Skip to main content

Effect of Equivalence Ratio on Combustion Characteristics in a Hydrogen Direct-Injection SI Engine

  • Conference paper
Book cover Sustainable Automotive Technologies 2012

Abstract

Gases such as hydrogen are regarded as promising alternative fuels for improving the energy efficiency and reducing the greenhouse gas emissions of conventional internal combustion engines. Hydrogen spark-ignition (SI) engines based on direct injection (DI) promise significant advantages in terms of thermal efficiency and power output, as well as a means of overcoming problems related to knocking, backfiring, and pre-ignition. A better understanding of the effect of the hydrogen jet on the concentration distribution and mixing process in a DISI engine should provide new and useful insights into combustion optimization. The objective of the present work is to gain a deeper comprehension of the characteristics of late-injection hydrogen combustion. An experimental combustion setup is applied to a fired, jet-guided DISI engine operated at 600 rpm in tail ignition (TI) injection mode. A high-speed camera, synchronized with the spark, is focused on a field of view with a diameter of 52 mm through a window at the bottom of the piston crown. A series of single-shot images, captured in different intervals, is used to study the time evolution of the flame distribution. Variations of the equivalence ratio at tail ignition mode combustion are found to impact the development of the early flame, as well as the flame propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wallner, T., et al.: Investigation of injection parameters in a Hydrogen DI Engine using an endoscopic access to the combustion chamber. SAE 2007-01-1464

    Google Scholar 

  2. Kawanabe, H., et al.: CFD analysis of a high-speed unsteady jet. Heat Transfer Asia Research 36(1), 1–12 (2007)

    Article  MathSciNet  Google Scholar 

  3. Takagi, Y., et al.: Optimization of hydrogen jet configuration by single hole nozzle and high speed laser shadowgraphy in high pressure direct injection hydrogen engines. SAE 2011-01-2002

    Google Scholar 

  4. Kaiser, S., et al.: PIV and PLIF to evaluate mixture formation in a direct-injection hydrogen-fuelled engine. SAE 2008-01-1034

    Google Scholar 

  5. Salazar, V., et al.: Interaction of intake-induced flow and injection jet in a direct-injection hydrogen-fueled engine measured by PIV. SAE 2011-01-0673

    Google Scholar 

  6. Kawahara, N., et al.: Fuel concentration measurement of premixed mixture in a spark-ignition engine using spark-induced breakdown spectroscopy. In: 15th International Symposium on Appli. of Laser Tech. to Fluid Mechanics, July 05-08 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag GmbH Berlin Heidelberg

About this paper

Cite this paper

Kanti, R.M., Kawahara, N., Tomita, E., Fujitani, T. (2012). Effect of Equivalence Ratio on Combustion Characteristics in a Hydrogen Direct-Injection SI Engine. In: Subic, A., Wellnitz, J., Leary, M., Koopmans, L. (eds) Sustainable Automotive Technologies 2012. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24145-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24145-1_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24144-4

  • Online ISBN: 978-3-642-24145-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics