Skip to main content

Physical Expander in Virtual Tree Overlay

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6950))

Abstract

In this paper, we propose a new distributed construction of constant-degree expanders motivated by their application in P2P overlay networks and in particular in the design of robust tree overlays. Our key result can be stated as follows. Consider a complete binary tree T and construct a random pairing Π between leaf nodes and internal nodes. We prove that the graph G Π obtained from T by contracting all pairs (leaf-internal nodes) achieves a constant node expansion with high probability. In the context of P2P overlays our result can be interpreted as follows: if each physical node participating to the tree overlay manages a random pair that couples one virtual internal node and one virtual leaf node then the physical-node layer exhibits a constant expansion with high probability. We encompass the difficulty of obtaining the random tree virtualization by proposing a local, self-organizing and churn resilient uniformly-random pairing algorithm with O(log2 n) running time. Our algorithm has the merit to not modify the original tree overlay (we just control the mapping between physical nodes and virtual nodes). Therefore, our scheme is general and can be easilly extended to a large class of overlays.

This work is supported in part by KAKENHI no. 22700010 and Foundation for the Fusion of Science and Technology (FOST).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aberer, K., Cudre-Mauroux, P., Datta, A., Despotovic, Z., Hauswith, M., Punceva, M., Schmidt, R.: P-Grid: A self-organizing access structure for p2p information. In: Batini, C., Giunchiglia, F., Giorgini, P., Mecella, M. (eds.) CoopIS 2001. LNCS, vol. 2172, pp. 179–194. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Abraham, I., Aspnes, J., Yuan, J.: Skip B-trees. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.) OPODIS 2005. LNCS, vol. 3974, pp. 366–380. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Aspnes, J., Wieder, U.: The expansion and mixing time of skip graphs with applications. Distributed Computing 21(6), 385–393 (2008)

    Article  MATH  Google Scholar 

  4. Baehni, S., Eugster, P.T., Guerraoui, R.: Data-aware multicast. In: DSN, pp. 233–242 (2004)

    Google Scholar 

  5. Bianchi, S., Felber, P., Potop-Butucaru, M.G.: Stabilizing distributed r-trees for peer-to-peer content routing. IEEE Trans. Parallel Distrib. Syst. 21(8), 1175–1187 (2010)

    Article  Google Scholar 

  6. Caron, E., Desprez, F., Fourdrignier, C., Petit, F., Tedeschi, C.: A repair mechanism for fault-tolerance for tree-structured peer-to-peer systems. In: Robert, Y., Parashar, M., Badrinath, R., Prasanna, V.K. (eds.) HiPC 2006. LNCS, vol. 4297, pp. 171–182. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Castro, M., Druschel, P., Kermarrec, A.-M., Nandi, A., Rowstron, A.I.T., Singh, A.: Splitstream: High-bandwidth content distribution in cooperative environments. In: SOSP, pp. 298–313 (2003)

    Google Scholar 

  8. Cooper, C., Dyer, M., Handley, A.: The flip markov chain and a randomizing p2p protocol. In: PODC, pp. 141–150 (2009)

    Google Scholar 

  9. Czumaj, A., Kutylowski, M.: Delayed path coupling and generating random permutations. Random Struct. Algorithms 17(3-4), 238–259 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dolev, S., Tzachar, N.: Spanders: distributed spanning expanders. In: SAC, pp. 1309–1314 (2010)

    Google Scholar 

  11. du Mouza, C., Litwin, W., Rigaux, P.: SD-Rtree: A scalable distributed rtree. In: ICDE, pp. 296–305 (2007)

    Google Scholar 

  12. Eugster, P.T., Guerraoui, R., Handurukande, S.B., Kouznetsov, P., Kermarrec, A.-M.: Lightweight probabilistic broadcast. ACM Trans. Comput. Syst. 21(4) (2003)

    Google Scholar 

  13. Feder, T., Guetz, A., Mihail, M., Saberi, A.: A local switch Markov chain on given degree graphs with application in connectivity of peer-to-peer networks. In: FOCS, pp. 69–76 (2006)

    Google Scholar 

  14. Goyal, N., Rademacher, L., Vempala, S.: Expanders via random spanning trees. In: SODA, pp. 576–585 (2009)

    Google Scholar 

  15. Hoory, S., Linial, N., Wigderson, A.: Expendar graphs and their applications. Bull. Amer. Math. Soc. (43), 439–561 (2006)

    Google Scholar 

  16. Jagadish, H.V., Ooi, B.C., Vu, Q.H.: Baton: a balanced tree structure for peer-to-peer networks. In: VLDB, pp. 661–671 (2005)

    Google Scholar 

  17. Jagadish, H.V., Ooi, B.C., Vu, Q.H., Zhang, R., Zhou, A.: Vbi-tree: A peer-to-peer framework for supporting multi-dimensional indexing schemes. In: ICDE, p. 34 (2006)

    Google Scholar 

  18. Law, C., Siu, K.-Y.: Distributed construction of random expander networks. In: IEEE Infocom, pp. 2133–2143 (2003)

    Google Scholar 

  19. Pandurangan, G., Trehan, A.: Xheal: Localized Self-healing using Expanders. In: PODC, pp. 301–310 (2011)

    Google Scholar 

  20. Paris, C., Kalogeraki, V.: A topologically-aware overlay tree for efficient and low-latency media streaming. In: QShine/AAA-IDEA. LNICST, vol. 22, pp. 383–399 (2009)

    Google Scholar 

  21. Reiter, M.K., Samar, A., Wang, C.: Distributed construction of a fault-tolerant network from a tree. In: SRDS, pp. 155–165 (2005)

    Google Scholar 

  22. Zhang, C., Krishnamurthy, A., Wang, R.Y.: Brushwood: Distributed trees in peer-to-peer systems. In: ITPTPS, pp. 47–57 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Izumi, T., Gradinariu Potop-Butucaru, M., Valero, M. (2011). Physical Expander in Virtual Tree Overlay. In: Peleg, D. (eds) Distributed Computing. DISC 2011. Lecture Notes in Computer Science, vol 6950. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24100-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24100-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24099-7

  • Online ISBN: 978-3-642-24100-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics