Skip to main content

Isolation of Pigment-Producing Bacteria and Characterization of the Extracted Pigments

  • Chapter
  • First Online:
Application of Bacterial Pigments as Colorant

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

Abstract

Bacteria produce pigments for various reasons and it plays an important role. Some bacteria such as cyanobacteria have phycobilin pigments to carry out photosynthesis. Other example for pigment-producing bacterial strains includes Serratia marcescens that produces prodigiosin, Streptomyces coelicolor (prodigiosin and actinorhodin), Chromobacterium violaceum (violacein) and Thialkalivibrio versutus (natronochrome and chloronatronochrome). These bacteria can be isolated/cultured/purified from various environmental sources such as water bodies, soil, on plant, in insects and in man or animal. Various growth mediums can be used to isolate different types of bacteria. However, due to the high cost of using synthetic medium, there is a need to develop new low cost process for the production of pigments as well as during the isolation procedure. The use of agro-industrial residues for example, would provide a profitable means of reducing substrate cost. Pigment produced by the bacteria can be isolated using solvent extraction. These pigments can be further purified and characterized for physical and chemical characteristics using various instrumental-based analytical techniques such as TLC, UV–vis Spectroscopy, FTIR, ESI–MS, NMR HPLC and Gel Permeation Chromatography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrighetti-Fröhner CR, Antonio RV, Creczynski-Pasa TV, Barardi CRM, Simões CMO (2003) Cytotoxicity and potential antiviral evaluation of violacein produced by Chromobacterium violaceum Memórias do Instituto Oswaldo Cruz 98:843–848

    Article  Google Scholar 

  • August PR, Grossman TH, Minor C, Draper MP, MacNeil IA, Pemberton JM, Call KM, Holt D, Osburne MS (2000) Sequence analysis and functional characterization of the violacein biosynthetic pathway from Chromobacterium violaceum. JMMB 2(4):513–519

    CAS  Google Scholar 

  • Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH (1992) The prokaryotes, 2nd edn. Springler-Verlag, Berlin

    Google Scholar 

  • Barja JL, Lemos ML, Toranzo EA (1989) Purification and characterization of an antibacterial substance produced by a parine Alteromonas Species. Antimicrob Agents Chemother 33(10):1674–1679

    CAS  Google Scholar 

  • Bernardet JF, Nakagawa Y, Holmes B (2002) Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the Family. Int J Syst Evol Microbiol 52(3):1049–1070

    Article  CAS  Google Scholar 

  • Carepo MSP, Azevedo JSN, Porto JIR, Bentes-Souza AR, Batista JS, Silva ALC, Schneider MPC (2004) Identification of Chromobacterium violaceum genes with potential biotechnological application in environmental detoxification. Genet Mol Res 3:181–194

    CAS  Google Scholar 

  • Chernin LS, Winson MK, Thompson JM, Haran S, Bycroft BW, Chet I, Williams P, Stewart GSAB (1998) Chitinolytic activity in Chromobacterium violaceum: substrate analysis and regulation by quorum sensing. J Bacteriol 180:4435–4441

    CAS  Google Scholar 

  • De Souza AO, Aily DCG, Sato DN, Duran N (1999) Atividade da violaceina in vitro sobre o Mycobacterium turbeculosis H37RA, Rev. Inst. Adolfo Lutz. 58:59–62

    Google Scholar 

  • DeMoss RD, Evans NR (1959) Physiological aspects of violacein biosynthesis in nonproliferating cells. J Bacteriol 78:583–586

    CAS  Google Scholar 

  • Eaton AD, Franson MAH (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, New York

    Google Scholar 

  • Faramarzi MA, Stagars M, Pensini E, Krebs W, Brandl H (2004) Metal solubilization from metal-Containing solid materials by cyanogenic Chromobacterium violaceum. J Biotechnol 113:321–326

    Article  CAS  Google Scholar 

  • Fautz E, Reichenbach H (1980) A simple test for flexirubin-type pigments. FEMS Microbiol Lett 8:87–91

    Article  CAS  Google Scholar 

  • Gillis M and Logan N A (2005) Genus IV. Chromobacterium Bergonzini 1881, 153AL. In:Brenner DJ, Krieg N ,Staley JT, Garrity GM(eds.). Bergey’s manual of systematic bacteriology, 2nd edn, vol 2, part C. Springer,New York, pp 824–827

    Google Scholar 

  • Hoshino T, Kondo T, Uchiyama T, Ogasawara N (1987) Biosynthesis of violacein: A novel rearrangement in tryptophan metabolism with 1, 2-shift of the indole Ring. Agr Chem Biotechno 51:965–968

    Article  CAS  Google Scholar 

  • Hugo CJ, Segers P, Hoste B, Vancanneyt M, Kersters K (2003) Chryseobacterium joostei sp. nov., isolated from the dairy environment. Int J Syst Evol Microbiol 53:771–777

    Article  CAS  Google Scholar 

  • Kämpfer P, Dreyer U, Neef A, Dott W, Busse H-J (2003) Chryseobacterium defluvii sp. nov., isolated from wastewater. Int J Syst Evol Microbiol 53:93–97

    Article  Google Scholar 

  • Kim KK, Bae H-S, Schumann P, Lee S-T (2005) Chryseobacterium daecheongense sp. nov., isolated from freshwater lake sediment. Int J Syst Evol Microbiol 55:133–138

    Article  CAS  Google Scholar 

  • Konzen M, Marco DD, Cordova CAS, Vieira TO, Antonio RV, Creczynski-Pasa TB (2006) Antioxidant properties of violacein: ossible relation on its biological function. J Bioorg Med Chem 14:8307–8313

    Article  CAS  Google Scholar 

  • Lambert JB, Mazzola EP (2004) Nuclear magnetic resonance spectroscopy. An introduction to Principles, applications, and experimental methods. Pearson Education, USA, pp 75–76

    Google Scholar 

  • Leon LL, Miranda CC, De Souza AO, Durán N (2001) Antileishmanial activity of the violacein extracted from Chromobacterium violaceum. J Antimicrob Chemother 48:449

    Article  CAS  Google Scholar 

  • Li Y, Kawamura Y, Fujiwara N, Naka T, Liu H, Huang X, Kobayashi K, Ezaki T (2003) Chryseobacterium miricola sp. nov., a novel species isolated from condensation water of space station Mir. Syst Appl Microbiol 26:523–528

    Article  CAS  Google Scholar 

  • Lu Y, Wang L, Xue Y, Zhang C, Xing XH, Lou K, Zhang Z, Li Y, Zhang G, Bi J, Su Z (2009) Production of violet pigment by a newly isolated psychrotrophic bacterium from a glacier in Xnjiang, China. Biochem Eng J 43:135–141

    Article  CAS  Google Scholar 

  • MacFaddin J (1980) Biochemical tests for identification of medical bacteria, 2nd edn. Williams and Wilkins, Baltimore

    Google Scholar 

  • Martinko JM, Madigan MT (2006) Brock: biology of microorganism, 11th edn. Pearson Education International, USA

    Google Scholar 

  • Melo PS, Maria SS, Vidal BC, Haun M, Durán N (2000) In Vitro Cell Dev Biol Anim 36: 539–543

    Google Scholar 

  • Michaels R, Corpe WA (1965) Cyanide formation by Chromobacterium violaceum. J Bacteriol 89:106–112

    CAS  Google Scholar 

  • Min-jung S, Jungdon B, Due-Sil L, Chang-Ho K, Jun-Seok K, Seung-Wook K, Suk-In H (2006) Purification and characterization of prodigiosin produced by integrated bioreactor from Serratia sp. KH-95. JBB 101:157-161.

    Google Scholar 

  • Mohan J (2007) Organic spectroscopy. Principles and Applications. Alpha Science International Ltd., U.K

    Google Scholar 

  • Nakamura Y, Sawada T, Morita Y, Tamiya E (2002) Isolation of a psychrotrophic bacterium from the organic residue of a water tank keeping rainbow trout and antibacterial effect of violet pigment produced from the strain. Biochem Eng J 12:73–80

    Article  Google Scholar 

  • Nakamura Y, Asada C, Sawada T (2003) Production of antibacterial violet pigment by psychrotropic bacterium RT102 Strain. Biotechnol Bioprocess Eng 8:37–40

    Article  CAS  Google Scholar 

  • Singh R, Jain A, Panwar S, Gupta D, Khare SK (2005) Antimicrobial activity of some natural dyes. Dyes and Pigments 66: 99-102

    Google Scholar 

  • Rustom SM, Valiollah H, Alka MP, Prafulla JD (1990) Isolation and characterization of Serratia marcescens mutants defective in prodigiosin biosynthesis.Curr Microbio 20(2):95–103

    Article  Google Scholar 

  • Shen F-T, Kämpfer P, Young C–C, Lai W-A, Arun AB (2005) Chryseobacterium taichungense sp. nov., isolated from contaminated soil. Int J Syst Evol Microbiol 55:1301–1304

    Article  CAS  Google Scholar 

  • Sneath PH (1994) Chromobacterium Bergonzini 1881. In: Gibbons RE(ed),Bergey’s manual of determinative bacteriology, 8th edn. Williams and Wilkins, Baltimore,p 354

    Google Scholar 

  • Song C, Makoto S, Osamu J, Shinji O, Yasunori N, Akihiro Y (2000) High production of prodigiosin by Serratia marcescens grown on ethanol. Biotechnol Lett 22(22):1761–1765

    Article  Google Scholar 

  • Steinbüchel A, Debzi EM, Marchessault RH, Timm A (1993) Synthesis and production of poly (3-hydroxyvaleric acid) homopolyester by Chromobacterium violaceum. Appl Microbiol Biotechnol 39:443–449

    Article  Google Scholar 

  • Ueda H, Nakajima H, Hori Y, Goto T , Okuhara M (1994) FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum nº. 968. I. taxonomy, fermentation, isolation, physico-chemical and biological properties. J Antibiot (Tokyo) 47: 301-310

    Google Scholar 

  • Vandamme P, Bernardet J-F, Segers P, Kersters K, Holmes B (1994) New perspectives in the classification of the flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 44:827–831

    Article  Google Scholar 

  • Vasconcelos ATR, Almeida DF, Hungria M, Guimarães CT, Antônio RV, Almeida FC, Almeida LGP, Almeida R, Alves-Gomes JA, Andrade EM, Araripe J, Araujo MFF, Astolfi-Filho S, Azevedo V, Baptista AJ, Bataus LAM, Baptista JS, Belo A, van den Berg C, Bogo M, Bonatto S, Bordignon J, Brigido MM, Brito CA, Brocchi M, Burity HA, Camargo AA, Cardoso DDP, Carneiro NP, Carraro DM, Carvalho CMB, Cascardo JCM, Cavada BS, Chueire LMO, Creczynski-Pasa TB, Cunha Junior NC, Fagundes N, Falcão CL, Fantinatti F, Farias IP, Felipe MSS, Ferrari LP, Ferro JA, Ferro MIT, Franco GR, Freitas NSA, Furlan LR, Gazzinelli RT, Gomes EA, Gonçalves PR, Grangeiro TB, Grattapaglia D, Grisard EC, Hanna ES, Jardim SN, Laurino J, Leoi LCT, Lima LFA, Loureiro MF, Lyra MCCP, Madeira HMF, Manfio GP, Maranhão AQ, Martins WS, Mauro SMZ, Medeiros SRB, Meissner RV, Moreira MAM, Nascimento FF, Nicolas MF, Oliveria JG, Oliveira SC, Paixão RFC, Parente JA, Pedrosa FO, Pena SDJ, Pereira JO, Pereira M, Pinto LSRC, Pinto LS, Porto JIR, Potrich DP, Ramalho Neto CE, Reis AMM, Rigo LU, Rondinelli E, Santos EBP, Santos FR, Schneider MPC, Seuanez HN, Silva AMR, Silva ALC, Silva DW, Silva R, Simões IC, Simon D, Soares CMA, Soares RBA, Souza EM, Souza KRL, Souza RC, Steffens MBR, Steindel M, Teixeira SR, Urmenyi T, Vettore A, Wassem R, Zaha A, Simpson AJG (2003) The complete genome of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability. Proc Natl Acad Sci USA 100:11660–11665

    Article  Google Scholar 

  • Venter H (1987) Purification and characterization of a heat stable metalloprotease from a Chryseobacterium of dairy origin. MSc thesis. University of Orange Free State, Bloemfontein, South Africa.

    Google Scholar 

  • Wang H, Jiang P, Lu Y, Ruan Z, Jiang R, Xing XH, Lou K, Wei D (2009) Optimization of culture conditions for violacein production by a new strain of Duganella sp. B2. Biochem Eng J 44:119–124

    Article  CAS  Google Scholar 

  • Wei YH, Yu WJ, Chen WC (2005) Enhanced undecylprodigiosin production from Serratia marcescens SS-1 by medium formulation and amino-acid supplementation. J Biosci and Bioeng 100:466–471

    Article  CAS  Google Scholar 

  • Yada S, Wang Y, Zou Y, Nagasaki K, Hosokawa K, Osaka I, Arakawa R, Enomoto K (2007) Isolation and characterization of two groups of novel marine bacteria producing violacein. Mar Biotechnol 10:128–132

    Article  Google Scholar 

  • Yamaguchi S, Yokoe M (2000) A novel protein-deamidating enzyme from Chryseobacterium proteolyticum sp. nov., a newly isolated bacterium from soil. Appl Environ Microbiol 66:3337–3343

    Article  CAS  Google Scholar 

  • Young CC, Kämpfer P, Shen FT, Lai WA, Arun AB (2005) Chryseobacterium formosense sp. nov., isolated from the rhizosphere of Lactuca Sativa L. (garden lettuce). Int J Syst Evol Microbiol 55:423–426

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan Azlina Ahmad .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 The Author(s)

About this chapter

Cite this chapter

Ahmad, W.A., Ahmad, W.Y.W., Zakaria, Z.A., Yusof, N.Z. (2012). Isolation of Pigment-Producing Bacteria and Characterization of the Extracted Pigments. In: Application of Bacterial Pigments as Colorant. SpringerBriefs in Molecular Science(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24520-6_2

Download citation

Publish with us

Policies and ethics