Skip to main content

Families of Meshes Minimizing P 1 Interpolation Error

  • Conference paper
  • 1655 Accesses

Summary

For a given function, we consider a problem of minimizing the P 1 interpolation error on a set of triangulations with a fixed number of triangles. The minimization problem is reformulated as a problem of generating a mesh which is quasi-uniform in a specially designed metric. For functions with indefinite Hessian, we show existence of a family of metrics with highly diverse properties. The family may include both anisotropic and isotropic metrics. A developed theory is verified with numerical examples.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agouzal, A., Lipnikov, K., Vassilevski, Y.: Adaptive generation of quasi-optimal tetrahedral meshes. East-West J. Numer. Math. 7, 223–244 (1999)

    MATH  MathSciNet  Google Scholar 

  2. Agouzal, A., Lipnikov, K., Vassilevski, Y.: Hessian-free metric-based mesh adaptation via geometry of interpolation error. Comp. Math. Math. Phys. 50, 124–138 (2010)

    Article  MathSciNet  Google Scholar 

  3. Agouzal, A., Vassilevski, Y.: Minimization of gradient errors of piecewise linear interpolation on simplicial meshes. Comp. Meth. Appl. Mech. Engnr. 199, 2195–2203 (2010)

    Article  MathSciNet  Google Scholar 

  4. Agouzal, A., Lipnikov, K., Vassilevski, Y.: Edge-based a posteriori error estimators for generating quasi-optimal simplicial meshes. Math. Model. Nat. Phenom. 5, 91–96 (2010)

    Article  MathSciNet  Google Scholar 

  5. Agouzal, A., Lipnikov, K., Vassilevski, Y.: On optimal convergence rate of finite element solutions of boundary value problems on adaptive anisotropic meshes. Math. Comput. Simul. (in Press, 2011)

    Google Scholar 

  6. Borouchaki, H., Hecht, F., Frey, P.J.: Mesh gradation control. Inter. J. Numer. Meth. Engrg. 43, 1143–1165 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Buscaglia, G.C., Dari, D.A.: Anisotropic mesh optimization and its application in adaptivity. Int. J. Numer. Meth. Eng. 40, 4119–4136 (1997)

    Article  MATH  Google Scholar 

  8. Chen, L., Sun, P., Xu, J.: Optimal anisotropic meshes for minimizing interpolation errors in L p-norm. Mathematics of Computation 76, 179–204 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ciarlet, P.G.: The finite element method for elliptic problems. North-Holland (1978)

    Google Scholar 

  10. Coupez, T.: Generation de maillage et adaptation de maillage par optimisation locale. Revue Europeenne Des Elements Finis 49, 403–423 (2000) (in French)

    Google Scholar 

  11. D’Azevedo, E.: Optimal triangular mesh generation by coordinate transformation. SIAM J. Sci. Stat. Comput. 12, 755–786 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  12. Farrell, P.E., Maddison, J.R.: Conservative interpolation between volume meshes by local Galerkin projection. Comput. Methods Appl. Mech. Engrg. 200, 89–100 (2011)

    Article  MathSciNet  Google Scholar 

  13. Fortin, M., Vallet, M.-G., Dompierre, J., Bourgault, Y., Habashi, W.G.: Anisotropic mesh adaptation: theory, validation and applications Computational Fluid dynamics, pp. 174–180. John Wiley & Sons Ltd (1996)

    Google Scholar 

  14. George, P.L.: Automatic mesh generation: Applications to Finite Element Methods. John Wiley & Sons, Inc., New York (1991)

    MATH  Google Scholar 

  15. Huang, W., Sun, W.: Variational mesh adaptation II: Error estimates and monitor functions. J. Comput. Phys. 184, 619–648 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Huang, W.: Metric tensors for anisotropic mesh generation. J. Comput. Phys. 204, 633–665 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Loseille, A., Alauzet, F.: Optimal 3D highly anisotropic mesh adaptation based on the continuous mesh framework. In: Clark, B.W. (ed.) Proc. of 18th Int. Meshing Roundtable, pp. 575–594 (2009)

    Google Scholar 

  18. Vassilevski, Y., Lipnikov, K.: Adaptive algorithm for generation of quasi-optimal meshes. Comp. Math. Math. Phys. 39, 1532–1551 (1999)

    Google Scholar 

  19. Vassilevski, Y., Agouzal, A.: An unified asymptotic analysis of interpolation errors for optimal meshes. Doklady Mathematics 72, 879–882 (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Agouzal, A., Lipnikov, K., Vassilevski, Y. (2011). Families of Meshes Minimizing P 1 Interpolation Error. In: Quadros, W.R. (eds) Proceedings of the 20th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24734-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24734-7_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24733-0

  • Online ISBN: 978-3-642-24734-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics