Skip to main content

Metal-Containing Nano-Antimicrobials: Differentiating the Impact of Solubilized Metals and Particles

  • Chapter
  • First Online:

Abstract

Metal-based antiseptics like silver, zinc oxide, copper and titanium dioxide have proven their efficacy long time before nanorevolution. The rapid development of nanotechnology during the past ten years has allowed even further increases in their antimicrobial potency. Indeed, the development and use of nano-Ag or nano-Cu/CuO coated surfaces and application of ZnO and TiO2 nanoparticles in personal care products is rapidly increasing. The main reason for the increased efficacy of nano-size metal-based antiseptics compared to their micro-sized counterparts is their increased relative surface area that translates into higher reactivity, e.g., improved dissolution of inhibitory concentrations of metal ions. In this chapter, we discuss the recent findings on the antimicrobial mechanisms of metal-based nanomaterials with special emphasis on metal dissolution. We also discuss the (bio)analytical methods that have been developed and/or applied to discriminate between the toxic effects mediated by metal dissolution and nanomaterials per se. The discrimination between these two mechanisms of toxicity is important for basic mechanistic research as well as for designing new nano-antimicrobials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams LK, Lyon DY, Alvarez PJJ (2006) Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 40(19): 3527–3532.

    Google Scholar 

  • Akhavan O, Ghaderi E (2010) Cu and CuO nanoparticles immobilized by silica thin films as antibacterial materials and photocatalysts. Surf Coat Technol 205(1): 219–223.

    Google Scholar 

  • Allaker RP (2010) The use of nanoparticles to control oral biofilm formation. J Dent Res 89(11): 1175–1186.

    Google Scholar 

  • Allen HE, Fu G, Boothman W, DiToro D, Mahony JD (1991) Draft Analytical Method for Determination of Acid Volatile Sulfide in Sediment. U.S. Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • Applerot G, Lipovsky A, Dror R, Perkas N, Nitzan Y, Lubart R, Gedanken A (2009) Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury. Adv Funct Mater 19(6): 842–852.

    Google Scholar 

  • Aruoja V, Dubourguier HC, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407(4): 1461–1468.

    Google Scholar 

  • AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S (2008) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2): 279–290.

    Google Scholar 

  • Baek YW, An YJ (2011) Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis and Streptococcus aureus. Sci Total Environ 409(8): 1603–1608.

    Google Scholar 

  • Balogh L, Swanson DR, Tomalia DA, Hagnauer GL, McManus AT (2001) Dendrimer – silver complexes and nanocomposites as antimicrobial agents. Nano Lett 1(1): 18–21.

    Google Scholar 

  • Bansal V, Li V, O’Mullane AP, Bhargava SK (2010) Shape dependent electrocatalytic behaviour of silver nanoparticles. Cryst Eng Comm 12(12): 4280–4286.

    Google Scholar 

  • Behnke U (1983) T. D. Brock: Membrane Filtration. A User’s Guide and Reference Manual. 381 Seiten, 115 Abb., 27 Tab. Springer-Verlag, Berlin/Heidelberg/New York/Tokyo 1983, Preis: 87,- DM. Food/Nahrung 27(10): 1025.

    Google Scholar 

  • Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42(11): 4133–4139.

    Google Scholar 

  • Borkow G, Okon-Levy N, Gabbay J (2010) Copper oxide impregnated wound dressing: biocidal and safety studies. Wounds 22(12): 301–310.

    Google Scholar 

  • Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fiévet F (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6(4): 866–870.

    Google Scholar 

  • Buffle A, Perret D, Newman M (1992) The use of filtration and ultrafiltration for size fractionation of aquatic particles, colloids and macromolecules. In: Buffle A, Leeuwen HP (eds) Environmental Particles, vol. 1. Lewis Publishers, Boca Raton.

    Google Scholar 

  • Campbell PGC (1995) Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model. In: Tessier A, Turner DR (eds) Metal Speciation and Bioavailability in Aquatic Systems. Wiley, Chichester.

    Google Scholar 

  • Carlson C, Hussain SM, Schrand AM, Braydich-Stolle K, Hess L, Jones KL and Schlager JJ (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112(43): 13608–13619.

    Google Scholar 

  • Chen CY, Chiang CL (2008) Preparation of cotton fibers with antibacterial silver nanoparticles. Mater Lett 62(21–22): 3607–3609.

    Google Scholar 

  • Chen WJ, Pei-Jane T, Chen YC (2008) Functional Fe3O4/TiO2 core/shell magnetic nanoparticles as photokilling agents for pathogenic bacteria. Small 4: 485–491.

    Google Scholar 

  • Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42(12): 4583–4588.

    Google Scholar 

  • Choi O, Deng KK, Kim NJ, Ross JL, Surampalli RY, Hu Z (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42(12): 3066–3074.

    Google Scholar 

  • Choi O, Clevenger TE, Deng B, Surampalli RY, Ross JL, Hu Z (2009) Role of sulfide and ligand strength in controlling nanosilver toxicity. Water Res 43(7): 1879–1886.

    Google Scholar 

  • Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D’Alessio M, Zambonin PG, Traversa E (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17: 5255–5762.

    Google Scholar 

  • Daunert S, Barrett G, Feliciano J, Shetty R, Shrestha S, Smith-Spencer W (2000) Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes. Chem Rev 100(7): 2705–2738.

    Google Scholar 

  • Dibrov P, Dzioba J, Gosnik KK, Häse CC (2002) Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholerae. Antimicrob Agents Chemother 46(8): 2668–2670.

    Google Scholar 

  • Dimkpa CO, Calder A, Britt DW, McLean JE, Anderson AJ (2011) Responses of a soil bacterium, Pseudomonas chlororaphis O6 to commercial metal oxide nanoparticles compared with their metal ions. Environ Pollut 159(7): 1749–1756.

    Google Scholar 

  • Dollwet HHA, Sorenson JRJ (1985) Historic uses of copper compounds in medicine. J Trace Elem Med Biol 2(2): 80–87.

    Google Scholar 

  • El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT,Tolaymat TM (2010) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45(1): 283–287.

    Google Scholar 

  • El-Rafie MH, Mohamed AA, Shaheen TI, Hebeish A (2010) Antimicrobial effect of silver nanoparticles produced by fungal process on cotton fabrics. Carbohydr Polym 80(3): 779–782.

    Google Scholar 

  • Falletta E, Bonini M, Fratini E, Lo Nostro A, Pesavento G, Becheri A, Lo Nostro P, Canton P, Baglioni P (2008) Clusters of poly(acrylates) and silver nanoparticles: structure and applications for antimicrobial fabrics. J Phys Chem C 112(31): 11758–11766.

    Google Scholar 

  • Fan FRF, Bard AJ (2001) Chemical, electrochemical, gravimetric and microscopic studies on antimicrobial silverfilms. J Phys Chem B 106(2): 279–287.

    Google Scholar 

  • Farkas J, Christian P, Gallego-Urrea JA, Roos N, Hassellov M, Tollefsen KE, Thomas KV (2010) Uptake and effects of manufactured silver nanoparticles in rainbow trout (Oncorhynchus mykiss) gill cells. Aquat Toxicol 101(1): 117–125.

    Google Scholar 

  • Fasim F, Ahmed N, Parsons R, Gadd GM (2002) Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiol Lett 213(1): 1–6.

    Google Scholar 

  • Foster H, Ditta I, Varghese S, Steele A (2011) Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Appl Microbiol Biotechnol 90(6): 1847–1868.

    Google Scholar 

  • Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41(24): 8484–8490.

    Google Scholar 

  • Gajjar P, Pettee B, Britt DB, Huang W, Johnson WP, Anderson AJ (2009) Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440. J Biol Eng 3(9): 1–13.

    Google Scholar 

  • Gao J, Youn S, Hovsepyan A, Llaneza VL, Wang Y, Bitton G, Bonzongo JCJ (2009) Dispersion and toxicity of selected manufactured nanomaterials in natural river water samples: effects of water chemical composition. Environ Sci Technol 43(9): 3322–3328.

    Google Scholar 

  • Gelover S, Gómez LA, Reyes K, Teresa Leal M (2006) A practical demonstration of water disinfection using TiO2 films and sunlight. Water Res 40(17): 3274–3280.

    Google Scholar 

  • George S, Pokhrel S, Xia T, Gilbert B, Ji Z, Schowalter M, Rosenauer A, Damoiseaux R, Bradley KA, Mädler L, Nel AE (2010) Use of a rapid cytotoxicity screening approach to engineer a safer zinc oxide nanoparticle through iron doping. ACS Nano 4(1): 15–29.

    Google Scholar 

  • George S, Xia T, Rallo R, Zhao Y, Ji Z, Lin S, Wang X, Zhang H, France B, Schoenfeld D, Damoiseaux R, Liu R, Lin S, Bradley KA, Cohen Y, Nel AE (2011) Use of a high-throughput screening approach coupled with in vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials. ACS Nano 5(3): 1805–1817.

    Google Scholar 

  • Ghule K, Ghule AV, Chen BJ, Ling YC (2006) Preparation and characterization of ZnO nanoparticles coated paper and its antibacterial activity study. Green Chemistry 8(12): 1034–1041.

    Google Scholar 

  • Handy R, von der Kammer F, Lead J, Hassellöv M, Owen R, Crane M (2008) The ecotoxicol and chemistry of manufactured nanoparticles. Ecotoxicol 17(4): 287–314.

    Google Scholar 

  • Heinlaan M, Ivask A, Blinova, Dubourguier HC, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71(7): 1308–1316.

    Google Scholar 

  • Heinlaan M, Kahru A, Kasemets K, Arbeille B, Prensier G, Dubourguier HC (2011) Changes in the Daphnia magna midgut upon ingestion of copper oxide nanoparticles: a transmission electron microscopy study. Water Res 45(179–190).

    Google Scholar 

  • Hendren CO, Mesnard X, Dröge J, Wiesner MR (2011) Estimating production data for five engineered nanomaterials as a basis for exposure assessment. Environ Sci Technol 45(7): 2562–2569.

    Google Scholar 

  • Holt K, Bard AJ (2005) Interaction of silver(I) ions with the respiratory chain of Escherichia coli: An electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochem 44(39): 13214–13223.

    Google Scholar 

  • Hong J, Ma H, Otaki M (2005) Controlling algal growth in photo-dependent decolorant sludge by photocatalysis. J Biosci Bioeng 99(6): 592–597.

    Google Scholar 

  • Hwang ET, Lee JH, Chae YJ, Kim YS, Kim BC, Sang BI, Gu MB (2008) Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small 4(6): 746–750.

    Google Scholar 

  • Ireland JC, Klostermann P, Rice EW, Clark RM (1993) Inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation. Appl Environ Microbiol 59(5): 1668–1670.

    Google Scholar 

  • Ivask A, Francois M, Kahru A, Dubourguier H-C, Virta M, Douay F (2004) Recombinant luminescent bacterial sensors for the measurement of bioavailability of cadmium and lead in soils polluted by metal smelters. Chemosphere 22: 147–156.

    Google Scholar 

  • Ivask A, Green T, Polyak B, Mor A, Kahru A, Virta M, Marks R. (2007). Fibre-optic bacterial biosensors and their application for the analysis of bioavailable Hg and As in soils and sediments from Aznalcollar mining area in Spain. Biosens Bioelectron 22: 1396–1402.

    Google Scholar 

  • Ivask A, Rolova T, Kahru A (2009) A suite of recombinant luminescent bacterial strains for the quantification of bioavailable heavy metals and toxicity testing. BMC Biotechnol 9(1): 41.

    Google Scholar 

  • Ivask A, Bondarenko O, Jepihhina N, Kahru A (2010) Profiling of the reactive oxygen species-related ecotoxicity of CuO, ZnO, TiO2, silver and fullerene nanoparticles using a set of recombinant luminescent Escherichia coli strains: differentiating the impact of particles and solubilised metals. Anal Bioanal Chem 398(2): 701–716.

    Google Scholar 

  • Ivask A, Dubourguier H-C, Põllumaa L, Kahru A (2011) Bioavailability of Cd in 110 polluted topsoils to recombinant bioluminescent sensor bacteria: effect of soil particulate matter. J Soil Sediment 11(2): 231–237.

    Google Scholar 

  • Jiang W, Mashayekhi H, Xing B (2009) Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environ Pollut 157(5): 1619–1625.

    Google Scholar 

  • Jin X, Li M, Wang J, Marambio-Jones C, Peng F, Huang X, Damoiseaux R, Hoek EMV (2010) High-throughput screening of silver nanoparticle stability and bacterial inactivation in aquatic media: influence of specific ions. Environ Sci Technol 44(19): 7321–7328.

    Google Scholar 

  • Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279(1): 71–76.

    Google Scholar 

  • Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH (2008) Antibacterial activity and mechanism of action of the silver ion on Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74(7): 2171–2178.

    Google Scholar 

  • Kaegi R, Ulrich A, Sinnet B, Vonbank R, Wichser A, Zuleeg S, Simmler H, Brunner S, Vonmont H, Burkhardt M, Boller M (2008) Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ Pollut 156(2): 233–239.

    Google Scholar 

  • Kahru A, Dubourguier H-C (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269: 105–119.

    Google Scholar 

  • Kahru A, Savolainen K (2010) Potential hazard of nanoparticles: from properties to biological and environmental effects. Toxicol 269(2–3): 89–91.

    Google Scholar 

  • Kahru A, Ivask A, Kasemets K, Põllumaa L, Kurvet I, François M, Dubourguier H-C (2005) Biotests and biosensors in ecotoxicological risk assessment of field soils polluted with zinc, lead and cadmium. Environ Toxicol Chem 24(11): 2973–2982.

    Google Scholar 

  • Kahru A, Dubourguier HC, Blinova I, Ivask A, Kasemets K (2008) Biotests and biosensors for ecotoxicol of metal oxide nanoparticles: A minireview. Sensors 8(8): 5153–5170.

    Google Scholar 

  • Käkinen A, Bondarenko O, Ivask A, Kahru A (2011) The effect of composition of different ecotoxicological test media on free and bioavailable copper from CuSO4 and CuO nanoparticles: comparative evidence from a Cu-selective electrode and a Cu-biosensor. Sensors 11(11):10502–10521.

    Google Scholar 

  • Kasemets K, Ivask A, Dubourguier HC, Kahru A (2009) Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol in Vitro 23(6): 1116–1122.

    Google Scholar 

  • Kikuchi Y, Sunada K, Iyoda T, Hashimoto K, Fujishima A (1997) Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect. J Photochem Photobiol A: Chemistry 106(1–3): 51–56.

    Google Scholar 

  • Kim JS (2007) Antibacterial activity of Ag + ion-containing silver nanoparticles prepared using the alcohol reduction method. J Ind Eng Chem 13(5): 718–722.

    Google Scholar 

  • Kim SC, Lee DK (2005) Preparation of TiO2-coated hollow glass beads and their application to the control of algal growth in eutrophic water. Microchem J 80(2): 227–232.

    Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang C-Y, Kim Y-K, Lee Y-S, Jeong DH, Cho M-H (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotech Biol Med 3(1): 95–101.

    Google Scholar 

  • Kim J, Jungeun L, Soonchul K, Sunghoon J (2009a) Preparation of biodegradable polymer/silver nanoparticles composite and its antibacterial efficacy. J Nanosci Nanotechnol 9: 1098–1102.

    Google Scholar 

  • Kim KJ, Sung W, Suh B, Moon SK, Choi JS, Kim J, Lee D (2009b) Antifungal activity and mode of action of silver nano-particles on Candida albicans. BioMetals 22(2): 235–242.

    Google Scholar 

  • Kimura T, Nishioka H (1997) Intracellular generation of superoxide by copper sulphate in Escherichia coli. Mutat Res-Gen Tox En 389(2–3): 237–242.

    Google Scholar 

  • Kloepfer JA, Mielke RE, Nadeau JL (2005) Uptake of CdSe and CdSe/ZnS quantum dots into bacteria via purine-dependent mechanisms. Appl Environ Microbiol 71(5): 2548–2557.

    Google Scholar 

  • Kvitek L, Panaček A, Soukupova J, Kolar M, Večerova R, Prucek R, Holecova M, Zboril R (2008) Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem C 112(15): 5825–5834.

    Google Scholar 

  • Le Pape H, Solano-Serena F, Contini P, Devillers C, Maftah A, Leprat P (2004) Involvement of reactive oxygen species in the bactericidal activity of activated carbon fibre supporting silver: bactericidal activity of ACF(Ag) mediated by ROS. J Inorg Biochem 98(6): 1054–1060.

    Google Scholar 

  • Leskinen P, Virta M, Karp M (2003) One-step measurement of firefly luciferase activity in yeast. Yeast 20(13): 1109–1113.

    Google Scholar 

  • Li M, Pokhrel S, Jin X, Mädler L, Damoiseaux R, Hoek EMV (2010) Stability, bioavailability, and bacterial toxicity of ZnO and iron-doped ZnO nanoparticles in aquatic media. Environ Sci Technol 45(2): 755–761.

    Google Scholar 

  • Li M, Zhu L, Lin D (2011) Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ Sci Technol 45(5): 1977–1983.

    Google Scholar 

  • Liau, SY, Read DC, Pugh WJ, Furr JR, Russell AD (1997) Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett Appl Microbiol 25: 279–283.

    Google Scholar 

  • Liu J, Hurt, RH (2010) Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44(6): 2169–2175.

    Google Scholar 

  • Liu Y, He L, Mustapha A, Li H, Hu ZQ, Lin M (2009) Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J Appl Microbiol 107(4): 1193–1201.

    Google Scholar 

  • Liu J, Sonshine DA, Shervani S, Hurt RH (2010) Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 4(11): 6903–6913.

    Google Scholar 

  • Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam P, Chiu JF, Che CM (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5(4): 916–924.

    Google Scholar 

  • Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam P, Chiu JF, Che CM (2007) Silver nanoparticles: partial oxidation and antibacterial activities. JBIC 12(4): 527–534.

    Google Scholar 

  • Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. JNR 12: 1531–1551.

    Google Scholar 

  • Maynard AD (2007) Nanotechnology – toxicological issues and environmental safety and environmental safety. In: Project on Emerging Nanotechnologies, vols–14. Woodrow Wilson International Center for Scholars, Washington, DC.

    Google Scholar 

  • McDonnell G, Russell AD (1999) Antiseptics and disinfectants: activity, action and resistance. Clin Microbiol Rev 12(1): 147–179.

    Google Scholar 

  • Menard A, Drobne D, Jemec A (2011) Ecotoxicity of nanosized TiO2. Review of in vivo data. Environ Pollut 159(3): 677–684.

    Google Scholar 

  • International Council on Mining and Metals (2007) MERAG: Metals Environmental Risk Assessment Guidance. London, UK.

    Google Scholar 

  • Midander K, Cronholm P, Karlsson HL, Elihn K, Möller L, Leygraf C, Wallinder IO (2009) Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper(II) oxide particles: a cross-disciplinary study. Small 5(3): 389–399.

    Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt KB, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnol 16: 2346–2353.

    Google Scholar 

  • Mortimer M, Kasemets K, Kahru A (2010) Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. Toxicol 269(2–3): 182–189.

    Google Scholar 

  • Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42(12): 4447–4453.

    Google Scholar 

  • Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42(23): 8959–8964.

    Google Scholar 

  • Neal A (2008) What can be inferred from bacterium–nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicol 17(5): 362–371.

    Google Scholar 

  • Nel A, Madler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8(7): 543–557.

    Google Scholar 

  • Niazi JH, Gu MB (2009) Toxicity of metallic nanoparticles in microorganisms - a review. In: Kim YK, Platt U, Gu MB, Iwahashi H (eds) Atmospheric and Biological Environmental Monitoring. Springer, Dordrecht/Heidelberg/London/New York.

    Google Scholar 

  • Nowack B, Krug HF, Height M (2011) 120 years of nanosilver history: implications for policy makers. Environ Sci Technol 45(4): 1177–1183.

    Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6): 1712–1720.

    Google Scholar 

  • Panáček A, Kvítek L, Prucek R, Kolář M, Večeřová R, Pizúrová N, Sharma VK, Nevěčná TJ, Zbořil R (2006) Silver colloid nanoparticles: synthesis, characterization and their antibacterial activity. J Phys Chem B 110(33): 16248–16253.

    Google Scholar 

  • Paquin PR, Gorsuch JW, Apte S, Batley GE, Bowles KC, Campbell PGC, Delos CG, Di Toro DM, Dwyer RL, Galvez F, Gensemer RW, Goss GG, Hogstrand C, Janssen CR, McGeer JC, Naddy RB, Playle RC, Santore RC, Schneider U, Stubblefield WA, Wood CM, Wu KB (2002) The biotic ligand model: a historical overview. Comp Biochem Physiol C 133: 3–35.

    Google Scholar 

  • Park HJ, Kim JY, Kim J, Lee JH, Hahn JS, Gu MB, Yoon J (2009) Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res 43(4): 1027–1032.

    Google Scholar 

  • Pesavento M, Alberti G, Biesuz R (2009) Analytical methods for determination of free metal ion concentration, labile species fraction and metal complexation capacity of environmental waters: a review. Anal Chim Acta 631(2): 129–141.

    Google Scholar 

  • Puzyn T, Rasulev B, Gajewicz A, Hu X, Dasari TP, Michalkova A, Hwang HM, Toropov A, Leszczynska D, Leszczynski J (2011) Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nat Nano 6(3): 175–178.

    Google Scholar 

  • Raffi M, Hussain F, Bhatti T, Akhter J, Hameed A, Hasan M (2008) Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. J Mater Sci Tech Ser 24: 192–196.

    Google Scholar 

  • Rai M, Yadav A, Gade A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances 27(1): 76–83.

    Google Scholar 

  • Rajendran R, Balakumar C, Mohammed Ahammed HA, Jayakumar S, Vaideki K, Rajesh EM (2010) Use of zinc oxide nano particles for production of antimicrobial textiles. Int J Eng Sci 2(1): 202–208.

    Google Scholar 

  • Ren G, Hu D, Cheng EWC, Vargas-Reus MA, Reip P, Allaker RP (2009) Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J of Antimicrob Ag 33(6): 587–590.

    Google Scholar 

  • Rice RH, Vidrio EA, Kumfer BM, Qin Q, Willits NH, Kennedy IM, Anastasio C (2009) Generation of oxidant response to copper and iron nanoparticles and salts: stimulation by ascorbate. Chem-Biol Interact 181(3): 359–365.

    Google Scholar 

  • Robichaud CO, Uyar AE, Darby MR, Zucker LG, Wiesner MR (2009) Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment. Environ Sci Technol 43(12): 4227–4233.

    Google Scholar 

  • Roe D, Karandikar B, Bonn-Savage N, Gibbins B, Roullet JB (2008) Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J Antimicrob Chemother 61(4): 869–876.

    Google Scholar 

  • Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4(3): 707–716.

    Google Scholar 

  • Sadiq IM, Dalai S, Chandrasekaran N, Mukherjee A (2011) Ecotoxicity study of titania (TiO2) NPs on two microalgae species: Scenedesmus sp. and Chlorella sp. Ecotoxicol Environ Saf 74(5): 1180–1187.

    Google Scholar 

  • Sambhy V, MacBride MM, Peterson BR, Sen A (2006) Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials. J Am Chem Soc 128(30): 9798–9808.

    Google Scholar 

  • Sawai J (2003) Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microbiol Meth 54(2): 177–182.

    Google Scholar 

  • Sebastian Tomi N, Kränke B, Aberer W (2004) A silver man. Lancet 363(9408): 532.

    Google Scholar 

  • Smetana AB, Klabunde KJ, Marchin GR, Sorensen CM (2008). Biocidal activity of nanocrystalline silver powders and particles. Langmuir 24(14): 7457–7464.

    Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci 275(1): 177–182.

    Google Scholar 

  • Studer AM, Limbach LK, Van Duc L, Krumeich F, Athanassiou EK, Gerber LC, Moch H, Stark, WJ (2010) Nanoparticle cytotoxicity depends on intracellular solubility: comparison of stabilized copper metal and degradable copper oxide nanoparticles. Toxicol Lett 197(3): 169–174.

    Google Scholar 

  • Sunada K, Kikuchi Y, Hashimoto K, Fujishima A. (1998). Bactericidal and Detoxification Effects of TiO2 Thin Film Photocatalysts. Environmental Science & Technology 32(5):726–728.

    Google Scholar 

  • Tayel AA, El-Tras WF, Moussa S, El-Baz AF, Mahrous H, Salem MF, Brimer L (2011) Antibacterial activity and mechanism of action of zinc oxide nanoparticles against foodborne pathogens. J Food Safety: 31(2): 211–218.

    Google Scholar 

  • Trapalis CC, Keivanidis P, Kordas G, Zaharescu M, Crisan M, Szatvanyi A, Gartner M (2003) TiO2(Fe3+) nanostructured thin films with antibacterial properties. Thin Solid Films 433(1–2): 186–190.

    Google Scholar 

  • Tsuang YH, Sun JS, Huang YC, Lu CH, Chang WHS, Wang CC (2008) Studies of photokilling of bacteria using titanium dioxide nanoparticles. Artif Organs 32(2): 167–174.

    Google Scholar 

  • Vertelov GK, Krutyakov TA, Eremenkova OV, Olenin AY, Lisichkin, GV (2008) A versatile synthesis of highly bactericidal Myramistin® stabilized silver nanoparticles Nanotechnol 19(35): 355707. doi:10.1088/0957-4484/19/35/355707.

    Google Scholar 

  • Wei C, Lin WY, Zainal Z, Williams NE, Zhu K, Kruzic AP, Smith RL, Rajeshwar K (1994) Bactericidal activity of TiO2 photocatalyst in aqueous media: toward a solar-assisted water disinfection system. Environ Sci Technol 28(5): 934–938.

    Google Scholar 

  • White JML, Powell AM, Brady K, Russell-Jones R (2003) Severe generalized argyria secondary to ingestion of colloidal silver protein. Clin Exp Dermatol 28(3): 254–256.

    Google Scholar 

  • Wu B, Huang R, Sahu M, Feng X, Biswas P, Tang YJ (2009) Bacterial responses to Cu-doped TiO2 nanoparticles. Sci Total Environ 408(7): 1755–1758.

    Google Scholar 

  • Wu B, Wang Y, Lee YH, Horst A, Wang Z, Chen DR, Sureshkumar R, Tang YJ (2010) Comparative eco-toxicities of nano-ZnO particles under aquatic and aerosol exposure modes. Environ Sci Technol 44(4): 1484–1489.

    Google Scholar 

  • Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2(10): 2121–2134.

    Google Scholar 

  • Yoon KY, Byeon JH, Park CW, Hwang J (2008) Antimicrobial effect of silver particles on bacterial contamination of activated carbon fibers. Environ Sci Technol 42(4): 1251–1255.

    Google Scholar 

  • Zhang L, Jiang Y, Ding Y, Povey M, York D (2007) Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). JNR 9(3): 479–489.

    Google Scholar 

  • Zhang Y, Peng H, Huang W, Zhou Y, Yan D (2008) Facile preparation and characterization of highly antimicrobial colloid Ag or Au nanoparticles. J Colloid Interface Sci 325(2): 371–376.

    Google Scholar 

Download references

Acknowledgements

European Social Fund and Estonian Science Foundation programs Mobilitas, Do-Ra3, EU FP7 Project NanoValid (grant agreement No 263147) and projects ETF6975 and ETF8561 as well as Estonian Ministry of Science and Education project SF0690063s08 are acknowledged for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Ivask .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Ivask, A., George, S., Bondarenko, O., Kahru, A. (2012). Metal-Containing Nano-Antimicrobials: Differentiating the Impact of Solubilized Metals and Particles. In: Cioffi, N., Rai, M. (eds) Nano-Antimicrobials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24428-5_9

Download citation

Publish with us

Policies and ethics