by metal organic vapour phase epitaxy. IEEE Photon. Technol. Lett. 6(9), 1053 (1994)

    Article  ADS  Google Scholar 

  21. C. Jung, R. Jäger, M. Grabherr, P. Schnitzer, R. Michalzik, B. Weigl, S. Müller, K.J. Ebeling, 4.8 mW single mode oxide confined top surface emitting vertical cavity laser diodes. Electron. Lett. 33(21), 1790 (1997)

    Article  Google Scholar 

  22. H. Riechert, A. Ramakrishnan, G. Steinle, Development of InGaAsN-based \(1.3\,{\upmu}\hbox{m}\) VCSELs. Semicond. Sci. Technol. 17(8), 892 (2002)

    Article  ADS  Google Scholar 

  23. E.R. Hegblom, B.J. Thibeault, R.L. Naone, L.A. Coldren, Vertical cavity lasers with tapered oxide apertures for low scattering loss. Electron. Lett. 33(10), 869 (1997)

    Article  Google Scholar 

  24. K.D. Choquette, H.Q. Hou, G.R. Hadley, K.M. Geib, D. Mathes, R. Hull, High power single transverse mode selectively oxidized VCSELs, in Proceedings 1997 LEOS Summer Topical Meeting, Montreal, Canada (1997), p. 73

    Google Scholar 

  25. S.A. Blokhin, N.A. Maleev, A.G. Kuzmenkov, A.V. Sakharov, M.M. Kulagina, Y.M. Shernyakov, I.I. Novikov, M.V. Maximov, V.M. Ustinov, A.R. Kovsh, S.S. Mikhrin,N.N. Ledentsov, G. Lin, J.Y. Chi, Vertical cavity surface emitting lasers based on submonolayer InGaAs quantum dots. IEEE J. Quantum Electron. 42(9), 851 (2006)

    Article  ADS  Google Scholar 

  26. C. Carlsson, C.A. Barrios, E.R. Messmer, A. Lövqvist, J. Halonen, J. Vukusic, M. Ghisoni, S. Lourdudoss, A. Larsson, Performance characteristics of buried heterostructure VCSELs using semi-insulating GaInP:Fe regrowth. IEEE J. Quantum Electron. 37(7), 945 (2001)

    Article  ADS  Google Scholar 

  27. Y. Ohiso, H. Okamoto, R. Iga, K. Kishi, C. Amano, Single transverse mode operation of \(1.55\,{\upmu}\hbox{m}\) buried heterostructure vertical cavity surface emitting lasers. IEEE Photon. Technol. Lett. 14(6), 739 (2002)

    Article  ADS  Google Scholar 

  28. D.A. Francis, D.B. Young, J. Walker, A. Verma, D. Gold, C. Decker, Monolithic 1310 nm buried heterostructure VCSEL using InGaAsP/InP DBR reflectors, in Optoelectronic Devices: Physics, Fabrication and Application II, ed. by J. Piprek, Proceedings of SPIE, vol. 6013 (2005), p. 60130A-1

    Google Scholar 

  29. M. Ortsiefer, W. Hofmann, E. Rönneberg, A. Boletti, A. Gatto, P. Boffi, R. Shau, C. Neumeyr, G. Böhm, M. Martinelli, M.C. Amann, High speed \(1.3\,{\upmu}\hbox{m}\) VCSELs for 12.5 Gbit/s optical interconnects. Electron. Lett. 44(16), 974 (2008)

    Article  Google Scholar 

  30. N. Nishiyama, C. Caneau, M. Sauer, A. Kobyakov, C.E. Zah, InP-based long wavelength VCSELs: their characteristics and applications, in Optoelectronic Materials and Devices II, ed. by Y. Nakano, Proceedings of SPIE, vol. 6782 (2007), p. 67820M-1

    Google Scholar 

  31. M. Ortsiefer, S. Baydar, K. Windhorn, G. Böhm, J. Rosskopf, E. Rönneberg, W. Hofmann, M.C. Amann, 2.5 mW single mode operation of \(1.55\,{\upmu}\hbox{m}\) buried tunnel junction VCSELs. IEEE Photon. Technol. Lett. 17(8), 1596 (2005)

    Article  ADS  Google Scholar 

  32. A. Syrbu, A. Mereuta, V. Iakovlev, A. Caliman, P. Royo, E. Kapon, 10 Gbps VCSELs with high single mode output in 1310 nm and 1550 nm wavelength bands, in Proceedings Conference on Optical Fiber Communication, paper OThS2, San Diego, CA, USA (2008)

    Google Scholar 

  33. A. Caliman, V. Iakovlev, A. Mereuta, A. Sirbu, G. Suruceanu, E. Kapon, 8 mW fundamental mode output of wafer-fused VCSELs emitting in the 1550 nm band, in Proceedings Conference on Lasers and Electro Optics, paper CMRR1, Baltimore, MD, USA (2009)

    Google Scholar 

  34. C.K. Lin, D.P. Bour, J. Zhu, W.H. Perez, M.H. Leary, A. Tandon, S.W. Corzine, M.R.T. Tan, High temperature continuous wave operation of \(1.3 \; \hbox{and}\; 1.55\,{\upmu}\hbox{m}\) VCSELs with InP/air gap DBRs. IEEE J. Select. Topics Quantum Electron. 9(5), 1415 (2003)

    Article  Google Scholar 

  35. D. Feezell, L.A. Johansson, D.A. Buell, L.A. Coldren, Efficient modulation of InP-based \(1.3\,{\upmu}\hbox{m}\) VCSELs with AsSb-based DBRs. IEEE Photon. Technol. Lett. 17(11), 2253 (2005)

    Article  ADS  Google Scholar 

  36. M.R. Park, O.K. Kwon, W.S. Han, K.H. Lee, S.J. Park, B.S. Yoo, All epitaxial InAlGaAs-InP VCSELs in the \(1.3\hbox{--}1.6\,{\upmu}\hbox{m}\) wavelength range for CWDM band applications. IEEE Photon. Technol. Lett. 18(16), 1717 (2006)

    Article  ADS  Google Scholar 

  37. D. Feezell, D.A. Buell, D. Lofgreen, M. Mehta, L.A. Coldren, Optical design of InAlGaAs low loss tunnel junction apertures for long wavelength vertical cavity lasers. IEEE J. Quantum Electron. 42(5), 494 (2006)

    Article  ADS  Google Scholar 

  38. D.S. Song, S.H. Kim, H.G. Park, C.K. Kim, Y.H. Lee, Single fundamental mode photonic crystal vertical cavity surface emitting lasers. Appl. Phys. Lett. 80(21), 3901 (2002)

    Article  ADS  Google Scholar 

  39. A.J. Danner, T.S. Kim, K.D. Choquette, Single fundamental mode photonic crystal vertical cavity laser with improved output power. Electron. Lett. 41(6), 20057841 (2005)

    Article  Google Scholar 

  40. H.P. Yang, I.C. Hsu, Y.H. Chang, F.I. Lai, H.C. Yu, G. Lin, R.S. Hsiao, N.A. Maleev,S.A. Blokhin, H.C. Kuo, J.Y. Chi, Characteristics of InGaAs submonolayer quantum dot and InAs quantum dot photonic crystal vertical cavity surface emitting lasers. J. Lightwave Technol. 26(11), 1387 (2008)

    Article  ADS  Google Scholar 

  41. R. Stevens, P. Gilet, A. Larrue, L. Grenouillet, N. Olivier, P. Grosse, K. Gilbert, B. Hladys, B.B. Bakir, J. Berggren, Mattias Hammar, A. Chelnokov, Microstructured photonic crystal for single mode long wavelength VCSELs, in Semiconductor Lasers and Laser Dynamics III, ed. by K.P. Panajotov, M. Sciamanna, A.A. Valle, R. Michalzik, Proceedings of SPIE, vol 6997 (2008), p. 69970X-1

    Google Scholar 

  42. F. Romstad, S. Bischoff, M. Juhl, S. Jacobsen, D. Birkedal, Photonic crystals for long wavelength single mode VCSELs, in Vertical-Cavity Surface-Emitting Lasers XII, ed. by C. Lei, J.K. Guenter, Proceedings of SPIE, vol 6908 (2008), p. 69080C-1

    Google Scholar 

  43. A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, T. Baba, High power single mode vertical cavity surface emitting lasers with triangular holey structure. Appl. Phys. Lett. 85(22), 5161 (2004)

    Article  ADS  Google Scholar 

  44. P.O. Leisher, A.J. Danner, J.J. Raftery Jr., K.D. Choquette, Proton implanted single mode holey vertical cavity surface emitting lasers. Electron. Lett. 41(18), 20052394 (2008)

    Google Scholar 

  45. E.W. Young, K.D. Choquette, S.L. Chuang, K.M. Geib, A.J. Fischer, A.A. Allerman, Single transverse mode vertical cavity lasers under continuous and pulsed operation. IEEE Photon. Technol. Lett. 13(9), 927 (2001)

    Article  ADS  Google Scholar 

  46. F.I. Lai, T.H. Hsueh, Y.H. Chang, H.C. Kuo, S.C. Wang, L.H. Laih, C.P. Song, H.P. Yang, 10 Gb/s single mode vertical cavity surface emitting laser with large aperture and oxygen implantation. Semicond. Sci. Technol. 19(8), L86 (2004)

    Article  ADS  Google Scholar 

  47. H.J. Unold, S.W.Z. Mahmoud, R. Jäger, M. Kicherer, M.C. Riedl, K.J. Ebeling, Improved single mode VCSEL performance by introducing a long cavity. IEEE Photon. Technol. Lett. 12(8), 939 (2000)

    Article  ADS  Google Scholar 

  48. H.J. Unold, M.C. Riedl, S.W.Z. Mahmoud, R. Jäger, K.J. Ebeling, Long monolithic cavity VCSELs for high single mode power. Electron. Lett. 37(3), 178 (2001)

    Article  Google Scholar 

  49. S.W.Z. Mahmoud, H.J. Unold, W. Schmid, R. Jäger, R. Michalzik, K.J. Ebeling, Analysis of longitudinal mode wave guiding in vertical cavity surface emitting lasers with long monolithic cavity. Appl. Phys. Lett. 78(5), 586 (2001)

    Article  ADS  Google Scholar 

  50. R.A. Morgan, G.D. Guth, M.W. Focht, M.T. Asom, K. Kojima, L.E. Rogers, S.E. Callis, Transverse mode control of vertical cavity top surface emitting lasers. IEEE Photon. Technol. Lett. 4(4), 374 (1993)

    Article  ADS  Google Scholar 

  51. N. Ueki, A. Sakamoto, T. Nakamura, H. Nakayama, J. Sakurai, H. Otoma, Y. Miyamoto, M. Yoshikawa, M. Fuse, Single transverse mode 3.4 mW emission of oxide confined 780 nm VCSELs. IEEE Photon. Technol. Lett. 11(12), 1539 (1999)

    Article  ADS  Google Scholar 

  52. H. Otoma, A. Murakami, Y. Kuwata, N. Ueki, N. Mukoyama, T. Kondo, A. Sakamoto, S. Omori, H. Nakayama, T. Nakamora, Single mode oxide confined VCSEL for printers and sensors, in Proceedings Electronics System Integration Technology Conference, Dresden, Germany (2006), p. 80

    Google Scholar 

  53. P.D. Floyd, M.G. Peters, L.A. Coldren, J.L. Merz, Suppression of higher order transverse modes in vertical cavity lasers by impurity induced disordering. IEEE Photon. Technol. Lett. 7(12), 1388 (1995)

    Article  ADS  Google Scholar 

  54. J.W. Shi, C.C. Chen, Y.S. Wu, S.H. Guol, C. Kuo, Y.J. Yang, High power and high speed Zn-diffusion single fundamental mode vertical cavity surface emitting lasers at 850 nm wavelength. IEEE Photon. Technol. Lett. 20(13), 1121 (2008)

    Article  ADS  Google Scholar 

  55. H. Martinsson, J.A. Vukusic, M. Grabherr, R. Michalzik, R. Jäger, K.J. Ebeling, A. Larsson, Transverse mode selection in large area oxide confined vertical cavity surface emitting lasers using a shallow surface relief. IEEE Photon. Technol. Lett. 11(12), 1536 (1999)

    Article  ADS  Google Scholar 

  56. H.J. Unold, M. Grabherr, F. Eberhard, F. Mederer, R. Jäger, M. Riedl, K.J. Ebeling, Increased area oxidised single fundamental mode VCSEL with self-aligned shallow surface relief. Electron. Lett. 35(16), 1340 (1999)

    Article  Google Scholar 

  57. H.J. Unold, S.W.Z. Mahmoud, R. Jäger, M. Grabherr, R. Michalzik, K.J. Ebeling, Large area single mode VCSELs and the self-aligned surface relief. IEEE J. Select. Topics Quantum Electron. 7(2), 386 (2001)

    Article  Google Scholar 

  58. Å. Haglund, J.S. Gustavsson, J. Vukusic, P. Modh, A. Larsson, Single fundamental mode output power exceeding 6 mW from VCSELs with a shallow surface relief. IEEE Photon. Technol. Lett. 16(2), 368 (2004)

    Article  ADS  Google Scholar 

  59. A. Kroner, F. Rinaldi, J.M. Ostermann, R. Michalzik, High-performance single fundamental mode AlGaAs VCSELs with mode-selective mirror reflectivities. Opt. Commun. 270(2), 332 (2007)

    Article  ADS  Google Scholar 

  60. Å. Haglund, J.S. Gustavsson, P. Modh, A. Larsson, Dynamic mode stability analysis of surface relief VCSELs under strong RF modulation. IEEE Photon. Technol. Lett. 17(8), 1602 (2005)

    Article  ADS  Google Scholar 

  61. F. Rinaldi, J.M. Ostermann, A. Kroner, R. Michalzik, High-performance AlGaAs-based VCSELs emitting in the 760 nm wavelength range. Opt. Commun. 270(2), 310 (2007)

    Article  ADS  Google Scholar 

  62. H.C. Kuo, Y.H. Chang, Y.A. Chang, F.I. Lai, J.T. Chu, M.Y. Tsai, S.C. Wang, Single mode \(1.27\,{\upmu}\hbox{m}\) InGaAs:Sb-GaAs-GaAsP quantum well vertical cavity surface emitting lasers. IEEE J. Select. Topics Quantum Electron. 11(1), 121 (2005)

    Article  Google Scholar 

  63. E. Söderberg, P. Modh, J.S. Gustavsson, A. Larsson, Z.Z. Zhang, J. Berggren, M. Hammar, High speed, high temperature operation of \(1.28\,{\upmu}\hbox{m}\) singlemode InGaAs VCSELs. Electron. Lett. 42(17), 978 (2006)

    Article  Google Scholar 

  64. A.C. Lehman, E.A. Yamaoka, C.W. Willis, K.D. Choquette, K.M. Geib, A.A. Allerman, Variable reflectance vertical cavity surface emitting lasers. Electron. Lett. 43(8), 460 (2007)

    Article  Google Scholar 

  65. R. Marcks von Würtemberg, P. Sundgren, J. Berggren, M. Hammar, M. Ghisoni, E. Ödling, V. Oscarsson, J. Malmquist, \(1.3\,{\upmu}\hbox{m}\) InGaAs vertical cavity surface emitting lasers with mode filter for single mode operation. Appl. Phys. Lett. 85(21), 4851 (2004)

    Article  ADS  Google Scholar 

  66. L.J. Mawst, “Anti” up the aperture. IEEE Circuits Devices Mag. 19(2), 34 (2003)

    Article  Google Scholar 

  67. Y.A. Wu, G.S. Li, W. Yuen, C. Caneau, C.J. Chang-Hasnain, High yield processing and single mode operation of passive antiguide region vertical cavity lasers. IEEE J. Select. Topics Quantum Electron. 3(2), 429 (1997)

    Article  Google Scholar 

  68. T.H. Oh, M.R. McDaniel, D.L. Huffaker, D.G. Deppe, Cavity-induced antiguiding in a selectively oxidized vertical cavity surface emitting laser. IEEE Photon. Technol. Lett. 10(1), 12 (1998)

    Article  ADS  Google Scholar 

  69. K.D. Choquette, G.R. Hadley, H.Q. Hou, K.M. Geib, B.E. Hammons, Leaky mode vertical cavity lasers using cavity resonance modifications. Electron. Lett. 34(10), 991 (1998)

    Article  Google Scholar 

  70. T.H. Oh, O.B. Shchekin, D.G. Deppe, Single mode operation in an antiguided vertical cavity surface emitting laser using low temperature grown AlGaAs dielectric aperture. IEEE Photon. Technol. Lett. 10(8), 1064 (1998)

    Article  ADS  Google Scholar 

  71. D. Zhou, L.J. Mawst, Simplified antiresonant reflecting optical waveguide type vertical cavity surface emitting lasers. Appl. Phys. Lett. 76(13), 1659 (2000)

    Article  ADS  Google Scholar 

  72. D. Zhou, L.J. Mawst, High power single mode antiresonant reflecting optical waveguide type vertical cavity surface emitting lasers. IEEE J. Quantum Electron. 38(12), 1599 (2002)

    Article  ADS  Google Scholar 

  73. A.J. Fischer, K.D. Choquette, W.W. Chow, A.A. Allerman, D.K. Serkland, K.M. Geib, High single mode power observed from a coupled resonator vertical cavity laser diode. Appl. Phys. Lett. 79(25), 4079 (2001)

    Article  ADS  Google Scholar 

  74. J.S. Gustavsson, Å. Haglund, J. Bengtsson, A. Larsson, Dynamic behaviour of fundamental-mode stabilized VCSELs using a shallow surface relief. IEEE J. Quantum Electron. 40(6), 607 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Larsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Larsson, A., Gustavsson, J.S. (2013). Single-Mode VCSELs. In: Michalzik, R. (eds) VCSELs. Springer Series in Optical Sciences, vol 166. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24986-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24986-0_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24985-3

  • Online ISBN: 978-3-642-24986-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics