Skip to main content

Quantum Dynamics of Polariton Condensates

  • Chapter
  • First Online:
Book cover Exciton Polaritons in Microcavities

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 172))

Abstract

We illustrate the rich and fundamental physics that is accessible with the semiconductor implementation of the quantum superposition of light and matter: exciton–polaritons. The short lifetime of polaritons makes them an out-of-equilibrium system. Their dynamic is an important ingredient in their behaviour and properties. Their peculiar dispersion also allows a rich engineering of various processes, tuning the system from light- to matter-like. Finally, the exciton–exciton interaction turns them into a non-linear system. The interplay of all these factors makes polaritons one of today’s most versatile and fruitful research arena, both theoretically and experimentally. In this chapter we give a rather general picture of these specificities that we isolate in various dimensionalities (0, 1, and 2D). One of the most intensively researched area in the semiconductor implementation of the polariton physics is related to Bose–Einstein condensation. We solve exactly a configuration of relaxation from the Rayleigh circle into the ground state in the framework of quantum Boltzmann master equations and show how coherence builds up spontaneously in the system, by copying in a single quantum state statistical features characteristic of the macroscopic system. In this way, we extend to higher order correlations the historical reasoning of Einstein, who predicted the phenomenon by arguments on the mean populations. We show how lifetime and pumping allow a simpler treatment by reducing the required number of states, for which we present a full quantum treatment. We contrast this condensate build-up with the 0D case where the reduced complexity allows an exact numerical treatment. The coherence build-up in this cavity QED limit manifests as lasing with a sharp line in the cavity mode that produces a variation of the Mollow triplet in the exciton emission, as the cavity effectively replaces the laser in the conventional resonance fluorescence scenario. We show how lasing also arises in this case as a condensation of polaritons, and can be substituted in the case of vanishing intensities by a coherent field formed when strong coupling is optimum. This zero-dimensional limit also provides an exact picture of the transition from the quantum to the classical regime, a universal process of unsuspected complexity. Finally, we illustrate the recent development of polariton quantum hydrodynamics with propagation of coherent wave packets. The short lifetime allows a continuous observation of this dynamics in real space, a picture completed with the observation of their emission spectra in energy–momentum space. The peculiar polariton dispersion is the source of interesting behaviours even when described by the most fundamental and simplest equation of quantum physics: the Schrödinger equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Or maybe because of a simple oversight since Raizen had a different affiliation.

  2. 2.

    But not too large such that the system is quenched, a region which we shall not discuss here, although the breakdown of the condensate is also an interesting transition, which one can see in Fig. 1.6 is furthermore abrupt.

References

  1. A. Kavokin, J.J. Baumberg, G. Malpuech, F.P. Laussy, Microcavities, 2 edn. (Oxford University Press, Oxford, 2011)

    Google Scholar 

  2. J.J. Hopfield, Theory of the contribution of excitons to the complex dielectric constant of crystals. Phys. Rev. 112, 1555 (1958)

    Article  ADS  MATH  Google Scholar 

  3. L.V. Keldysh, A.N. Kozlov, Collective properties of excitons in semiconductors. Sov. Phys. JETP 27, 521 (1968)

    ADS  Google Scholar 

  4. Z.I. Alferov, Nobel lecture: The double heterostructure concept and its applications in physics, electronics, and technology. Rev. Mod. Phys. 73, 767 (2001)

    Article  ADS  Google Scholar 

  5. L.V. Butov, A.L. Ivanov, A. Ĭmamoḡlu, P.B. Littlewood, A.A. Shashkin, V.T. Dolgopolov, K.L. Campman, A.C. Gossard, Stimulated scattering of indirect excitons in coupled quantum wells: Signature of a degenerate Bose-gas of excitons. Phys. Rev. Lett. 86, 5608 (2001)

    Article  ADS  Google Scholar 

  6. C. Weisbuch, M. Nishioka, A. Ishikawa, Y. Arakawa, Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314 (1992)

    Article  ADS  Google Scholar 

  7. M.G. Raizen, R.J. Thompson, R.J. Brecha, H.J. Kimble, H.J. Carmichael. Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity. Phys. Rev. Lett. 63, 240 (1989)

    Article  ADS  Google Scholar 

  8. R.J. Thompson, G. Rempe, H.J. Kimble, Observation of normal-mode splitting for an atom in an optical cavity. Phys. Rev. Lett. 68, 1132 (1992)

    Article  ADS  Google Scholar 

  9. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Fălt, E. L. Hu, A. Ĭmamoḡlu. Quantum nature of a strongly coupled single quantum dot–cavity system. Nature 445, 896 (2007)

    Article  ADS  Google Scholar 

  10. D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, Y. Yamamoto. Photon antibunching from a single quantum dot-microcavity system in the strong coupling regime. Phys. Rev. Lett. 98, 117402 (2007)

    Article  ADS  Google Scholar 

  11. R. Houdré, C. Weisbuch, R.P. Stanley, U. Oesterle, P. Pellandin, M. Ilegems, Measurement of cavity-polariton dispersion curve from angle-resolved photoluminescence experiments. Phys. Rev. Lett. 73, 2043 (1994)

    Article  ADS  Google Scholar 

  12. P.G. Savvidis, J.J. Baumberg, R.M. Stevenson, M.S. Skolnick, D.M. Whittaker, J.S. Roberts, Angle-resonant stimulated polariton amplifier. Phys. Rev. Lett. 84, 1547 (2000)

    Article  ADS  Google Scholar 

  13. J.J. Baumberg, P.G. Savvidis, R.M. Stevenson, A.I. Tartakovskii, M.S. Skolnick, D.M. Whittaker, J.S. Roberts, Parametric oscillation in a vertical microcavity: A polariton condensate or micro-optical parametric oscillation. Phys. Rev. B 62, R16247 (2000)

    Article  ADS  Google Scholar 

  14. A. Ĭmamoḡlu, R.J. Ram, S. Pau, Y. Yamamoto, Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers. Phys. Rev. A 53, 4250 (1996)

    Article  ADS  Google Scholar 

  15. M. Kira, F. Jahnke, S.W. Koch, J.D. Berger, D.V. Wick, T.R. Nelson Jr., G. Khitrova, H.M. Gibbs, Quantum theory of nonlinear semiconductor microcavity luminescence explaining “Boser” experiments. Phys. Rev. Lett. 79, 5170 (1997)

    Article  ADS  Google Scholar 

  16. L.V. Butov. A polariton laser. Nature 447, 540 (2007)

    Article  ADS  Google Scholar 

  17. H. Deng, G. Weihs, C. Santori, J. Bloch, Y. Yamamoto, Condensation of semiconductor microcavity exciton polaritons. Science 298, 199 (2002)

    Article  ADS  Google Scholar 

  18. J. Bloch, B. Sermage, M. Perrin, P. Senellart, R. André, Le Si Dang. Monitoring the dynamics of a coherent cavity polariton population. Phys. Rev. B 71, 155311 (2005)

    Google Scholar 

  19. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szymanska, R. André, J.L. Staehli, V. Savona, P.B. Littlewood, B. Deveaud, Le Si Dang, Bose–Einstein condensation of exciton polaritons. Nature 443, 409 (2006)

    Article  ADS  Google Scholar 

  20. A. Kavokin, G. Malpuech, F.P. Laussy, Polariton laser and polariton superfluidity in microcavities. Phys. Lett. A 306, 187 (2003)

    Article  ADS  Google Scholar 

  21. I. Carusotto, C. Ciuti, Probing microcavity polariton superfluidity through resonant Rayleigh scattering. Phys. Rev. Lett. 93, 166401 (2004)

    Article  ADS  Google Scholar 

  22. K.G. Lagoudakis, M. Wouters, M. Richard, A. Baas, I. Carusotto, R. André, Le Si Dang, B. Deveaud-Plédran, Quantized vortices in an exciton-polariton condensate. Nat. Phys. 4, 706 (2008)

    Google Scholar 

  23. A. Amo, D. Sanvitto, F.P. Laussy, D. Ballarini, E. del Valle, M. D. Martin, A. Lemaître, J. Bloch, D.N. Krizhanovskii, M.S. Skolnick, C. Tejedor, L. Viña, Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. Nature 457, 291 (2009)

    Article  ADS  Google Scholar 

  24. M.D. Fraser, G. Roumpos, Y. Yamamoto, Vortex–antivortex pair dynamics in an exciton–polariton condensate. New J. Phys. 11, 113048 (2009)

    Article  ADS  Google Scholar 

  25. A. Amo, J. Lefrère, S. Pigeon, C. Adrados, C. Ciuti, I. Carusotto, R. Houdré, E. Giacobino, A. Bramati, Superfluidity of polaritons in semiconductor microcavities. Nat. Phys. 5, 805 (2009)

    Article  Google Scholar 

  26. K.G. Lagoudakis, T. Ostatnický, A.V. Kavokin, Y.G. Rubo, R. André, B. Deveaud-Plédran, Observation of half-quantum vortices in an exciton-polariton condensate. Science 326, 974 (2009)

    Article  ADS  Google Scholar 

  27. D. Sanvitto, F.M. Marchetti, M.H. Szymańska, G. Tosi, M. Baudisch, F.P. Laussy, D.N. Krizhanovskii, M.S. Skolnick, L. Marrucci, A. Lemaître, J. Bloch, C. Tejedor, L. Viña, Persistent currents and quantized vortices in a polariton superfluid. Nat. Phys. 6, 527 (2010)

    Article  Google Scholar 

  28. G. Roumpos, M.D. Fraser, A. Löffler, S. Höfling, A. Forchel, Y. Yamamoto, Single vortex-antivortex pair in an exciton-polariton condensate. Nat. Phys. 7, 129 (2011)

    Article  Google Scholar 

  29. H.T.C. Stoof, Nucleation of Bose–Einstein condensation. Phys. Rev. A 45, 8398 (1992)

    Article  ADS  Google Scholar 

  30. D.V. Semikoz, I.I. Tkachev, Kinetics of Bose condensation. Phys. Rev. Lett. 74, 3093 (1995)

    Article  ADS  Google Scholar 

  31. Yu. Kagan, B.V. Svistunov. Evolution of correlation properties and appearance of broken symmetry in the process of Bose–Einstein condensation. Phys. Rev. Lett. 79, 3331 (1997)

    Article  ADS  Google Scholar 

  32. C.W. Gardiner, P. Zoller, Quantum kinetic theory: A quantum kinetic master equation for condensation of a weakly interacting Bose gas without a trapping potential. Phys. Rev. A 55, 2902 (1997)

    Article  ADS  Google Scholar 

  33. L. Banyai, P. Gartner, Real-time Bose–Einstein condensation in a finite volume with a discrete spectrum. Phys. Rev. Lett. 88, 210404 (2002)

    Article  ADS  Google Scholar 

  34. F. Tassone, C. Piermarocchi, V. Savona, A. Quattropani, P. Schwendimann, Bottleneck effects in the relaxation and photoluminescence of microcavity polaritons. Phys. Rev. B 56, 7554 (1997)

    Article  ADS  Google Scholar 

  35. D. Porras, C. Ciuti, J.J. Baumberg, C. Tejedor, Polariton dynamics and Bose–Einstein condensation in semiconductor microcavities. Phys. Rev. B 66, 085304 (2002)

    Article  ADS  Google Scholar 

  36. G. Malpuech, A. Di Carlo, A. Kavokin, J.J. Baumberg, M. Zamfirescu, P. Lugli, Room-temperature polariton lasers based on GaN microcavities. Appl. Phys. Lett. 81, 412 (2002)

    Article  ADS  Google Scholar 

  37. Yu. G. Rubo, F.P. Laussy, G. Malpuech, A. Kavokin, P. Bigenwald, Dynamical theory of polariton amplifiers. Phys. Rev. Lett. 91, 156403 (2003)

    Article  ADS  Google Scholar 

  38. F.P. Laussy, G. Malpuech, A. Kavokin, Spontaneous coherence buildup in a polariton laser. Phys. Stat. Sol. C 1, 1339 (2004)

    Article  Google Scholar 

  39. H.T. Cao, T.D. Doan, D.B. Tran Thoai, H. Haug, Condensation kinetics of cavity polaritons interacting with a thermal phonon bath. Phys. Rev. B 69, 245325 (2004)

    Article  ADS  Google Scholar 

  40. T.D. Doan, H. Thien Cao, D.B. Tran Thoai, H. Haug, Coherence of condensed microcavity polaritons calculated within Boltzmann-master equations. Phys. Rev. B 78, 205306 (2008)

    Article  ADS  Google Scholar 

  41. M. Wouters, V. Savona, Stochastic classical field model for polariton condensates. Phys. Rev. B 79, 165302 (2009)

    Article  ADS  Google Scholar 

  42. I.G. Savenko, E.B. Magnusson, I.A. Shelykh, Density-matrix approach for an interacting polariton system. Phys. Rev. B 83, 165316 (2011)

    Article  ADS  Google Scholar 

  43. J. Keeling, P.R. Eastham, M.H. Szymanska, P.B. Littlewood, Polariton condensation with localized excitons and propagating photons. Phys. Rev. Lett. 93, 226403 (2004)

    Article  ADS  Google Scholar 

  44. J. Keeling, P.R. Eastham, M.H. Szymanska, P.B. Littlewood, BCS–BEC crossover in a system of microcavity polaritons. Phys. Rev. B 72, 115320 (2005)

    Article  ADS  Google Scholar 

  45. M.H. Szymanska, J. Keeling, P.B. Littlewood, Nonequilibrium quantum condensation in an incoherently pumped dissipative system. Phys. Rev. Lett. 96, 230602 (2006)

    Article  ADS  Google Scholar 

  46. F.M. Marchetti, J. Keeling, M.H. Szymanska, P.B. Littlewood, Thermodynamics and excitations of condensed polaritons in disordered microcavities. Phys. Rev. Lett. 96, 066405 (2006)

    Article  ADS  Google Scholar 

  47. E.T. Jaynes, F.W. Cummings, Comparison of quantum and semiclassical radiation theory with application to the beam maser. Proc. IEEE 51, 89 (1963)

    Article  Google Scholar 

  48. Y. Zhu, D.J. Gauthier, S.E. Morin, Q. Wu, H.J. Carmichael, T.W. Mossberg, Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations. Phys. Rev. Lett. 64, 2499 (1990)

    Article  ADS  Google Scholar 

  49. G. Khitrova, H.M. Gibbs, F. Jahnke, M. Kira, S.W. Koch, Nonlinear optics of normal-mode-coupling semiconductor microcavities. Rev. Mod. Phys 71, 1591 (1999)

    Article  ADS  Google Scholar 

  50. C.N. Cohen-Tannoudji, Manipulating atoms with photons. Rev. Mod. Phys. 70, 707 (1998)

    Article  ADS  Google Scholar 

  51. R.H. Dicke, Coherence in spontaneous radiation processes. Phys. Rev. 93, 99 (1954)

    Article  ADS  MATH  Google Scholar 

  52. J.P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L.V. Keldysh, V.D. Kulakovskii, T.L. Reinecker, A. Forchel, Strong coupling in a single quantum dot–semiconductor microcavity system. Nature, 432, 197 (2004)

    Article  ADS  Google Scholar 

  53. T. Yoshie, A. Scherer, J. Heindrickson, G. Khitrova, H.M. Gibbs, G. Rupper, C. Ell, O.B. Shchekin, D.G. Deppe, Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200 (2004)

    Article  ADS  Google Scholar 

  54. E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J.M. Gérard, J. Bloch, Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett. 95, 067401 (2005)

    Article  ADS  Google Scholar 

  55. E. del Valle, F.P. Laussy, C. Tejedor, Luminescence spectra of quantum dots in microcavities. II. Fermions. Phys. Rev. B 79, 235326 (2009)

    Article  ADS  Google Scholar 

  56. E. del Valle, F.P. Laussy, Mollow triplet under incoherent pumping. Phys. Rev. Lett. 105, 233601 (2010)

    Article  ADS  Google Scholar 

  57. E. del Valle, F.P. Laussy, Regimes of strong light-matter coupling under incoherent excitation. Phys. Rev. A 84, 043816 (2011)

    Article  ADS  Google Scholar 

  58. D. Sanvitto, A. Amo, F.P. Laussy, A. Lemaître, J. Bloch, C. Tejedor, L. Viña, Polariton condensates put in motion. Nanotechnology 21, 134025 (2010)

    Google Scholar 

  59. E. Wertz, L. Ferrier, D.D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A.V. Kavokin, P. Senellart, G. Malpuech an J. Bloch, Spontaneous formation and optical manipulation of extended polariton condensates. Nat. Phys. 6, 860 (2010)

    Google Scholar 

  60. F.P. Laussy, M.M. Glazov, A. Kavokin, D.M. Whittaker, G. Malpuech, Statistics of excitons in quantum dots and their effect on the optical emission spectra of microcavities. Phys. Rev. B 73, 115343 (2006)

    Article  ADS  Google Scholar 

  61. E. del Valle, Microcavity Quantum Electrodynamics. (VDM Verlag, 2010)

    Google Scholar 

  62. V. Savona, Z. Hradil, A. Quattropani, P. Schwendimann, Quantum theory of quantum-well polaritons in semiconductor microcavities. Phys. Rev. B 49, 8774 (1994)

    Article  ADS  Google Scholar 

  63. D.W. Snoke, The quantum boltzmann equation in semiconductor physics. Annalen der Physik 523, 87 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  64. E.A. Uehling, G.E. Uhlenbeck, Transport phenomena in Einstein–Bose and Fermi–Dirac gases. I. Phys. Rev. 43, 552 (1933)

    ADS  MATH  Google Scholar 

  65. C. Ciuti, V. Savona, C. Piermarocchi, A. Quattropani, and P. Schwendimann. Role of the exchange of carriers in elastic exciton-exciton scattering in quantum wells. Phys. Rev. B 58, 7926 (1998)

    Article  ADS  Google Scholar 

  66. G. Malpuech, A. Kavokin, A. Di Carlo, J.J. Baumberg, Polariton lasing by exciton-electron scattering in semiconductor microcavities. Phys. Rev. B 65, 153310 (2002)

    Article  ADS  Google Scholar 

  67. J. Kasprzak, D.D. Solnyshkov, R. André, Le Si Dang, G. Malpuech, Formation of an exciton polariton condensate: Thermodynamic versus kinetic regimes. Phys. Rev. Lett. 101, 146404 (2008)

    Google Scholar 

  68. V.E. Hartwell, D.W. Snoke, Numerical simulations of the polariton kinetic energy distribution in GaAs quantum-well microcavity structures. Phys. Rev. B 82, 075307 (2010)

    Article  ADS  Google Scholar 

  69. R.J. Glauber, Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  70. R. Hanbury Brown, R.Q. Twiss, A test of a new type of stellar interferometer on Sirius. Nature 178, 1046 (1956)

    Article  ADS  Google Scholar 

  71. L.D. Landau, Zur Theorie der Phasenumwandlungen I, II. Zh. Ekspr. Teoret. Fiz 19, 627 (1937)

    Google Scholar 

  72. F.P. Laussy, Y.G. Rubo, G. Malpuech, A. Kavokin, P. Bigenwald, Dissipative quantum theory of polariton lasers. Phys. Stat. Sol. C 0, 1476 (2003)

    Google Scholar 

  73. Yu. G. Rubo, Kinetics of the polariton condensate formation in a microcavity. Phys. Stat. Sol. A 201, 641 (2004)

    Article  ADS  Google Scholar 

  74. D. Sarchi, V. Savona, Long-range order in the Bose–Einstein condensation of polaritons. Phys. Rev. B 75, 115326 (2007)

    Article  ADS  Google Scholar 

  75. F.P. Laussy, G. Malpuech, A. Kavokin, P. Bigenwald, Spontaneous coherence buildup in a polariton laser. Phys. Rev. Lett. 93, 016402 (2004)

    Article  ADS  Google Scholar 

  76. D. Jaksch, C.W. Gardiner, P. Zoller, Quantum kinetic theory. II. Simulation of the quantum Boltzmann master equation. Phys. Rev. A 56, 575 (1997)

    Google Scholar 

  77. C.W. Gardiner, P. Zoller, Quantum kinetic theory. III. quantum kinetic master equation for strongly condensed trapped systems. Phys. Rev. A 58, 536 (1998)

    Google Scholar 

  78. D. Jaksch, C.W. Gardiner, K.M. Gheri, P. Zoller, Quantum kinetic theory. IV. intensity and amplitude fluctuations of a Bose–Einstein condensate at finite temperature including trap loss. Phys. Rev. A 58, 1450 (1998)

    Google Scholar 

  79. C.W. Gardiner, P. Zoller, Quantum kinetic theory. V. quantum kinetic master equation for mutual interaction of condensate and noncondensate. Phys. Rev. A 61, 033601 (2000)

    Google Scholar 

  80. M.D. Lee, C.W. Gardiner, Quantum kinetic theory. VI. the growth of a Bose–Einstein condensate. Phys. Rev. A 62, 033606 (2000)

    Google Scholar 

  81. M.J. Davis, C.W. Gardiner, R.J. Ballagh, Quantum kinetic theory. VII. the influence of vapor dynamics on condensate growth. Phys. Rev. A 62, 063608 (2000)

    Google Scholar 

  82. A. Einstein, Quantentheorie des einatomigen idealen Gases. Sitzungsberichte der Preussischen Akademie der Wissenschaften. 1, 3–14 (1925)

    Google Scholar 

  83. R.L. Graham, D.E. Knuth, O. Patashnik, Concrete Mathematics. 2nd edn. (Addison-Wesley Longman, Amsterdam, 1994)

    Google Scholar 

  84. F.P. Laussy, I.A. Shelykh, G. Malpuech, A. Kavokin, Effects of Bose–Einstein condensation of exciton polaritons in microcavities on the polarization of emitted light. Phys. Rev. B 73, 035315 (2006)

    Article  ADS  Google Scholar 

  85. E. del Valle, D. Sanvitto, A. Amo, F.P. Laussy, R. André, C. Tejedor, L. Viña. Dynamics of the formation and decay of coherence in a polariton condensate. Phys. Rev. Lett. 103, 096404 (2009)

    Article  ADS  Google Scholar 

  86. E. del Valle, S. Zippilli, F.P. Laussy, A. Gonzalez-Tudela, G. Morigi, C. Tejedor. Two-photon lasing by a single quantum dot in a high-Q microcavity. Phys. Rev. B 81, 035302 (2010)

    Article  ADS  Google Scholar 

  87. F.P. Laussy, E. del Valle, C. Tejedor, Luminescence spectra of quantum dots in microcavities. I. Bosons. Phys. Rev. B 79, 235325 (2009)

    Article  ADS  Google Scholar 

  88. F.P. Laussy, E. del Valle, J.J. Finley, Lasing in strong coupling (2011). http://arxiv.org/pdf/1106.0509.pdf

  89. Y. Mu, C.M. Savage, One-atom lasers. Phys. Rev. A 46, 5944 (1992)

    ADS  Google Scholar 

  90. P. Gartner, Two-level laser: Analytical results and the laser transition, Phys. Rev. A 84, 053804 (2011)

    Google Scholar 

  91. S. Strauf, K. Hennessy, M.T. Rakher, Y.S. Choi, A. Badolato, L.C. Andreani, E.L. Hu, P.M. Petroff, and D. Bouwmeester, Self-tuned quantum dot gain in photonic crystal lasers. Phys. Rev. Lett. 96, 127404 (2006)

    Article  ADS  Google Scholar 

  92. Z. G. Xie, S. Götzinger, W. Fang, H. Cao, G.S. Solomon, Influence of a single quantum dot state on the characteristics of a microdisk laser. Phys. Rev. Lett. 98, 117401 (2007)

    Article  ADS  Google Scholar 

  93. S.M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, P. Michler, Photon statistics of semiconductor microcavity lasers. Phys. Rev. Lett. 98, 043906 (2007)

    Article  ADS  Google Scholar 

  94. M. Witzany, R. Roßbach, W.-M. Schulz, M. Jetter, P. Michler, T.-L. Liu, E. Hu, J. Wiersig, and F. Jahnke, Lasing properties of InP/(Ga0. 51In0. 49P) quantum dots in microdisk cavities. Phys. Rev. B 83, 205305 (2011)

    Google Scholar 

  95. F.P. Laussy, A. Laucht, E. del Valle, J.J. Finley, J.M. Villas-Bôas, Luminescence spectra of quantum dots in microcavities. III. Multiple quantum dots, Phys. Rev. B 84, 195313 (2011)

    Google Scholar 

  96. F.P. Laussy, E. del Valle, Optical spectra of the Jaynes-Cummings ladder. AIP Conf. Proc. 1147, 46 (2009)

    Article  ADS  Google Scholar 

  97. B.R. Mollow, Power spectrum of light scattered by two-level systems. Phys. Rev. 188, 1969 (1969)

    Article  ADS  Google Scholar 

  98. M. Löffler, G.M. Meyer, H. Walther, Spectral properties of the one-atom laser. Phys. Rev. A 55, 3923 (1997)

    Article  ADS  Google Scholar 

  99. A.N. Poddubny, M.M. Glazov, N.S. Averkiev, Nonlinear emission spectra of quantum dots strongly coupled to a photonic mode. Phys. Rev. B 82, 205330 (2010)

    Article  ADS  Google Scholar 

  100. E. del Valle, Strong and weak coupling of two coupled qubits. Phys. Rev. A 81, 053811, (2010)

    Article  ADS  Google Scholar 

  101. L.D. Landau, Theory of the superfluidity of helium II. Phys. Rev. 60, 356 (1941)

    Article  ADS  MATH  Google Scholar 

  102. N.N. Bogoliubov, Theory of the weakly interacting Bose gas. J. Phys. (Moscow) 11, 23 (1947)

    Google Scholar 

  103. R.P. Feynman, Application of quantum mechanics to liquid helium. Progr. Low Temp. Phys. 1, 17 (1955)

    Article  Google Scholar 

  104. E. Cancellieri, F.M. Marchetti, M.H. Szymanska, C. Tejedor, Superflow of resonantly driven polaritons against a defect. Phys. Rev. B 82, 224512 (2010)

    Article  ADS  Google Scholar 

  105. S. Ianeselli, C. Menotti, A. Smerzi, Beyond the Landau criterion for superfluidity. J. phys. B.: At. Mol. Phys. 39, S135 (2006)

    Google Scholar 

  106. W.F. Wreszinski, On translational superfluidity and the Landau criterion for Bose gases in the Gross–Pitaevski limit. J. phys. A.: Math. Gen. 41, 392006 (2008)

    Google Scholar 

  107. R.H. Stuewer, Resource letter Sol-1: Solitons. Am. J. Phys. 66, 486 200 (1998)

    Google Scholar 

  108. S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, A. Sanpera, G.V. Shlyapnikov, M. Lewenstein, Dark solitons in Bose–Einstein condensates. Phys. Rev. Lett. 83, 5198 (1999)

    Article  ADS  Google Scholar 

  109. K.E. Strecker, G.B. Partridge, A.G. Truscott, R.G. Hulet, Formation and propagation of matter-wave soliton trains. Nature 417, 150 (2002)

    Article  ADS  Google Scholar 

  110. O.A. Egorov, D.V. Skryabin, A.V. Yulin, F. Lederer, Bright cavity polariton solitons. Phys. Rev. Lett. 102, 153904 (2009)

    Article  ADS  Google Scholar 

  111. A. Amo, S. Pigeon, D. Sanvitto, V.G. Sala, R. Hivet, I. Carusotto, F. Pisanello, G. Leménager, R. Houdré, E. Giacobino, C. Ciuti, A. Bramati, Polariton superfluids reveal quantum hydrodynamic solitons. Science 332, 1167 (2011)

    Article  ADS  Google Scholar 

  112. J. Keeling, N.G. Berloff, Going with the flow. Nature 457, 273 (2009)

    Google Scholar 

  113. E. Schrödinger. Der stetige übergang von der Mikro- zur Makromechanik. Naturwissenschaften 14, 664 (1926)

    Article  ADS  Google Scholar 

  114. C.G. Darwin, Free motion in the wave mechanics. Proc. Roy. Soc A117, 258 (1928)

    ADS  Google Scholar 

  115. J.R. Klein, Do free quantum-mechanical wave packets always spread? Am. J. Phys. 48, 1035 (1980)

    Article  ADS  Google Scholar 

  116. M. Berry. Quantum physics on the edge of chaos. New Scientist 116(1587), 44 (1987)

    Google Scholar 

  117. J. Scott Russell, Report on waves. Fourteenth meeting of the British Association for the Advancement of Science, (1844)

    Google Scholar 

  118. D.J. Korteweg, G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philosophical Mag. 39, 422 (1895)

    Google Scholar 

  119. C.C. Yan, Soliton like solutions of the schrödinger equation for simple harmonic oscillator. Am. J. Phys. 62, 147 (1994)

    Article  ADS  Google Scholar 

  120. D.F. Walls, Squeezed states of light. Nature 306, 141 (1983)

    ADS  Google Scholar 

  121. M.V. Berry, N.L. Balazs, Nonspreading wave packets. Am. J. Phys. 47, 264 (1979)

    Google Scholar 

  122. F.P. Laussy, Propagation of polariton wavepackets. ICSCE4 conference, Cambridge, http://www.tcm.phy.cam.ac.uk/BIG/icsce4/talks/laussy.pdf, 2008

  123. I.A. Shelykh, A.V. Kavokin, Yu.G. Rubo, T.C.H. Liew, G. Malpuech, Polariton polarization-sensitive phenomena in planar semiconductor microcavities. Semicond. Sci. Technol. 25, 013001 (2010)

    Article  ADS  Google Scholar 

  124. T.S. Raju, C. Nagaraja Kumar, P.K. Panigrahi, On exact solitary wave solutions of the nonlinear Schrödinger equation with a source. J. phys. A.: Math. Gen. 38, L271 (2005)

    Google Scholar 

  125. V.M. Vyas, T.S. Raju, C.N. Kumar, P.K. Panigrahi, Soliton solutions of driven nonlinear schrödinger equation. J. phys. A.: Math. Gen. 39, 9151 (2006)

    Google Scholar 

  126. C. Ciuti, I. Carusotto, Quantum fluid effects and parametric instabilities in microcavities. Phys. Stat. Sol. B 242, 2224 (2005)

    Article  ADS  Google Scholar 

  127. M.H. Szymanska, F.M. Marchetti, D. Sanvitto, Propagating wave packets and quantized currents in coherently driven polariton superfluids. Phys. Rev. Lett. 105, 236402 (2010)

    Article  ADS  Google Scholar 

  128. C. Ciuti, P. Schwendimann, B. Deveaud, A. Quattropani, Theory of the angle-resonant polariton amplifier. Phys. Rev. B 62, R4825 (2000)

    Article  ADS  Google Scholar 

  129. C. Ciuti, P. Schwendimann, A. Quattropani, Parametric luminescence of microcavity polaritons. Phys. Rev. B 63, 041303 (2001)

    Article  ADS  Google Scholar 

  130. D.M. Whittaker, Effects of polariton-energy renormalization in the microcavity optical parametric oscillator. Phys. Rev. B 71, 115301 (2005)

    Article  ADS  Google Scholar 

  131. A.E. Garriz, A. Sztrajman, D. Mitnik, Running into trouble with the time-dependent propagation of a wavepacket. Eur. J. Phys. 31, 785 (2010)

    Article  Google Scholar 

  132. H. Shao, Z. Wang, Numerical solutions of the time-dependent Schrödinger equation: Reduction of the error due to space discretization. Phys. Rev. E 79, 056705 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I am indebted to Elena del Valle for constant exchanges and collaboration on most of the topics addressed here. Many of the results presented, and some of the most beautiful, are her own. I thank Daniele Sanvitto for his support with my contribution to this volume and for keeping this topic constantly exciting with his fresh experimental approach. I am grateful to Alexey Kavokin for having introduced me to the physics of microcavity polaritons which he also kept exciting, with his own peculiar approach. I also thank C. Tejedor, G. Malpuech, M. Glazov, Yu. Rubo, I. A. Shelykh, A. Gonzalez-Tudela, E. Cancellieri, A. Laucht, J. J. Finley and many other colleagues for discussions on many parts of this work, to which they often contributed to large extents. Support from the Marie Curie IEF “SQOD” is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrice P. Laussy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Laussy, F.P. (2012). Quantum Dynamics of Polariton Condensates. In: Timofeev, V., Sanvitto, D. (eds) Exciton Polaritons in Microcavities. Springer Series in Solid-State Sciences, vol 172. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24186-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24186-4_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24185-7

  • Online ISBN: 978-3-642-24186-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics