Skip to main content

VCSELs: A Research Review

  • Chapter
  • First Online:
VCSELs

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 166))

Abstract

This chapter attempts to briefly review the research history of vertical-cavity surface-emitting lasers (VCSELs). Based on the contents of previous monographs on VCSELs written in English, we motivate the selection of topics in the present book and give an introduction to the individual chapters. Moreover, we mention some other research that is not covered in a dedicated chapter in order to provide the readers with even deeper insights into VCSEL research. Future directions and opportunities are also indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Readers who are not very familiar with VCSELs yet will find it helpful to study also Chap. 2 of this book, where we discuss many of the terms that are mentioned here in much greater detail.

  2. 2.

    In similar form, this quote can be attributed to Mark Twain, Winston Churchill, Karl Valentin, and perhaps others.

  3. 3.

    Based on similar physical principles as the laser mouse, optical finger navigation in mobile phones is gaining acceptance and might find widespread use in electronic equipment like music players, digital cameras, or keyboards.

  4. 4.

    This quote is attributed to Horace Walpole.

References

  1. H. Soda, K. Iga, C. Kitahara, Y. Suematsu, GaInAsP/InP surface emitting injection lasers. Jpn. J. Appl. Phys. 18, 2329–2330 (1979)

    Article  Google Scholar 

  2. I. Melngailis, Longitudinal injection-plasma laser of InSb. Appl. Phys. Lett. 6, 59–60 (1965)

    Article  ADS  Google Scholar 

  3. T.E. Sale, Vertical Cavity Surface Emitting Lasers (Taunton Research Studies Press, Somerset, 1995)

    Google Scholar 

  4. T.P. Lee (ed.), Current Trends in Vertical Cavity Surface Emitting Lasers (World Scientific Publishing, Singapore, 1995)

    Google Scholar 

  5. C. Wilmsen, H. Temkin, L.A. Coldren (eds.), Vertical-Cavity Surface-Emitting Lasers (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  6. J. Cheng, N.K. Dutta (eds.), Vertical-Cavity Surface-Emitting Lasers: Technology and Applications (Gordon and Breach Publishing, Amsterdam, 2000)

    Google Scholar 

  7. S.F. Yu, Analysis and Design of Vertical Cavity Surface Emitting Lasers (Wiley, Hoboken, 2003)

    Book  Google Scholar 

  8. H. Li, K. Iga (eds.), Vertical-Cavity Surface-Emitting Laser Devices (Springer, Berlin, 2003)

    Google Scholar 

  9. G.A. Evans, J.M. Hammer (eds.), Surface Emitting Semiconductor Lasers and Arrays (Academic Press, San Diego, 1993)

    Google Scholar 

  10. T.E. Sale, Vertical Cavity Surface Emitting Lasers. Ph.D. Thesis, University of Sheffield, 1993

    Google Scholar 

  11. J.L. Jewell, A. Scherer, S.L. McCall, Y.H. Lee, S. Walker, J.P. Harbison, L.T. Florez, Low-threshold electrically pumped vertical-cavity surface-emitting microlasers. Electron. Lett. 25, 1123–1124 (1989)

    Google Scholar 

  12. S.W. Corzine, R.S. Geels, J.W. Scott , R.-H. Yan, L.A. Coldren, Design of Fabry-Perot surface-emitting lasers with a periodic gain structure. IEEE J. Quantum Electron. 25, 1513–1524 (1989)

    Google Scholar 

  13. M.Y.A. Raja, S.R.J. Brueck, M. Osiński, C.F. Schaus, J.G. McInerney, T.M. Brennan, B.E. Hammons, Resonant periodic gain surface-emitting semiconductor lasers. IEEE J. Quantum Electron. 25, 1500–1512 (1989)

    Article  ADS  Google Scholar 

  14. O.G. Okhotnikov (ed.), Semiconductor Disk Lasers (Wiley-VCH, Weinheim, 2010)

    Google Scholar 

  15. D.L. Huffaker, D.G. Deppe, K. Kumar, T.J. Rogers, Native-oxide defined ring contact for low threshold vertical-cavity lasers. Appl. Phys. Lett. 65, 97–99 (1994)

    Article  ADS  Google Scholar 

  16. D. Kuksenkov, H. Temkin, Polarization related properties of vertical-cavity lasers, Chap. 6 in Vertical-Cavity Surface-Emitting Lasers, ed. by C. Wilmsen, H. Temkin, L.A. Coldren (Cambridge University Press, Cambridge, 1999), pp. 233–267

    Google Scholar 

  17. K. Iga, Surface-emitting laser—its birth and generation of new optoelectronics field. IEEE J. Select. Topics Quantum Electron. 6, 1201–1215 (2000)

    Article  Google Scholar 

  18. K. Iga, Vertical cavity surface emitting lasers photonics. Jpn. J. Appl. Phys. 45, 6541–6543 (2006)

    Article  ADS  Google Scholar 

  19. K. Iga, Vertical-cavity surface-emitting laser: its conception and evolution. Jpn. J. Appl. Phys. 47, 1–10 (2008)

    Article  ADS  Google Scholar 

  20. A. Larsson, Advances in VCSELs for communication and sensing. IEEE J. Select. Topics Quantum Electron. 17, 1552–1567 (2011)

    Google Scholar 

  21. A. Mutig, D. Bimberg, Progress on high speed 980 nm VCSELs for short reach optical interconnects. Advances in Optical Technologies, Special Issue on Recent Advances in Semiconductor Surface-Emitting Lasers, Article ID 290508 (2011)

    Google Scholar 

  22. R. Michalzik, A. Kern, M. Stach, F. Rinaldi, D. Wahl, True bidirectional optical interconnects over multimode fiber, in Optoelectronic Interconnects and Component Integration X, ed. by A.L. Glebov, R.T. Chen, Proceedings of SPIE, vol. 7607 (2010), pp. 76070B-1–76070B-17

    Google Scholar 

  23. A. Kern, S. Paul, D. Wahl, R. Blood, W. Schwarz, R. Michalzik, Bidirectional multimode fiber interconnection at Gbit/s data rates with monolithically integrated VCSEL–PIN transceiver chips. IEEE Photon. Technol. Lett. 23, 1058–1060 (2011)

    Google Scholar 

  24. A. Kern, S. Paul, D. Wahl, A. Al-Samaneh, R. Michalzik, Single-fiber bidirectional optical data links with monolithic transceiver chips. Advances in Optical Technologies, Special Issue on Recent Advances in Semiconductor Surface-Emitting Lasers, Article ID 729731 (2012)

    Google Scholar 

  25. K. Panajotov, M. Sciamanna, I. Gatare, M. Arteaga, H. Thienpont, Nonlinear dynamics of vertical-cavity surface-emitting lasers. Advances in Optical Technologies, Special Issue on Recent Advances in Semiconductor Surface-Emitting Lasers, Article ID 469627 (2011)

    Google Scholar 

  26. F. Koyama, Recent advances of VCSEL photonics. J. Lightwave Technol. 24, 4502–4513 (2006)

    Article  ADS  Google Scholar 

  27. A. Mereuta, G. Suruceanu, A. Caliman, V. Iacovlev, A. Sirbu, E. Kapon, 10-Gb/s and 10-km error-free transmission up to \(100^\circ\)C with 1.3-\(\upmu \hbox{m}\) wavelength wafer-fused VCSELs. Opt. Exp. 17, 12981–12986 (2009)

    Google Scholar 

  28. H. Hatakeyama, T. Anan, T. Akagawa, K. Fukatsu, N. Suzuki, K. Tokutome, M. Tsuji, Highly reliable high-speed 1.1-\(\upmu \hbox{m}\) range VCSELs with InGaAs/GaAsP-MQWs. IEEE J. Quantum Electron. 46, 890–897 (2010)

    Article  ADS  Google Scholar 

  29. W. Hofmann, M. Müller, P. Wolf, A. Mutig, T. Gründl, G. Böhm, D. Bimberg, M.-C. Amann, 40 Gbit/s modulation of 1550 nm VCSEL. Electron. Lett. 47, 270–271 (2011)

    Article  Google Scholar 

  30. M. Arai, T. Kondo, A. Onumura, A. Matsutani, T. Miyamoto, F. Koyama, Multiple-wavelength GaInAs–GaAs vertical cavity surface emitting laser array with extended wavelength span. IEEE J. Select. Topics Quantum Electron. 9, 1367–1373 (2003)

    Article  Google Scholar 

  31. Y. Uchiyama, T. Kondo, K. Takeda, A. Matsutani, T. Uchida, T. Miyamoto, F. Koyama, 1.2 \(\upmu \hbox{m}\) band GaInAs/GaAs high-density multiple-wavelength vertical cavity surface emitting laser array. Jpn. J. Appl. Phys. 44, L214–L215 (2005)

    Google Scholar 

  32. A. Imamura, A. Matsutani, F. Koyama, Multi-wavelength 1060 nm-band VCSEL array with tapered hollow waveguide multiplexer, in Proceedings of the 22nd IEEE International Semiconductor Laser Conference, paper MB3, two pages, Kyoto, Japan, Sept. 2010

    Google Scholar 

  33. C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H.A. Davani, G. Böhm, S. Jatta, F. Küppers, P. Meißner, M.-C. Amann, Surface micromachined tunable 1.55 \(\upmu \hbox{m}\) VCSEL with 102 nm continuous single-mode tuning. Opt. Exp. 19, 17336–17343 (2011)

    Google Scholar 

  34. H. Sano, A. Matsutani, F. Koyama, Athermal and tunable operations of 850 nm VCSEL with thermally actuated cantilever structure, in Proceedings of the 35th European Conference on Optical Communication, ECOC 2009, paper P2.26, two pages. Vienna, Austria, Sept. 2009

    Google Scholar 

  35. H. Sano, A. Matsutani, F. Koyama, A thermal 850 nm vertical cavity surface emitting lasers with thermally actuated cantilever structure. Appl. Phys. Exp. 2, 072101-1–072101-3 (2009)

    Google Scholar 

  36. K. Johnson, M. Hibbs-Brenner, W. Hogan, M. Dummer, Advances in red VCSEL technology. Advances in Optical Technologies, Special Issue on Recent Advances in Semiconductor Surface-Emitting Lasers, Article ID 569379 (2012)

    Google Scholar 

  37. F. Hopfer, A. Mutig, G. Fiol, M. Kuntz, V.A. Shchukin, V.A. Haisler, T. Warming, E. Stock, S.S. Mikhrin, I.L. Krestnikov, D.A. Livshits, A.R. Kovsh, C. Bornholdt, A. Lenz, H. Eisele, M. Dähne, N.N. Ledentsov, D. Bimberg, 20 Gb/s \(85 ^\circ\)C error-free operation of VCSELs based on submonolayer deposition of quantum dots. IEEE J. Select. Topics Quantum Electron. 13, 1302–1308 (2007)

    Google Scholar 

  38. N.N. Ledentsov, F. Hopfer, D. Bimberg, High-speed quantum-dot vertical-cavity surface-emitting lasers. Proc. IEEE 95, 1741–1756 (2007)

    Article  Google Scholar 

  39. K.D. Choquette, D.F. Siriani, A.M. Kasten, M.P. Tan, J.D. Sulkin, P.O. Leisher, J.J. Raftery Jr., A.J. Danner, Single mode photonic crystal vertical cavity surface emitting lasers. Advances in Optical Technologies, Special Issue on Recent Advances in Semiconductor Surface-Emitting Lasers, Article ID 280920 (2012)

    Google Scholar 

  40. D.F. Siriani, K.D. Choquette, In-phase, coherent photonic crystal vertical-cavity surface-emitting laser arrays with low divergence. Electron. Lett. 46, 712–714 (2010)

    Article  Google Scholar 

  41. R. Sarzala, T. Czyszanowski, M. Wasiak, M. Dems, L. Piskorski, W. Nakwaski, K. Panajotov, Numerical self-consistent analysis of VCSELs. Advances in Optical Technologies, Special Issue on Recent Advances in Semiconductor Surface-Emitting Lasers, Article ID 689519 (2012)

    Google Scholar 

  42. V. Bardinal, T. Camps, B. Reig, D. Barat, E. Daran, J.B. Doucet, Collective micro-optics technologies for VCSEL photonic integration. Advances in Optical Technologies, Special Issue on Recent Advances in Semiconductor Surface-Emitting Lasers, Article ID 609643 (2011)

    Google Scholar 

  43. A. Mooradian, A. Shchegrov, A. Tandon, G. Yoffe, External-cavity surface-emitting diode lasers, Chap. 7 in Semiconductor Disk Lasers, ed. by O.G. Okhotnikov (Wiley-VCH, Weinbeim, 2010), pp. 263–304

    Google Scholar 

  44. J.G. McInerney, A. Mooradian, Optimizing electrically pumped vertical extended cavity surface emitting semiconductor lasers (E-VECSELs), in Vertical External Cavity Surface Emitting Lasers (VECSELs), ed. by U. Keller, Proceedings of SPIE, vol. 7919 (2011), pp. 79190L-1–79190L-15

    Google Scholar 

  45. I. Kardosh, F. Demaria, F. Rinaldi, M.C. Riedl, R. Michalzik, Electrically pumped frequency-doubled surface emitting lasers operating at 485 nm emission wavelength. Electron. Lett. 44, 524–525 (2008)

    Article  Google Scholar 

  46. I. Kardosh, F. Demaria, F. Rinaldi, S. Menzel, R. Michalzik, High-power single transverse mode vertical-cavity surface-emitting lasers with monolithically integrated curved dielectric mirrors. IEEE Photon. Technol. Lett. 20, 2084–2086 (2008)

    Article  ADS  Google Scholar 

  47. D.K. Serkland, K.M. Geib, G.A. Keeler, G.M. Peake, Fully micro-fabricated VECSEL at 850 nm, in Vertical-Cavity Surface-Emitting Lasers XV, ed. by J.K. Guenter, C. Lei, Proceedings of SPIE, vol. 7952 (2011), pp. 79520L-1–79520L-8

    Google Scholar 

  48. W. Schwarz, A.J. Márquez del Pino, D. Rimpf, F. Rinaldi, T. Mappes, R. Michalzik, Hybrid-integrated optofluidic microparticle sensor using a vertical-extended-cavity surface-emitting laser, in Proceedings of the 4th EOS Topical Meeting on Optical Microsystems (\(O\mu S\)’11), two pages, Capri, Italy, Sept. 2011

    Google Scholar 

  49. Y. Onishi, N. Nishiyama, C. Caneau, F. Koyama, C.-E. Zah, Dynamic behavior of an all-optical inverter using transverse-mode switching in \(1.55\hbox{-}\upmu \hbox{m}\) vertical-cavity surface-emitting lasers. IEEE Photon. Technol. Lett. 16, 1236–1238 (2004)

    Article  ADS  Google Scholar 

  50. K. Hasebe, F. Koyama, N. Nishiyama, C. Caneau, C.-E. Zah, All-optical polarization controller using elliptical-apertured 1.5 \(\upmu \hbox{m}\) VCSEL, in Proceedings of the Conference on Lasers and Electro-Optics 2006, CLEO 2006, paper CWP1, two pages, Long Beach, CA, May 2006

    Google Scholar 

  51. S. Suda, F. Koyama, N. Nishiyama, C. Caneau, C.-E. Zah, Optical nonlinear phase shifter using vertical micro-cavity with saturable absorber, in Proceedings of the Conference on Lasers and Electro-Optics 2006, CLEO 2006, paper CWK3, two pages, Long Beach, CA, May 2006

    Google Scholar 

  52. S. Suda, F. Koyama, N. Nishiyama, C. Caneau, C.-E. Zah, High speed response of nonlinear optical phase-shifter based on vertical micro-cavity saturable absorber. IEICE Electron. Exp. 5, 131–135 (2008)

    Article  Google Scholar 

  53. S. Barbay, R. Kuszelewicz, J. Tredicce, Cavity solitons in VCSEL devices. Advances in Optical Technologies, Special Issue on Recent Advances in Semiconductor Surface-Emitting Lasers, Article ID 628761 (2011)

    Google Scholar 

  54. G. Hirano, F. Koyama, K. Hasebe, T. Sakaguchi, N. Nishiyama, C. Caneau, C.-E. Zah, Slow light modulator with Bragg reflector waveguide, in Proceedings of the Optical Fiber Communication Conf. (OFC), paper PDP34, Anaheim, CA, Mar. 2007

    Google Scholar 

  55. J. Hashizume, F. Koyama, Plasmon enhanced optical near-field probing of metal nanoaperture surface emitting laser. Opt. Exp. 12, 6391–6396 (2004)

    Article  ADS  Google Scholar 

  56. Z. Rao, L. Hesselink, J.S. Harris, High-intensity bowtie-shaped nano-aperture vertical-cavity surface-emitting laser for near-field optics. Opt. Lett. 32, 1995–1997 (2007)

    Article  ADS  Google Scholar 

  57. M. Hill, M. Marell, Surface emitting metal nano cavity lasers. Advances in Optical Technologies, Special Issue on Recent Advances in Semiconductor Surface-Emitting Lasers, Article ID 314952 (2011)

    Google Scholar 

  58. N.C. Gerhardt, M.R. Hofmann, Spin controlled vertical-cavity surface-emitting lasers. Advances in Optical Technologies, Special Issue on Recent Advances in Semiconductor Surface-Emitting Lasers, Article ID 268949 (2012)

    Google Scholar 

  59. R. Michalzik, A. Kroner, A. Bergmann, F. Rinaldi, VCSEL-based optical trapping for microparticle manipulation, in Vertical-Cavity Surface-Emitting Lasers XIII, ed. by K.D. Choquette, C. Lei, Proceedings of SPIE, vol. 7229 (2009), pp. 722908-1–722908-13

    Google Scholar 

  60. Y.H. Lee, Y.G. Ju, I.Y. Han, 780-nm VCSELs for CD applications, in Proceedings of the IEEE Lasers and Electro-Optics Society Annual Meeting, LEOS ’98, vol. 1, Orlando, FL, Dec. 1998, p. 214

    Google Scholar 

  61. S. Morgott, S. Groetsch, W. Schnabel, D. Wiener, LED light sources for mobile embedded projection, in Optics, Photonics, and Digital Technologies for Multimedia Applications, ed. by P. Schelkens, T. Ebrahimi, G. Cristóbal, F. Truchetet, P. Saarikko, Proceedings of SPIE, vol. 7723 (2010) pp. 77230W-1–77230W-9

    Google Scholar 

  62. R. Michalzik, Optical backplanes, board and chip interconnects, Chap. 6 in Fiber Optic Data Communication: Technological Trends and Advances, ed. by C. DeCusatis (Academic Press, San Diego, 2002), pp. 216–269

    Google Scholar 

  63. R. Michalzik, Optical backplanes, board and chip interconnects, Chap. 26 in Handbook of Fiber Optic Data Communication: A Practical Guide to Optical Networking, ed. by C. DeCusatis, 3rd edn. (Elsevier, San Diego, 2008), pp. 657–676

    Google Scholar 

  64. R. Dangel, R. Beyeler, N. Meier, T. Lamprecht, F. Horst, D. Jubin, J. Weiss, B.J. Offrein, Optical interconnects for board level applications, in Optoelectronic Integrated Circuits XI, ed. by L.A. Eldada, E.-H. Lee, Proceedings of SPIE, vol. 7219 (2009), pp. 721904-1–721904-7

    Google Scholar 

  65. H. Moench, S. Gronenborn, M. Miller, P. Loosen, High power VCSEL systems for tailored intensity distributions, in Vertical-Cavity Surface-Emitting Lasers XV, ed. by J.K. Guenter, C. Lei, Proceedings of SPIE, vol. 7952 (2011), pp. 795207-1–795207-11

    Google Scholar 

  66. T. Kibler, S. Poferl, G. Böck, H.-P. Huber, E. Zeeb, Optical data buses for automotive applications. J. Lightwave Technol. 22, 2184–2199 (2004)

    Article  ADS  Google Scholar 

  67. MOST Cooperation provides new physical layer specification, MOST Cooperation, press release, March 10, 2008. See also MOST Informative, Issue 2, March 2008. Both available at http://www.mostcooperation.com/

    Google Scholar 

  68. L. Pan, D.B. Bogy, Data storage: heat-assisted magnetic recording. Nat. Photon. 3, 189–190 (2009)

    Article  ADS  Google Scholar 

  69. W.A. Challener, C. Peng, A.V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N.J. Gokemeijer, Y.-T. Hsia, G. Ju, R.E. Rottmayer, M.A. Seigler, E.C. Gage, Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer. Nat. Photon. 3, 220–224 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Michalzik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Michalzik, R. (2013). VCSELs: A Research Review. In: Michalzik, R. (eds) VCSELs. Springer Series in Optical Sciences, vol 166. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24986-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24986-0_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24985-3

  • Online ISBN: 978-3-642-24986-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics