Skip to main content

Method for Intelligent Representation of Research Activities of an Organization over a Taxonomy of Its Field

  • Chapter
  • First Online:
  • 712 Accesses

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 29))

Abstract

We describe a novel method for the analysis of research activities of an organization by mapping that to a taxonomy tree of the field. The method constructs fuzzy membership profiles of the organizationmembers or teams in terms of the taxonomy’s leaves (research topics), and then it generalizes them in two steps. These steps are: (i) fuzzy clustering research topics according to their thematic similarities in the department, ignoring the topology of the taxonomy, and (ii) optimally lifting clusters mapped to the taxonomy tree to higher ranked categories by ignoring “small” discrepancies. We illustrate the method by applying it to data collected by using an in-house e-survey tool from a university department and from a university research center. The method can be considered for knowledge generalization over any taxonomy tree.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ACM Computing Classification System (1998), http://www.acm.org/about/class/1998 (cited September 9, 2008)

  2. Advanced Visual Systems (AVS), http://www.avs.com/solutions/avs-powerviz/utility_distribution.html (cited November 27, 2010)

  3. Beneventano, D., Dahlem, N., El Haoum, S., Hahn, A., Montanari, D., Reinelt, M.: Ontology-driven semantic mapping. In: Enterprise Interoperability III, Part IV, pp. 329–341. Springer, Heidelberg (2008)

    Google Scholar 

  4. Bezdek, J., Hathaway, R.J., Windham, M.P.: Numerical comparisons of the RFCM and AP algorithms for clustering relational data. Pattern Recognition 24, 783–791 (1991)

    Google Scholar 

  5. Bezdek, J., Keller, J., Krishnapuram, R., Pal, T.: Fuzzy Models and Algorithms for Pattern Recognition and Image Processing. Kluwer Academic Publishers (1999)

    Google Scholar 

  6. Brouwer, R.: A method of relational fuzzy clustering based on producing feature vectors using FastMap. Information Sciences 179, 3561–3582 (2009)

    Article  Google Scholar 

  7. Buche, P., Dibie-Barthelemy, J., Ibanescu, L.: Ontology mapping using fuzzy conceptual graphs and rules. In: ICCS Supplement, vol. 1724 (2008)

    Google Scholar 

  8. Cali, A., Gottlob, G., Pieris, A.: Advanced processing for ontological queries. Proceedings of the VLDB Endowment 3(1), 554–565 (2010)

    Google Scholar 

  9. Davé, R.N., Sen, S.: Robust fuzzy clustering of relational data. IEEE Transactions on Fuzzy Systems 10, 713–727 (2002)

    Article  Google Scholar 

  10. Ding, Y., Foo, S.: Ontology research and development. Journal of Information Science 28(5), 375–388 (2002)

    Google Scholar 

  11. Dotan-Cohen, D., Kasif, S., Melkman, A.: Seeing the forest for the trees: using the gene ontology to restructure hierarchical clustering. Bioinformatics 25(14), 1789–1795 (2009)

    Article  Google Scholar 

  12. Eick, S.G.: Visualizing online activity. Communications of the ACM 44(8), 45–50 (2001)

    Article  Google Scholar 

  13. Feather, M., Menzies, T., Connelly, J.: Matching software practitioner needs to researcher activities. In: Proc. of the 10th Asia-Pacific Software Engineering Conference (APSEC 2003), vol. 6, IEEE (2003)

    Google Scholar 

  14. Freudenberg, J.M., Joshi, V.K., Hu, Z., Medvedovic, M.: CLEAN: CLustering Enrichment ANalysis. BMC Bioinformatics 10, 234 (2009)

    Article  Google Scholar 

  15. Gahegan, M., Agrawal, R., Jaiswal, A., Luo, J., Soon, K.-H.: A platform for visualizing and experimenting with measures of semantic similarity in ontologies and concept maps. Transactions in GIS 12(6), 713–732 (2008)

    Article  Google Scholar 

  16. Gaevic, D., Hatala, M.: Ontology mappings to improve learning resource search. British Journal of Educational Technology 37(3), 375–389 (2006)

    Article  Google Scholar 

  17. Georgeon, O.L., Mille, A., Bellet, T., Mathern, B., Ritter, F.: Supporting activity modeling from activity traces. Expert Systems: The Journal of Knowledge Engineering (2010) (submitted)

    Google Scholar 

  18. The Gene Ontology Consortium. The Gene Ontology project in 2008. Nucleic Acids Research 36 (database issue), D4404 (2008); doi:10.1093/nar/gkm883, PMID 17984083

    Google Scholar 

  19. Ghazvinian, A., Noy, N., Musen, M.: Creating mappings for ontologies in Biomedicine: simple methods work. In: AMIA 2009 Symposium Proceedings, pp. 198–202 (2009)

    Google Scholar 

  20. Guh, Y.Y., Yang, M.S., Po, R.W., Lee, E.S.: Establishing performance evaluation structures by fuzzy relation-based cluster analysis. Computers and Mathematics with Applications 56, 572–582 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hathaway, R.J., Davenport, J.W., Bezdek, J.C.: Relational duals of the c-means algorithms. Pattern Recognition 22, 205–212 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hathaway, R.J., Bezdek, J.C.: NERF c-means: Non-Euclidean relational fuzzy clustering. Pattern Recognition 27, 429–437 (1994)

    Article  Google Scholar 

  23. Huang, L., Yan, D., Jordan, M.I., Taft, N.: Spectral clustering with perturbed data. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems, Proceedings of the Twenty-Second Annual Conference on Neural Information Processing Systems, Vancouver, vol. 21, pp. 705–712. MIT Press (2009)

    Google Scholar 

  24. Hubert, L.J., Arabie, P.: Comparing partitions. Journal of Classification 2, 193–218 (1985)

    Article  Google Scholar 

  25. Liu, J., Wang, W., Yang, J.: Gene ontology friendly biclustering of expression profiles. In: Proc. of the IEEE Computational Systems Bioinformatics Conference, pp. 436–447. IEEE (2004)

    Google Scholar 

  26. von Luxburg, U.: A tutorial on spectral clustering. Statistics and Computing 17, 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  27. Marinica, C., Guillet, F.: Improving post-mining of association rules with ontologies. In: The XIII International Conference Applied Stochastic Models and Data Analysis (ASMDA), pp. 76–80 (2009); ISBN 978-9955-28-463-5

    Google Scholar 

  28. Mazza, R.: Introduction to Information Visualization, pp. 978–971. Springer, Heidelberg (2009); ISBN: 978-1-84800-218-0

    Google Scholar 

  29. McLachlan, G.J., Khan, N.: On a resampling approach for tests on the number of clusters with mixture model based clustering of tissue samples. J. Multivariate Anal. 90, 90–105 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  30. Miralaei, S., Ghorbani, A.: Category-based similarity algorithm for semantic similarity in multi-agent information sharing systems. In: IEEE/WIC/ACM Int. Conf. on Intelligent Agent Technology, pp. 242–245 (2005)

    Google Scholar 

  31. Mirkin, B.: Additive clustering and qualitative factor analysis methods for similarity matrices. Journal of Classification 4(1), 7–31 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  32. Mirkin, B., Fenner, T., Galperin, M., Koonin, E.: Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes. BMC Evolutionary Biology 3(2) (2003)

    Google Scholar 

  33. Mirkin, B., Nascimento, S., Pereira, L.M.: Cluster-lift method for mapping research activities over a concept tree. In: Koronacki, J., Raś, Z.W., Wierzchoń, S.T., Kacprzyk, J. (eds.) Advances in Machine Learning II. SCI, vol. 263, pp. 245–258. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  34. Mirkin, B., Nascimento, S., Fenner, T., Pereira, L.M.: Constructing and Mapping Fuzzy Thematic Clusters to Higher Ranks in a Taxonomy. In: Bi, Y., Williams, M.-A. (eds.) KSEM 2010. LNCS (LNAI), vol. 6291, pp. 329–340. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  35. Mirkin, B., Nascimento, S.: Additive spectral method for fuzzy cluster analysis of similarity data including community structure and affinity matrices. Information Sciences 183, 16–34 (2012)

    Article  Google Scholar 

  36. Newman, M.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74, 036104 (2006)

    Article  Google Scholar 

  37. Newman, M., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004)

    Article  Google Scholar 

  38. Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Ditterich, T.G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems, vol. 14, pp. 849–856. MIT Press, Cambridge (2002)

    Google Scholar 

  39. OWL 2 Web Ontology Language Overview (2009), http://www.w3.org/TR/2009/RECowl2overview20091027/ (cited November 27, 2010)

  40. Roubens, M.: Pattern classification problems and fuzzy sets. Fuzzy Sets and Systems 1, 239–253 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  41. Sato, M., Sato, Y., Jain, L.C.: Fuzzy Clustering Models and Applications. Physica-Verlag, Heidelberg (1997)

    MATH  Google Scholar 

  42. Schattkowsky, T., Frster, A.: On the pitfalls of UML-2 activity modeling. In: International Workshop on Modeling in Software Engineering (MISE 2007), pp. 1–6 (2007)

    Google Scholar 

  43. Skarman, A., Jiang, L., Hornshoj, H., Buitenhuis, B., Hedegaard, J., Conley, L., Sorensen, P.: Gene set analysis methods applied to chicken microarray expression data. BMC Proceedings  3 (suppl. 4) (2009)

    Google Scholar 

  44. Shepard, R.N., Arabie, P.: Additive clustering: representation of similarities as combinations of overlapping properties. Psychological Review 86, 87–123 (1979)

    Article  Google Scholar 

  45. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)

    Article  Google Scholar 

  46. SNOMED Clinical Terms (2010), http://www.nlm.nih.gov/research/umls/Snomed/snomed_main.html (cited November 27, 2010)

  47. Sosnovsky, S., Mitrovic, A., Lee, D., Prusilovsky, P., Yudelson, M., Brusilovsky, V., Sharma, D.: Towards integration of adaptive educational systems: mapping domain models to ontologies. In: Dicheva, D., Harrer, A., Mizoguchi, R. (eds.), Procs. of 6th International Workshop on Ontologies and Semantic Web for ELearning (SWEL 2008) at ITS 2008 (2008), http://compsci.wssu.edu/iis/swel/SWEL08/Papers/Sosnovsky.pdf

  48. Thomas, H., O’Sullivan, D., Brennan, R.: Evaluation of ontology mapping representation. In: Proceedings of the Workshop on Matching and Meaning, pp. 64–68 (2009)

    Google Scholar 

  49. Windham, M.P.: Numerical classification of proximity data with assignment measures. Journal of Classification 2, 157–172 (1985)

    Article  Google Scholar 

  50. White, S., Smyth, P.: A spectral clustering approach to finding communities in graphs. In: SIAM International Conference on Data Mining (2005)

    Google Scholar 

  51. Thorne, C., Zhu, J., Uren, V.: Extracting domain ontologies with CORDER. Tech. Reportkmi-05-14. Open University, 1-15 (2005)

    Google Scholar 

  52. Yang, M.S., Shih, H.M.: Cluster analysis based on fuzzy relations. Fuzzy Sets and Systems 120, 197–212 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  53. Yang, L., Ball, M., Bhavsar, V., Boley, H.: Weighted partonomy-taxonomy trees with local similarity measures for semantic buyer-seller match-making. Journal of Business and Technology 1(1), 42–52 (2005)

    Google Scholar 

  54. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  55. Zhang, S., Wang, R.-S., Zhang, X.-S.: Identification of overlapping community structure in complex networks using fuzzy c-means clustering. Physica A 374, 483–490 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Mirkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Mirkin, B., Nascimento, S., Pereira, L.M. (2012). Method for Intelligent Representation of Research Activities of an Organization over a Taxonomy of Its Field. In: Kountchev, R., Nakamatsu, K. (eds) Advances in Reasoning-Based Image Processing Intelligent Systems. Intelligent Systems Reference Library, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24693-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24693-7_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24692-0

  • Online ISBN: 978-3-642-24693-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics