Skip to main content
Book cover

VCSELs pp 19–75Cite as

VCSEL Fundamentals

  • Chapter
  • First Online:

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 166))

Abstract

In this chapter we outline major principles of vertical-cavity surface-emitting laser (VCSEL) design and operation. Basic device properties and generally applicable cavity design rules are introduced. Characteristic parameters like threshold gain and current, differential quantum efficiency and power conversion efficiency, as well as thermal resistance are discussed. We describe the design of Bragg reflectors and explain the transfer matrix method as a convenient tool to compute VCSEL resonator properties in a one-dimensional approximation. Experimental results illustrate the emission characteristics of high-efficiency VCSELs that apply selective oxidation for current and photon confinement. Both the 850 and 980 nm wavelength regions are considered. The basic treatment of laser dynamics and noise behavior is presented in terms of the small-signal modulation response as well as the relative intensity noise. Finally we give some examples of VCSEL applications in fiber-based optical interconnects, i.e., optical data transmission over short distances.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The high wallplug efficiency result in [24] was first presented in [25].

  2. 2.

    This will become clearer from Fig. 2.7 presented later.

  3. 3.

    In the rate equations, the amount of stimulated emission is determined by the product of optical gain coefficient and photon density, the latter being proportional to the intensity of the electromagnetic field; see (2.59), (2.60).

  4. 4.

    In a simple approach, spectral deviations \(\delta\lambda_{\rm g}\) of gain peak and laser resonance can be treated by approximating \(g(n,\lambda)\,{=}\,g(n)(1+a_{g\pm}(\delta\lambda_{\rm g})^2),\) where \(a_{g+}\) and \(a_{g-}\) are the (negative) curvatures of \(g(\lambda)\) at both sides of the gain peak. Higher degrees of accuracy are obtained by considering the carrier density dependence of \(a_{g\pm}.\)

  5. 5.

    From the complex E(z), the real, time-dependent electric field is obtained as \(\tilde E(z,t)\propto {\rm Re}\{ E(z)\cdot\hbox{exp}\{ \hbox{i}\omega t\}\}\) with the time \(t\) and the angular frequency \(\omega.\)

  6. 6.

    Locally, in transition regions between predominant oscillation on different transverse modes, \(\eta_{\rm d}\,{=}\,\eta_{\rm dt}+\eta_{\rm db}>1\) arising from redistributions of the carrier density profile can be observed (see, e.g., [52]). Moreover, differential quantum efficiencies \(\eta_{\rm d}>1\) can regularly be obtained in laser diodes with cascaded pn-junctions (by means of tunnel junctions), at the expense of higher operating voltages [53, 54].

  7. 7.

    Free carriers cause optical absorption losses which have been found to scale as \(\alpha_{\rm fc}\,{=}\,(3\cdot 10^{-18}\\n+7\cdot 10^{-18}p)\,\hbox{cm}^2\) for GaAs (see [55], p. 175), where \(n\) and \(p\) are the electron and hole densities, respectively.

  8. 8.

    In other texts one often finds \(\alpha_{\rm m}\,{=}\,\alpha_{\rm mt}+\alpha_{\rm mb}\) with \(\alpha_{\rm mt,b}\,{=}\,-\!L_{\rm eff}^{-1}\ln\sqrt{R_{\rm t,b}}\) (compare with (2.17)) and thus \(\eta_{\rm ut,b}\,{=}\,\alpha_{\rm mt,b}/\alpha_{\rm m}\,{=}\,\ln R_{\rm t,b}/\ln (R_{\rm t}R_{\rm b}).\) For VCSELs we have \(R_{\rm t,b}\,{\approx}\, 1,\) and with the approximation \(\ln x\,{\approx}\, x-1\) we get \(\eta_{\rm ut,b}\,{\approx}\, T_{\rm t,b}/(T_{\rm t}+T_{\rm b}),\) which is also obtained from (2.42) when setting \(\sqrt{R_{\rm t}}\,{\approx}\, \,\sqrt{R_{\rm b}}\,{\approx}\, 1.\) In both cases, the ratio (2.43) is then \(P_{\rm t}/P_{\rm b}\,{\approx}\, T_{\rm t}/T_{\rm b}.\)

  9. 9.

    Although small-area VCSELs appear to have fairly competitive sheet resistances, threshold current densities tend to be in the kA/cm\(^2\) range.

  10. 10.

    The effect of the oxide aperture on laser mode formation can also be understood as that of a focusing lens. Since the refractive index is higher in the active area compared to the oxidized region, a phase shift is induced in the traveling wave which reduces its diffraction losses [48].

  11. 11.

    Namely there is no sum anymore in (2.59), \(g_{m}(n)\to g(n),\) \(N_{m}\to N,\) \(v_{{\rm gr,}m}\to v_{\rm gr},\) and there is only one equation (2.60), in which \(\varGamma_m\to\varGamma,\) \(\beta_{{\rm sp},m}\to\beta_{\rm sp},\) and \(\tau_{{\rm p},m}\to\tau_{\rm p}.\)

  12. 12.

    IEEE Standard 802.3ae-2002, IEEE, Piscataway, NJ, USA, June 2002. See URL http://www.ieee802.org/3/ae/.

  13. 13.

    In this case one speaks of OM3-grade fibers which guarantee 10 Gbit/s data transport over distances of at least 300 m [124]. Even more modern OM4-grade fibers have \({B\cdot L\ge 4{,}700\,{\rm MHz}\cdot {\rm km}}\) with \(L\ge 550\) m at 10 Gbit/s.

  14. 14.

    IEEE Standard 802.3aq-2006, Clause 68, “10GBASE-LRM” (long reach multimode), IEEE, Piscataway, NJ, USA, Sept. 2006. See URL http://www.ieee802.org/3/aq/.

References

  1. K. Iga, F. Koyama, S. Kinoshita, Surface emitting semiconductor lasers. IEEE J. Quantum Electron. 24, 1845–1855 (1988)

    ADS  Google Scholar 

  2. K. Iga, Surface-emitting laser—its birth and generation of new optoelectronics field. IEEE J. Select. Topics Quantum Electron. 6, 1201–1215 (2000)

    Google Scholar 

  3. K. Iga, Vertical-cavity surface-emitting laser: its conception and evolution. Jpn. J. Appl. Phys. 47, 1–10 (2008)

    ADS  Google Scholar 

  4. R. Szweda, VCSEL applications diversify as technology matures. III-Vs Rev. 19(1), 34–38 (2006)

    Google Scholar 

  5. T.E. Sale, Vertical Cavity Surface Emitting Lasers (Research Studies Press, Taunton, 1995)

    Google Scholar 

  6. C. Wilmsen, H. Temkin, L.A. Coldren (eds.), Vertical-Cavity Surface-Emitting Lasers (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  7. J. Cheng, N.K. Dutta (eds.), Vertical-Cavity Surface-Emitting Lasers: Technology and Applications (Gordon and Breach, Amsterdam, 2000)

    Google Scholar 

  8. S.F. Yu, Analysis and Design of Vertical Cavity Surface Emitting Lasers (Wiley, Hoboken, 2003)

    Google Scholar 

  9. H. Li, K. Iga (eds.), Vertical-Cavity Surface-Emitting Laser Devices (Springer, Berlin, 2003)

    Google Scholar 

  10. H. Soda, K. Iga, C. Kitahara, Y. Suematsu, GaInAsP/InP surface emitting injection lasers. Jpn. J. Appl. Phys. 18, 2329–2330 (1979)

    ADS  Google Scholar 

  11. F. Koyama, S. Kinoshita, K. Iga, Room temperature cw operation of GaAs vertical cavity surface emitting laser. IEICE Trans. E71-E, 1089–1090 (1988)

    Google Scholar 

  12. F. Koyama, S. Kinoshita, K. Iga, Room-temperature continuous wave lasing characteristics of a GaAs vertical cavity surface-emitting laser. Appl. Phys. Lett. 55, 221–222 (1989)

    ADS  Google Scholar 

  13. J.L. Jewell, A. Scherer, S.L. McCall, Y.H. Lee, S. Walker, J.P. Harbison, L.T. Florez, Low-threshold electrically pumped vertical-cavity surface-emitting microlasers. Electron. Lett. 25, 1123–1124 (1989)

    Google Scholar 

  14. M. Orenstein, A.C. Von Lehmen, C. Chang-Hasnain, N.G. Stoffel, J.P. Harbison, L.T. Florez, E. Clausen, J.E. Jewell, Vertical-cavity surface-emitting InGaAs/GaAs lasers with planar lateral definition. Appl. Phys. Lett. 56, 2384–2386 (1990)

    ADS  Google Scholar 

  15. B. Tell, Y.H. Lee, K.F. Brown-Goebeler, J.L. Jewell, R.E. Leibenguth, M.T. Asom, G. Livescu, L. Luther, V.D. Mattera, High-power cw vertical-cavity top surface-emitting GaAs quantum well lasers. Appl. Phys. Lett. 57, 1855–1857 (1990)

    ADS  Google Scholar 

  16. R. Szweda, VCSELs resurgent. III-Vs Rev. 17(8), 28–31 (2004)

    Google Scholar 

  17. R.S. Geels, S.W. Corzine, J.W. Scott, D.B. Young, L.A. Coldren, Low threshold planarized vertical-cavity surface-emitting lasers. IEEE Photon. Technol. Lett. 2, 234–236 (1990)

    ADS  Google Scholar 

  18. D.L. Huffaker, D.G. Deppe, K. Kumar, T.J. Rogers, Native-oxide defined ring contact for low threshold vertical-cavity lasers. Appl. Phys. Lett. 65, 97–99 (1994)

    ADS  Google Scholar 

  19. R.A. Morgan, J.A. Lehman, M.K. Hibbs-Brenner, Vertical-cavity surface-emitting lasers come of age, in Fabrication, Testing, and Reliability of Semiconductor Lasers, ed. by M. Fallahi, S.C. Wang. Proceedings of SPIE, vol. 2683 (1996), pp. 18–29

    Google Scholar 

  20. K.D. Choquette, H.Q. Hou, Vertical-cavity surface emitting lasers: moving from research to manufacturing. Proc. IEEE 85, 1730–1739 (1997)

    Google Scholar 

  21. K.L. Lear, K.D. Choquette, R.P. Schneider, S.P. Kilcoyne, K.M. Geib, Selectively oxidised vertical cavity surface emitting lasers with 50% power conversion efficiency. Electron. Lett. 31, 208–209 (1995)

    Google Scholar 

  22. B. Weigl, M. Grabherr, C. Jung, R. Jäger, G. Reiner, R. Michalzik, D. Sowada, K.J. Ebeling, High-performance oxide-confined GaAs VCSELs. IEEE J. Select. Topics Quantum Electron. 3, 409–415 (1997)

    Google Scholar 

  23. J.-F. Seurin, C.L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J.D. Wynn, P. Pradhan, L.A. D’Asaro, High-power high-efficiency 2D VCSEL arrays, in Vertical-Cavity Surface-Emitting Lasers XII, ed. by C. Lei, J.K. Guenter. Proceedings of SPIE, vol. 6908 (2008), pp. 690808-1–690808-14

    Google Scholar 

  24. K. Takaki, N. Iwai, S. Kamiya, H. Shimizu, K. Hiraiwa, S. Imai, Y. Kawakita, T. Takagi,T. Ishikawa, N. Tsukiji, A. Kasukawa, Experimental demonstration of low jitter performance and high reliable 1060 nm VCSEL arrays for 10Gbps x 12ch optical interconnection, in Vertical-Cavity Surface-Emitting Lasers XIV, ed. by J.K. Guenter, K.D. Choquette. Proceedings of SPIE, vol. 7615 (2010), pp. 761502-1–761502-8

    Google Scholar 

  25. K. Takaki, N. Iwai, K. Hiraiwa, S. Imai, H. Shimizu, T. Kageyama, Y. Kawakita, N. Tsukiji, A. Kasukawa, A recorded 62% PCE and low series and thermal resistance VCSEL with a double intra-cavity strucure, in 21st IEEE International Semiconductor Laser Conference, postdeadline paper PD 1.1. Sorrento, Sept. 2008

    Google Scholar 

  26. D.L. Huffaker, L.A. Graham, H. Deng, D.G. Deppe, Sub-40 \(\upmu\)A continuous-wave lasing in an oxidized vertical-cavity surface emitting laser with dielectric mirrors. IEEE Photon. Technol. Lett. 8, 974–976 (1996)

    Google Scholar 

  27. M. Grabherr, M. Miller, R. Jäger, R. Michalzik, U. Martin, H. Unold, K.J. Ebeling, High-power VCSEL’s: single devices and densely packed 2-D-arrays. IEEE J. Select. Topics Quantum Electron. 5, 495–502 (1999)

    Google Scholar 

  28. M. Miller, M. Grabherr, R. King, R. Jäger, R. Michalzik, K.J. Ebeling, Improved output performance of high-power VCSELs. IEEE J. Select. Topics Quantum Electron. 7, 210–216 (2001)

    Google Scholar 

  29. J.-F. Seurin, G. Xu, Q. Wang, B. Guo, R. Van Leeuwen, A. Miglo, P. Pradhan, J.D. Wynn,V. Khalfin, C. Ghosh, High-brightness pump sources using 2D VCSEL arrays, in Vertical-Cavity Surface-Emitting Lasers XIV, ed. by J.K. Guenter, K.D. Choquette. Proceedings of SPIE, vol. 7615 (2010), pp. 76150F-1–76150F-9

    Google Scholar 

  30. H.J. Unold, S.W.Z. Mahmoud, R. Jäger, M. Kicherer, M.C. Riedl, K.J. Ebeling, Improving single-mode VCSEL performance by introducing a long monolithic cavity. IEEE Photon. Technol. Lett. 10, 939–941 (2000)

    ADS  Google Scholar 

  31. I. Kardosh, F. Demaria, F. Rinaldi, S. Menzel, R. Michalzik, High-power single transverse mode vertical-cavity surface-emitting lasers with monolithically integrated curved dielectric mirrors. IEEE Photon. Technol. Lett. 20, 2084–2086 (2008)

    ADS  Google Scholar 

  32. A. Mooradian, High brightness cavity-controlled surface emitting GaInAs lasers operating at 980 nm, in Optical Fiber Communication Conference, OFC, postdeadline paper PD17. Anaheim, March 2001

    Google Scholar 

  33. M. Kuznetsov, F. Hakimi, R. Sprague, A. Mooradian, Design and characteristics of high-power (> 0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM\(_{00}\) beams. IEEE J. Select. Topics Quantum Electron. 5, 561–573 (1999)

    Google Scholar 

  34. I. Kardosh, F. Demaria, F. Rinaldi, M.C. Riedl, R. Michalzik, Electrically pumped frequency-doubled surface emitting lasers operating at 485 nm emission wavelength. Electron. Lett. 44, 524–525 (2008)

    Google Scholar 

  35. J.E. Cunningham, D.K. McElfresh, L.D. Lopez, D. Vacar, A.V. Krishnamoorthy, Scaling vertical-cavity surface-emitting laser reliability for petascale systems. Appl. Opt. 45, 6342–6348 (2006)

    ADS  Google Scholar 

  36. E.F. Schubert, Light-Emitting Diodes (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  37. A.D. Rakic, M.L. Majewski, Cavity and mirror design for vertical-cavity surface-emitting lasers, Chap. 8 in Vertical-Cavity Surface-Emitting Laser Devices, ed. by H. Li, K. Iga (Springer, Berlin, 2003), pp. 259–301

    Google Scholar 

  38. P. Debernardi, R. Orta, Analytical electromagnetic solution for Bragg mirrors with graded interfaces and guidelines for enhanced reflectivity. IEEE J. Quantum Electron. 43, 269–274 (2007)

    ADS  Google Scholar 

  39. D. Supper, G. Steinle, M. Ilzhöfer, C. Giuliani, C. Degen, A. Lima, A. Ramakrishnan, L. Korte, G. Ebbinghaus, G. Müller, Hybrid 1285 nm GaInNAs VCSELs with 1.2 mW singlemode output power at \( 85^\circ \hbox{C}.\) Semicond. Sci. Technol. 21, 1464–1466 (2006)

    Google Scholar 

  40. K.J. Ebeling, Integrated Optoelectronics (Springer, Berlin, 1993)

    Google Scholar 

  41. S.W. Corzine, R.H. Yan, L.A. Coldren, A tanh substitution technique for the analysis of abrupt and graded interface multilayer dielectric stacks. IEEE J. Quantum Electron. 27, 2086–2090 (1991)

    ADS  Google Scholar 

  42. P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988)

    Google Scholar 

  43. S. Adachi, GaAs, AlAs, and Al x Ga\(_{1-x}\)As: material parameters for use in research and device applications. J. Appl. Phys. 58, R1–R29 (1985)

    Google Scholar 

  44. D.I. Babić, S.W. Corzine, Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors. IEEE J. Quantum Electron. 28, 514–524 (1992)

    ADS  Google Scholar 

  45. L.A. Coldren, S.W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995)

    Google Scholar 

  46. S.W. Corzine, R.S. Geels, J.W. Scott, R.-H. Yan, L.A. Coldren, Design of Fabry–Perot surface-emitting lasers with a periodic gain structure. IEEE J. Quantum Electron. 25, 1513–1524 (1989)

    ADS  Google Scholar 

  47. P.W.A. McIlroy, A. Kurobe, Y. Uematsu, Analysis and application of theoretical gain curves to the design of multi-quantum-well lasers. IEEE J. Quantum Electron. 21, 1958–1963 (1985)

    ADS  Google Scholar 

  48. E.R. Hegblom, D.I. Babic, B.J. Thibeault, L.A. Coldren, Scattering losses from dielectric apertures in vertical-cavity lasers. IEEE J. Select. Topics Quantum Electron. 3, 379–389 (1997)

    Google Scholar 

  49. M. Born, E. Wolf, Principles of Optics, 6th edn. (Pergamon Press, Oxford, 1989)

    Google Scholar 

  50. K.J. Ebeling, L.A. Coldren, Analysis of multielement semiconductor lasers. J. Appl. Phys. 54, 2962–2969 (1983)

    ADS  Google Scholar 

  51. M. Sugimoto, H. Kosaka, K. Kurihara, I. Ogura, T. Numai, K. Kasahara, Very low threshold current density in vertical-cavity surface-emitting laser diodes with periodically doped distributed Bragg reflectors. Electron. Lett. 28, 385–387 (1992)

    Google Scholar 

  52. K.L. Lear, R.P. Schneider, K.D. Choquette, S.P. Kilcoyne, J. Figiel, J.C. Zolper, Vertical cavity surface emitting lasers with 21% efficiency by metalorganic vapor phase epitaxy. IEEE Photon. Technol. Lett. 6, 1053–1055 (1994)

    ADS  Google Scholar 

  53. W. Schmid, D. Wiedenmann, M. Grabherr, R. Jäger, R. Michalzik, K.J. Ebeling, CW operation of a diode cascade InGaAs quantum well VCSEL. Electron. Lett. 34, 553–555 (1998)

    Google Scholar 

  54. T. Knödl, M. Golling, A. Straub, R. Jäger, R. Michalzik, K.J. Ebeling, Multistage bipolar cascade vertical-cavity surface-emitting lasers: theory and experiment. IEEE J. Select. Topics Quantum Electron. 9, 1406–1414 (2003)

    Google Scholar 

  55. H.C. Casey Jr., M.B. Panish, Heterostructure Lasers, Part A: Fundamental Principles (Academic Press, Orlando, 1978)

    Google Scholar 

  56. R. Michalzik, K.J. Ebeling, Modeling and design of proton-implanted ultralow-threshold vertical-cavity laser diodes. IEEE J. Quantum Electron. 29, 1963–1974 (1993)

    ADS  Google Scholar 

  57. K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic, Dordrecht, 1991)

    Google Scholar 

  58. G. Reiner, E. Zeeb, B. Möller, M. Ries, K.J. Ebeling, Optimization of planar Be-doped InGaAs VCSELs with two-sided output. IEEE Photon. Technol. Lett. 7, 730–732 (1995)

    ADS  Google Scholar 

  59. L. Li, G. Liu, Z. Li, M. Li, H. Li, X. Wang, C. Wan, High-efficiency 808-nm InGaAlAs–AlGaAs double-quantum-well semiconductor lasers with asymmetric waveguide structures. IEEE Photon. Technol. Lett. 20, 566–568 (2008)

    Google Scholar 

  60. K.D. Choquette, K.M. Geib, C.I.H. Ashby, R.D. Twesten, O. Blum, H.Q. Hou, D.M. Follstaedt, B.E. Hammons, D. Mathes, R. Hull, Advances in selective wet oxidation of AlGaAs alloys. IEEE J. Select. Topics Quantum Electron. 3, 916–926 (1997)

    Google Scholar 

  61. B. Weigl, M. Grabherr, G. Reiner, K.J. Ebeling, High efficiency selectively oxidised MBE grown vertical-cavity surface-emitting lasers. Electron. Lett. 32, 557–558 (1996)

    Google Scholar 

  62. R. Michalzik, M. Grabherr, R. Jäger, M. Miller, K.J. Ebeling, Progress in high-power VCSELs and arrays, in Optoelectronic Materials and Devices, ed. by M. Osiński, Y.-K. Su. Proceedings of SPIE, vol. 3419 (1998), pp. 187–195

    Google Scholar 

  63. C. Jung, R. Jäger, M. Grabherr, P. Schnitzer, R. Michalzik, B. Weigl, S. Müller,K.J. Ebeling, 4.8 mW single-mode oxide confined top-surface emitting vertical-cavity laser diodes. Electron. Lett. 33, 1790–1791 (1997)

    Google Scholar 

  64. C.J. Chang-Hasnain, J.P. Harbison, C.-E. Zah, M.W. Maeda, L.T. Florez, N.G. Stoffel, T.-P. Lee, Multiple wavelength tunable surface-emitting laser arrays. IEEE J. Quantum Electron. 27, 1368–1376 (1991)

    ADS  Google Scholar 

  65. J. Cheng, P. Zhou, S.Z. Sun, S. Hersee, D.R. Myers, J. Zolper, G.A. Vawter, Surface-emitting laser-based smart pixels for two-dimensional optical logic and reconfigurable optical interconnects. IEEE J. Quantum Electron. 29, 741–756 (1993)

    ADS  Google Scholar 

  66. S.E. Swirhun, R.P. Bryan, W.S. Fu, W.E. Quinn, J.L. Jewell, G.R. Olbright, Commercial manufacturing of vertical-cavity surface-emitting laser arrays, in Vertical-Cavity Surface-Emitting Laser Arrays, ed. by J.L. Jewell. Proceedings of SPIE, vol. 2147 (1994), pp. 74–84

    Google Scholar 

  67. S. Matsuo, T. Nakahara, Y. Kohama, Y. Ohiso, S. Fukushima, T. Kurokawa, A monolithically integrated smart pixel using an MSM-PD, MESFET’s, and a VCSEL. IEEE J. Select. Topics Quantum Electron. 2, 121–127 (1996)

    Google Scholar 

  68. Y. Liu, M. Hibbs-Brenner, B. Morgan, J. Nohava, B. Walterson, T. Marta, S. Bounnak,E. Kalweit, J. Lehman, D. Carlson, P. Wilson, Integrated VCSELs, MSM photodetectors, and GaAs MESFETs for low cost optical interconnects, in OSA Trends in Optics and Photonics, Advances in Vertical Cavity Surface Emitting Lasers, vol. 15, ed. by C.J. Chang-Hasnain (Optical Society of America, Washington, DC 1997), pp. 196–198

    Google Scholar 

  69. H. Kosaka, M. Kajita, M. Yamada, Y. Sugimoto, K. Kurata, T. Tanabe, Y. Kasukawa, Plastic-based receptacle-type VCSEL-array modules with one and two dimensions fabricated using the self-alignment mounting technique, in Proceedings of 47th Electronic Components and Technology Conference, ECTC. San Jose, May 1997, pp. 382–390

    Google Scholar 

  70. S.Y. Hu, S.Z. Zhang, J. Ko, J.E. Bowers, L.A. Coldren, 1.5 Gbit/s/channel operation of multiple-wavelength vertical-cavity photonic integrated emitter arrays for low-cost multimode WDM local-area networks. Electron. Lett. 34, 768–770 (1998)

    Google Scholar 

  71. R. King, R. Michalzik, D. Wiedenmann, R. Jäger, P. Schnitzer, T. Knödl, K.J. Ebeling, 2D VCSEL arrays for chip-level optical interconnects, in Optoelectronic Interconnects VI, ed. by J.P. Bristow, S. Tang. Proceedings of SPIE, vol. 3632 (1999), pp. 363–372

    Google Scholar 

  72. R. Michalzik, R. King, R. Jäger, S. Müller, K.J. Ebeling, VCSEL arrays for CMOS integrated optical interconnect systems, in Optoelectronic and Wireless Data Management, Processing, Storage, and Retrieval, ed. by R. Raymond, P.K. Srimani, R. Su, C.W. Wilmsen. Proceedings of SPIE, vol. 4534 (2001), pp. 101–113

    Google Scholar 

  73. J. Piprek, Y.A. Akulova, D.I. Babic, L.A. Coldren, J.E. Bowers, Minimum temperature sensitivity of \(1.55\,\upmu\)m vertical-cavity lasers at \(-30\) nm gain offset. Appl. Phys. Lett. 72, 1814–1816 (1998)

    Google Scholar 

  74. W. Nakwaski, M. Osiński, Thermal resistance of top-surface-emitting vertical-cavity semiconductor lasers and monolithic two-dimensional arrays. Electron. Lett. 28, 572–574 (1992) (corrected in Electron. Lett. 28, 1283 (1992))

    Google Scholar 

  75. H. Roscher, R. Michalzik, Toward redundant 2-D VCSEL arrays for optical datacom, in Micro-Optics, VCSELs, and Photonic Interconnects, ed. by H. Thienpont, K.D. Choquette, M.R. Taghizadeh. Proceedings of SPIE, vol. 5453 (2004), pp. 170–181

    Google Scholar 

  76. A.E. Siegman, Lasers (University Science Books, Mill Valley, 1986)

    Google Scholar 

  77. E. Zeeb, B. Möller, G. Reiner, M. Ries, T. Hackbarth, K.J. Ebeling, Planar proton implanted VCSEL’s and fiber-coupled 2-D VCSEL arrays. IEEE J. Select. Topics Quantum Electron. 1, 616–623 (1995)

    Google Scholar 

  78. M.H. MacDougal, H. Zhao, P.D. Dapkus, M. Ziari, W.H. Steier, Wide-bandwidth distributed Bragg reflectors using oxide/GaAs multilayers. Electron. Lett. 30, 1147–1148 (1994)

    Google Scholar 

  79. G.R. Hadley, Effective index model for vertical-cavity surface-emitting lasers. Opt. Lett. 20, 1483–1485 (1995)

    ADS  Google Scholar 

  80. D. Marcuse, Light Transmission Optics, 2nd edn. (Van Nostrand Reinhold, New York, 1982)

    Google Scholar 

  81. R. Michalzik, K.J. Ebeling, Generalized BV diagrams for higher order transverse modes in planar vertical-cavity laser diodes. IEEE J. Quantum Electron. 31, 1371–1379 (1995)

    ADS  Google Scholar 

  82. J.H. Shin, Y.G. Ju, H.E. Shin, Y.H. Lee, Spontaneous emission factor of oxidized vertical-cavity surface-emitting lasers from the measured below-threshold cavity loss. Appl. Phys. Lett. 70, 2344–2346 (1997)

    ADS  Google Scholar 

  83. K.Y. Lau, Dynamics of quantum well lasers, in Quantum Well Lasers, ed. by P.S. Zory Jr. (Academic Press, Boston, 1993)

    Google Scholar 

  84. R. Nagarajan, M. Ishikawa, T. Fukushima, R.S. Geels, J.E. Bowers, High speed quantum-well lasers and carrier transport effects. IEEE J. Quantum Electron. 28, 1990–2008 (1992)

    ADS  Google Scholar 

  85. R. Olshansky, P. Hill, V. Lanzisera, W. Powazniak, Frequency response of \(1.3\,\upmu\)m InGaAsP high speed quantum-well semiconductor lasers. IEEE J. Quantum Electron. 23, 1410–1418 (1987)

    ADS  Google Scholar 

  86. D. Wiedenmann, R. King, C. Jung, R. Jäger, R. Michalzik, P. Schnitzer, M. Kicherer,K.J. Ebeling, Design and analysis of single-mode oxidized VCSEL’s for high-speed optical interconnects. IEEE J. Select. Topics Quantum Electron. 5, 503–511 (1999)

    Google Scholar 

  87. K.L. Lear, V.M. Hietala, H.Q. Hou, M. Ochiai, J.J. Banas, B.E. Hammons, J.C. Zolper,S.P. Kilcoyne, Small and large signal modulation of 850 nm oxide-confined vertical cavity surface emitting lasers, in OSA Trends in Optics and Photonics, Advances in Vertical Cavity Surface Emitting Lasers, vol. 15, ed. by C.J. Chang-Hasnain (Optical Society of America, Washington, DC, 1997), pp. 69–74

    Google Scholar 

  88. B.J. Thibeault, K. Bertilsson, E.R. Hegblom, E. Strzelecka, P.D. Floyd, R. Naone, L.A. Coldren, High-speed characteristics of low-optical loss oxide-apertured vertical-cavity lasers. IEEE Photon. Technol. Lett. 9, 11–13 (1997)

    ADS  Google Scholar 

  89. J.D. Ralston, S. Weisser, I. Esquivias, E.C. Larkins, J. Rosenzweig, P.J. Tasker, J. Fleissner, Control of differential gain, nonlinear gain, and damping factor for high-speed application of GaAs-based MQW lasers. IEEE J. Quantum Electron. 29, 1648–1659 (1993)

    ADS  Google Scholar 

  90. T. Takahashi, M. Nishioka, Y. Arakawa, Differential gain of GaAs/AlGaAs quantum well and modulation-doped quantum well lasers. Appl. Phys. Lett. 58, 4–6 (1991)

    ADS  Google Scholar 

  91. A. Al-Samaneh, S. Renz, A. Strodl, W. Schwarz, D. Wahl, R. Michalzik, Polarization-stable single-mode VCSELs for Cs-based MEMS atomic clock applications, in Semiconductor Lasers and Laser Dynamics IV, ed. by K.P. Panayotov, M. Sciamanna, A.A. Valle,R. Michalzik. Proceedings of SPIE, vol. 7720 (2010), pp. 772006-1–772006-14

    Google Scholar 

  92. D.C. Kilper, P.A. Roos, J.L. Carlsen, K.L. Lear, Squeezed light generated by a microcavity laser. Phys. Rev. A 55, 3323–3326 (1997)

    ADS  Google Scholar 

  93. D. Wiedenmann, P. Schnitzer, C. Jung, M. Grabherr, R. Jäger, R. Michalzik, K.J. Ebeling, Noise characteristics of 850 nm single-mode vertical cavity surface emitting lasers. Appl. Phys. Lett. 73, 717–719 (1998)

    ADS  Google Scholar 

  94. C.H. Henry, Phase noise in semiconductor lasers. J. Lightwave Technol. 4, 298–311 (1986)

    ADS  Google Scholar 

  95. W. Schmid, C. Jung, B. Weigl, G. Reiner, R. Michalzik, K.J. Ebeling, Delayed self-heterodyne linewidth measurement of VCSEL’s. IEEE Photon. Technol. Lett. 8, 1288–1290 (1996)

    ADS  Google Scholar 

  96. D.K. Serkland, G.A. Keeler, K.M. Geib, G.M. Peake, Narrow linewidth VCSELs for high-resolution spectroscopy, in Vertical-Cavity Surface-Emitting Lasers XIII, ed. by K.D. Choquette, C. Lei. Proceedings of SPIE, vol. 7229 (2009), pp. 722907-1–722907-8

    Google Scholar 

  97. F. Monti di Sopra, H.P. Zappe, M. Moser, R. Hövel, H.-P. Gauggel, K. Gulden, Near-infrared vertical-cavity surface-emitting lasers with 3-MHz linewidth. IEEE Photon. Technol. Lett. 11, 1533–1535 (1999)

    Google Scholar 

  98. C. Affolderbach, A. Nagel, S. Knappe, C. Jung, D. Wiedenmann, R. Wynands, Nonlinear spectroscopy with a vertical-cavity surface-emitting laser (VCSEL). Appl. Phys. B 70, 407–413 (2000)

    ADS  Google Scholar 

  99. D.K. Serkland, G.M. Peake, K.M. Geib, R. Lutwak, R.M. Garvey, M. Varghese, M. Mescher, VCSELs for atomic clocks, in Vertical-Cavity Surface-Emitting Lasers X, ed. by C. Lei, K.D. Choquette. Proceedings of SPIE, vol. 6132 (2006), pp. 613208-1–613208-11

    Google Scholar 

  100. D.K. Serkland, K.M. Geib, G.M. Peake, R. Lutwak, A. Rashed, M. Varghese, G. Tepolt, M. Prouty, VCSELs for atomic sensors, in Vertical-Cavity Surface-Emitting Lasers XI, ed. by K.D. Choquette, J.K. Guenter. Proceedings of SPIE, vol. 6484 (2007), pp. 648406-1–648406-10

    Google Scholar 

  101. H.P. Zappe, F. Monti di Sopra, H.-P. Gauggel, K. Gulden, R. Hövel, M. Moser, High-spectral-purity VCSELs for spectroscopy and sensors, in Laser Diodes and LEDs in Industrial, Measurement, Imaging, and Sensors Applications II, ed. by G.T. Burnham, X. He, K.J. Linden, S.C. Wang. Proceedings of SPIE, vol. 3945 (2000), pp. 106–116

    Google Scholar 

  102. J.M. Ostermann, F. Rinaldi, P. Debernardi, R. Michalzik, VCSELs with enhanced single-mode power and stabilized polarization for oxygen sensing. IEEE Photon. Technol. Lett. 17, 2256–2258 (2005)

    ADS  Google Scholar 

  103. B. Scherer, J. Wöllenstein, M. Weidemüller, W. Salzmann, J.M. Ostermann, F. Rinaldi, R. Michalzik, Measurement of the pressure broadening coefficients of the oxygen A-band using a low cost, polarization stabilized, widely tunable vertical-cavity surface-emitting laser. Microsyst. Technol. 14, 607–614 (2008)

    Google Scholar 

  104. R. Michalzik, J.M. Ostermann, P. Debernardi, Polarization-stable monolithic VCSELs, in Vertical-Cavity Surface-Emitting Lasers XII, ed. by C. Lei, J.K. Guenter. Proceedings of SPIE, vol. 6908 (2008), pp. 69080A-1–69080A-16

    Google Scholar 

  105. H. Willebrand, B.S. Ghuman, Free-Space Optics: Enabling Optical Connectivity in Today’s Networks (Sams Publishing, Indianapolis, 2001)

    Google Scholar 

  106. S. Sinzinger, J. Jahns, Microoptics (Wiley-VCH, Weinheim, 1999)

    Google Scholar 

  107. M. Vervaeke, C. Debaes, B. Volckaerts, H. Thienpont, Optomechanical Monte Carlo tolerancing study of a packaged free-space intra-MCM optical interconnect system. IEEE J. Select. Topics Quantum Electron. 12, 988–996 (2006)

    Google Scholar 

  108. G.P. Agrawal, Fiber-Optic Communication Systems, 3rd edn. (Wiley, New York, 2002)

    Google Scholar 

  109. E. Mohammed, H. Au, 200 Gb/s 10-channel miniature optical interconnect transmitter module for high performance computing (HPC), in Optoelectronic Interconnects and Component Integration X, ed. by A.L. Glebov, R.T. Chen. Proceedings of SPIE, vol. 7607 (2010), pp. 760709-1–760709-12

    Google Scholar 

  110. K. Yashiki, Y. Hashimoto, M. Oda, N. Suzuki, K. Yamamoto, M. Kurihara, T. Sugimoto, H. Hatakeyama, J. Sakai, T. Akagawa, K. Narita, H. Ono, K. Fukatsu, K. Tokutome,H. Kouta, M. Tsuji, I. Ogura, A. Noda, T. Anan, Y. Suzuki, K. Kurata, 240-Gb/s on-board optical transmitters and receivers, in Proceedings of Optical Fiber Communication Conference, OFC, paper OTuM4. San Diego, March 2010

    Google Scholar 

  111. R. Michalzik, G. Giaretta, K.W. Goossen, J.A. Walker, M.C. Nuss, 40 Gb/s coarse WDM data transmission with 825 nm wavelength VCSELs over 310 m of high-performance multimode fiber, in Proceedings of 26th European Conference on Optical Communications, ECOC, vol. 4. Munich, Sept. 2000, pp. 33–34

    Google Scholar 

  112. R. Michalzik, Optical backplanes, board and chip interconnects, Chap. 6 in Fiber Optic Data Communication: Technological Trends and Advances, ed. by C. DeCusatis (Academic Press, San Diego, 2002), pp. 216–269

    Google Scholar 

  113. R. Michalzik, Optical backplanes, board and chip interconnects, Chap. 26 in Handbook of Fiber Optic Data Communication: A Practical Guide to Optical Networking, 3rd edn., ed. by C. DeCusatis (Elsevier, San Diego, 2008), pp. 657–676

    Google Scholar 

  114. S. Nemoto, T. Makimoto, Analysis of splice loss in single-mode fibres using a Gaussian field approximation. Opt. and Quant. Electron. 11, 447–457 (1979)

    Google Scholar 

  115. P. Schnitzer, R. Jäger, C. Jung, R. Michalzik, D. Wiedenmann, F. Mederer, K.J. Ebeling, Biased and bias-free multi-Gb/s data links using GaAs VCSEL’s and 1300-nm single-mode fiber. IEEE Photon. Technol. Lett. 10, 1781–1783 (1998)

    ADS  Google Scholar 

  116. K.J. Ebeling, Optical interconnects and data links with vertical cavity surface emitting laser diodes (VCSEL), in Proceedings of 21st European Conference on Optical Communications, ECOC, vol. 4. Brussels, Sept. 1995, pp. 113–147

    Google Scholar 

  117. J. Heinrich, E. Zeeb, K.J. Ebeling, Transverse modes under external feedback and fiber coupling efficiencies of VCSEL’s. IEEE Photon. Technol. Lett. 10, 1365–1367 (1998)

    ADS  Google Scholar 

  118. R. Michalzik, P. Schnitzer, U. Fiedler, D. Wiedenmann, K.J. Ebeling, High-bit-rate data transmission with short-wavelength oxidized VCSEL’s: toward bias-free operation. IEEE J. Select. Topics Quantum Electron. 3, 396–404 (1997)

    Google Scholar 

  119. P. Schnitzer, M. Grabherr, R. Jäger, C. Jung, K.J. Ebeling, Bias-free 2.5 Gbit/s data transmission using polyimide passivated GaAs VCSELs. Electron. Lett. 34, 573–575 (1998)

    Google Scholar 

  120. K.H. Hahn, M.R. Tan, Y.M. Houng, S.Y. Wang, Large area multitransverse-mode VCSELs for modal noise reduction in multimode fibre systems. Electron. Lett. 29, 1482–1484 (1993)

    Google Scholar 

  121. D.M. Kuchta, C.J. Mahon, Mode selective loss penalties in VCSEL optical fiber transmission links. IEEE Photon. Technol. Lett. 6, 288–290 (1994)

    ADS  Google Scholar 

  122. D. Wiedenmann, M. Grabherr, C. Jung, R. Jäger, R. Michalzik, P. Schnitzer, K.J. Ebeling, Feedback insensitive 3 Gb/s fiber interconnect with low noise single-mode VCSEL, in Proceedings of 24th European Conference on Optical Communications, ECOC, vol. 1. Madrid, Sept. 1998, pp. 457–458

    Google Scholar 

  123. U. Fiedler, G. Reiner, P. Schnitzer, K.J. Ebeling, Top-surface emitting vertical-cavity laser diodes for 10 Gbit/s data transmission. IEEE Photon. Technol. Lett. 8, 746–748 (1996)

    ADS  Google Scholar 

  124. S. Bottacchi, Multi-Gigabit Transmission Over Multimode Optical Fibre: Theory and Design Methods for 10GbE Systems (Wiley, Chichester, 2006)

    Google Scholar 

  125. R. Michalzik, G. Giaretta, A.J. Ritger, Q.L. Williams, 10 Gb/s VCSEL based data transmission over 1.6 km of new generation 850 nm multimode fiber. IEEE Lasers and Electro-Optics Society Annual Meeting, LEOS, postdeadline paper PD1.6. San Francisco, Nov. 1999

    Google Scholar 

  126. G. Giaretta, R. Michalzik, A.J. Ritger, Long distance (2.8 km), short wavelength (\(0.85\,\upmu\hbox{m}\)) data transmission at 10 Gb/sec over new generation high bandwidth multimode fiber, Conference on Lasers and Electro-Optics, CLEO, postdeadline paper CPD13. San Francisco, May 2000

    Google Scholar 

  127. P. Pepeljugoski, S.E. Golowich, A.J. Ritger, P. Kolesar, A. Risteski, Modeling and simulation of next-generation multimode fiber links. J. Lightwave Technol. 21, 1242–1255 (2003)

    ADS  Google Scholar 

  128. P. Pepeljugoski, D. Kuchta, Y. Kwark, P. Pleunis, G. Kuyt, 15.6-Gb/s transmission over 1 km of next generation multimode fiber. IEEE Photon. Technol. Lett. 14, 717–719 (2002)

    ADS  Google Scholar 

  129. P. Matthijsse, G. Kuyt, F. Gooijer, F. Achten, R. Freund, L. Molle, C. Caspar, T. Rosin,D. Schmidt, A. Beling, T. Eckhardt, Multimode fiber enabling 40 Gbit/s multi-mode transmission over distances \({>}400\,\hbox{m},\) in Proceedings of Optical Fiber Communication Conference, OFC, paper OWI13. Anaheim, March 2006

    Google Scholar 

  130. S.S.-H. Yam, F. Achten, Single wavelength 40 Gbit/s transmission over 3.4 km broad wavelength window multimode fibre. Electron. Lett. 42, 592–594 (2006)

    Google Scholar 

  131. P. Pepeljugoski, M.J. Hackert, J.S. Abbott, S.E. Swanson, S.E. Golowich, A.J. Ritger,P. Kolesar, Y.C. Chen, P. Pleunis, Development of system specification for laser-optimized 50-\(\upmu\)m multimode fiber for multigigabit short-wavelength LANs. J. Lightwave Technol. 21, 1256–1275 (2003)

    Google Scholar 

  132. J.B. Schlager, M.J. Hackert, P. Pepeljugoski, J. Gwinn, Measurements for enhanced bandwidth performance over 62.5-\(\upmu\)m multimode fiber in short-wavelength local area networks.J. Lightwave Technol. 21, 1276–1285 (2003)

    Google Scholar 

  133. C.-A. Bunge, J.-R. Kropp, K. Petermann, Study of simplified test procedure for 10-GB-Ethernet fibers. IEEE Photon. Technol. Lett. 14, 1539–1541 (2002)

    ADS  Google Scholar 

  134. A.M.E.-A. Diab, J.D. Ingham, R.V. Penty, I.H. White, 10-Gb/s transmission on single-wavelength multichannel SCM-based FDDI-grade MMF links at lengths over 300 m: a statistical investigation. J. Lightwave Technol. 25, 2976–2983 (2007)

    ADS  Google Scholar 

  135. X. Zhao, F.S. Choa, Demonstration of 10-Gb/s transmission over a 1.5-km-long multimode fiber using equalization techniques. IEEE Photon. Technol. Lett. 14, 1187–1189 (2002)

    ADS  Google Scholar 

  136. J.D. Ingham, R.V. Penty, I.H. White, D.G. Cunningham, Electronic equalisation for length extension of \(\,{\times}2\;\hbox{to}\,{\times}3\) in 10 Gbit/s multimode-fibre datacommunication links. Electron. Lett 40, 1437–1439 (2004)

    Google Scholar 

  137. C. Xia, M. Ajgaonkar, W. Rosenkranz, On the performance of the electrical equalization technique in MMF links for 10-Gigabit Ethernet. J. Lightwave Technol. 23, 2001–2011 (2005)

    ADS  Google Scholar 

  138. P. Pepeljugoski, J.A. Tierno, A. Risteski, S.K. Reynolds, L. Schares, Performance of simulated annealing algorithm in equalized multimode fiber links with linear equalizers. J. Lightwave Technol. 24, 4235–4249 (2006)

    ADS  Google Scholar 

  139. K. Balemarthy, A. Polley, S.E. Ralph, Electronic equalization of multikilometer 10-Gb/s multimode fiber links: mode-coupling effects. J. Lightwave Technol. 24, 4885–4894 (2006)

    ADS  Google Scholar 

  140. Y. Sun, P. Hallemeier, H. Ereifej, O.V. Sinkin, B.S. Marks, C.R. Menyuk, Statistics of electrical dispersion compensator penalties of 10-Gb/s multimode fiber links with offset connectors. IEEE Photon. Technol. Lett. 19, 689–691 (2007)

    ADS  Google Scholar 

  141. J.D. Ingham, R.V. Penty, I.H. White, Transmitter-based equalisation for extended-reach multimode-fibre datacommunication links. Electron. Lett. 43, 240–242 (2007)

    Google Scholar 

  142. H.R. Stuart, Dispersive multiplexing in multimode optical fiber. Science 289, 281–283 (2000)

    ADS  Google Scholar 

  143. C.P. Tsekrekos, M. de Boer, A. Martinez, F.M.J. Willems, A.M.J. Koonen, Temporal stability of a transparent mode group diversity multiplexing link. IEEE Photon. Technol. Lett. 18, 2484–2486 (2006)

    ADS  Google Scholar 

  144. M. Greenberg, M. Nazarathy, M. Orenstein, Data parallelization by optical MIMO transmission over multimode fiber with intermodal coupling. J. Lightwave Technol. 25, 1503–1514 (2007)

    ADS  Google Scholar 

  145. K.M. Patel, A. Polley, K. Balemarthy, S.E. Ralph, Spatially resolved detection and equalization of modal dispersion limited multimode fiber links. J. Lightwave Technol. 24, 2629–2636 (2006)

    ADS  Google Scholar 

  146. X. Shen, J.M. Kahn, M.A. Horowitz, Compensation for multimode fiber dispersion by adaptive optics. Opt. Lett. 30, 2985–2987 (2005)

    ADS  Google Scholar 

  147. R.A. Panicker, J.P. Wilde, J.M. Kahn, D.F. Welch, I. Lyubomirsky, \(10 \times 10\) Gb/s DWDM transmission through 2.2-km multimode fiber using adaptive optics. IEEE Photon. Technol. Lett. 19, 1154–1156 (2007)

    Google Scholar 

  148. N. Guan, K. Takenaga, S. Matsuo, K. Himeno, Multimode fibers for compensating intermodal dispersion of graded-index multimode fibers. J. Lightwave Technol. 22, 1714–1719 (2004)

    ADS  Google Scholar 

  149. D.G. Cunningham, I.H. White, Does multimode fibre have a future in data-communications? Electron. Lett. 43, 63–65 (2007)

    Google Scholar 

  150. L.B. Aronson, B.E. Lemoff, L.A. Buckman, D.W. Dolfi, Low-cost multimode WDM for local area networks up to 10 Gb/s. IEEE Photon. Technol. Lett. 10, 1489–1491 (1998)

    ADS  Google Scholar 

  151. E.B. Grann, K. Herrity, B.C. Peters, B. Wiedemann, Datacom applications for new VCSEL technologies, in Vertical-Cavity Surface-Emitting Lasers IV, ed. by K.D. Choquette, C. Lei. Proceedings of SPIE, vol. 3946 (2000), pp. 165–169

    Google Scholar 

  152. E. Wendt, Passing the test: the secret of success in 10 GbE, FibreSystems Europe/LIGHT- WAVE Europe, pp. 16–19, May 2005

    Google Scholar 

  153. G. Giaretta, F. Mederer, R. Michalzik, W. White, R. Jäger, G. Shevchuk, T. Onishi, M. Naritomi, R. Yoshida, P. Schnitzer, H. Unold, M. Kicherer, K. Al-Hemyari, J.A. Valdmanis, M. Nuss, X. Quan, K.J. Ebeling, Demonstration of 500 nm-wide transmission window at multi-Gb/s data rates in low-loss plastic optical fiber, in Proceedings of 25th European Conference on Optical Communications, ECOC, vol. II. Nice, Sept. 1999, pp. 240–241

    Google Scholar 

  154. Y. Koike, T. Ishigure, High-bandwidth plastic optical fiber for fiber to the display. J. Lightwave Technol. 24, 4541–4553 (2006)

    ADS  Google Scholar 

  155. A. Polley, S.E. Ralph, 100 m, 40 Gb/s plastic optical fiber link, in Proceedings of Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference 2008, OFC/NFOEC 2008, paper OWB2. San Diego, Feb. 2008

    Google Scholar 

  156. A. Polley, S.E. Ralph, Mode coupling in plastic optical fiber enables 40-Gb/s performance. IEEE Photon. Technol. Lett. 19, 1254–1256 (2007)

    ADS  Google Scholar 

  157. R. Michalzik, A. Kern, M. Stach, F. Rinaldi, D. Wahl, True bidirectional optical interconnects over multimode fiber, in Optoelectronic Interconnects and Component Integration X, ed. by A.L. Glebov, R.T. Chen. Proceedings of SPIE, vol. 7607 (2010), pp. 76070B-1–76070B-17

    Google Scholar 

  158. A. Kern, S. Paul, D. Wahl, R. Blood, W. Schwarz, R. Michalzik, Bidirectional multimode fiber interconnection at Gbit/s data rates with monolithically integrated VCSEL–PIN transceiver chips. IEEE Photon. Technol. Lett. 23, 1058–1060 (2011)

    Google Scholar 

  159. A. Kern, S. Paul, D. Wahl, A. Al-Samaneh, R. Michalzik, Single-fiber bidirectional optical data links with monolithic transceiver chips. Advances in Optical Technologies, Special Issue on Recent Advances in Semiconductors Surface-Emitting Lasers, Article ID 729731 (2011)

    Google Scholar 

Download references

Acknowledgments

The author would like to thank all former and present members of the VCSEL team of Ulm University for many years of successful device and systems research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Michalzik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Michalzik, R. (2013). VCSEL Fundamentals. In: Michalzik, R. (eds) VCSELs. Springer Series in Optical Sciences, vol 166. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24986-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24986-0_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24985-3

  • Online ISBN: 978-3-642-24986-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics