Pareto Optimality in Coalition Formation

  • Haris Aziz
  • Felix Brandt
  • Paul Harrenstein
Conference paper

DOI: 10.1007/978-3-642-24829-0_10

Volume 6982 of the book series Lecture Notes in Computer Science (LNCS)
Cite this paper as:
Aziz H., Brandt F., Harrenstein P. (2011) Pareto Optimality in Coalition Formation. In: Persiano G. (eds) Algorithmic Game Theory. SAGT 2011. Lecture Notes in Computer Science, vol 6982. Springer, Berlin, Heidelberg

Abstract

A minimal requirement on allocative efficiency in the social sciences is Pareto optimality. In this paper, we identify a far-reaching structural connection between Pareto optimal and perfect partitions that has various algorithmic consequences for coalition formation. In particular, we show that computing and verifying Pareto optimal partitions in general hedonic games and B-hedonic games is intractable while both problems are tractable for roommate games and W-hedonic games. The latter two positive results are obtained by reductions to maximum weight matching and clique packing, respectively.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Haris Aziz
    • 1
  • Felix Brandt
    • 1
  • Paul Harrenstein
    • 1
  1. 1.Institut für InformatikTechnische Universität MünchenMünchenGermany