Skip to main content

Biodegradation of the Explosives TNT, RDX and HMX

  • Chapter
  • First Online:
Microbial Degradation of Xenobiotics

Part of the book series: Environmental Science and Engineering ((ESE))

Abstract

In the early twentieth century, more than 60 highly explosive compounds were developed and synthesized for military and civilian use. Of these, the most widely used explosives in the world are probably hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), 2,4,6-trinitrotoluene (TNT) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achtnich C, Sieglen U, Knackmuss H-J, Lenke H (1999) Irreversible binding of biologically reduced 2,4,6-trinitrotoluene to soil. Environ Toxicol Chem 18:2416–2423

    CAS  Google Scholar 

  • Adrian NR, Arnett CM (2004) Anaerobic biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Acetobacterium malicum strain HAAP-1 isolated from a methanogenic mixed culture. Curr Microbiol 48:332–340

    CAS  Google Scholar 

  • Adrian NR, Arnett CM (2007) Anaerobic biotransformation of explosives in aquifer slurries amended with ethanol and propylene glycol. Chemosphere 66:1849–1856

    CAS  Google Scholar 

  • Adrian NR, Arnett CM, Hickey RF (2003) Stimulating the anaerobic biodegradation of explosives by the addition of hydrogen or electron donors that produce hydrogen. Water Res 37:3499–3507

    CAS  Google Scholar 

  • Allard A-S, Neilson AH (1997) Bioremediation of organic waste sites: a critical review of microbiological aspects. Intl Biodeter Biodegrad 39:253–285

    CAS  Google Scholar 

  • Alvarez MA, Kitts CL, Botsford JL, Unkefer PJ (1995) Pseudomonas aeruginosa strain MA01 aerobically metabolizes the aminodinitrotoluenes produced by 2,4,6-trinitrotoluene nitro group reduction. Can J Microbiol 41:984–991

    CAS  Google Scholar 

  • Angermaier L, Simon H (1983) On nitroaryl reductase activities in several Clostridia. Hoppe-Seylers Z Physiol Chem 364:1653–1663

    CAS  Google Scholar 

  • Arnett CM, Adrian NR (2009) Cosubstrate independent mineralization of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by a Desulfovibrio species under anaerobic conditions. Biodegradation 20:15–26

    CAS  Google Scholar 

  • ATSDR (1996a) 2,4,6-Trinitrotoluene (TNT) Fact Sheet. Agency for toxic substances and disease registry (ATSDR). Available from: http://www.atsdr.cdc.gov/toxfaqs/tfacts81.pdf

  • ATSDR (1996b) RDX Fact Sheet. Agency for toxic substances and disease registry (ATSDR). Available from: http://www.atsdr.cdc.gov/toxfaqs/tfacts78.pdf

  • ATSDR (1997) HMX Fact Sheet. Agency for toxic substances and disease registry (ATSDR). Available from: http://www.atsdr.cdc.gov/toxfaqs/tfacts98.pdf

  • Behrend C, Heesche-Wagner K (1999) Formation of hydride-Meisenheimer complexes of picric acid (2,4,6-trinitrophenol) and 2,4-dinitrophenol during mineralization of picric acid by Nocardioides sp. strain CB22–2. Appl Environ Microbiol 65:1372–1377

    CAS  Google Scholar 

  • Beller HR, Tiemeier K (2002) Use of liquid chromatography/tandem mass spectrometry to detect distinctive indicators of in situ RDX transformation in contaminated groundwater. Environ Sci Technol 36:2060–2066

    CAS  Google Scholar 

  • Beller HR, Madrid V, Hudson GB, McNab WW, Carlsen T (2004) Biogeochemistry and natural attenuation of nitrate in groundwater at an explosives test facility. Appl Geochem 19:1483–1494

    CAS  Google Scholar 

  • Bernstein A, Ronen Z, Adar E, Nativ R, Lowag H, Stichler W, Meckenstock RU (2008) Compound-specific isotope analysis of RDX and stable isotope fractionation during aerobic and anaerobic biodegradation. Environ Sci Technol 42:7772–7777

    CAS  Google Scholar 

  • Bernstein A, Adar E, Ronen Z, Lowag H, Stichler W, Meckenstock RU (2010) Quantifying RDX biodegradation in groundwater using ?15N isotope analysis. J Contam Hydrol 111:25–35

    CAS  Google Scholar 

  • Bernstein A, Adar E, Nejidat A, Ronen Z (2011) Isolation and characterization of RDX-degrading Rhodococcus species from a contaminated aquifer. Biodegradation 22:997–1005

    CAS  Google Scholar 

  • Best EPH, Sprecher SL, Larson SL, Fredrickson HL, Bader DF (1999) Environmental behavior of explosives in groundwater from the Milan Army Ammunition Plant in aquatic and wetland plant treatments. Uptake and fate of TNT and RDX in plants. Chemosphere 39:2057–2072

    CAS  Google Scholar 

  • Bhushan B, Paquet L, Halasz A, Spain JC, Hawari J (2003a) Mechanism of xanthine oxidase catalyzed biotransformation of HMX under anaerobic conditions. Biochem Biophys Res Commun 306:509–515

    CAS  Google Scholar 

  • Bhushan B, Trott S, Spain JC, Halasz A, Paquet L, Hawari J (2003b) Biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by a rabbit liver cytochrome P450: insight into the mechanism of RDX biodegradation by Rhodococcus sp. strain DN22. Appl Environ Microbiol 69:1347–1351

    CAS  Google Scholar 

  • Bhushan B, Halasz A, Thiboutot S, Ampleman G, Hawari J (2004) Chemotaxis-mediated biodegradation of cyclic nitramine explosives RDX, HMX, and CL-20 by Clostridium sp. EDB2. Biochem Biophys Res Commun 316:816–821

    CAS  Google Scholar 

  • Binks PR, Nicklin S, Bruce NC (1995) Degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Stenotrophomonas maltophilia PB1. Appl Environ Microbiol 61:1318–1322

    CAS  Google Scholar 

  • Blehert DS, Fox BG, Chambliss GH (1999) Cloning and sequence analysis of two Pseudomonas flavoprotein xenobiotic reductases. J Bacteriol 181:6254–6263

    CAS  Google Scholar 

  • Bockelmann A, Zamfirescu D, Ptak T, Grathwhol P, Teutsch G (2003) Quantification of mass fluxes and natural attenuation rates at an industrial site with a limited monitoring network: a case study. J Contam Hydrol 60:97–121

    CAS  Google Scholar 

  • Boopathy R (1994) Transformation of nitroaromatic compounds by a methanogenic bacterium, Methanococcus sp (strain B). Arch Microbiol 162:167–172

    CAS  Google Scholar 

  • Boopathy R (2000) Bioremediation of explosives contaminated soil. Intl Biodeter Biodegrad 46:29–36

    CAS  Google Scholar 

  • Boopathy R (2001) Enhanced biodegradation of cyclotetramethylenetetranitramine (HMX) under mixed electron-acceptor condition. Biores Technol 76:241–244

    CAS  Google Scholar 

  • Boopathy R, Kulpa CF (1992) Trinitrotoluene as a sole nitrogen source for a sulfate-reducing bacterium Desulfovibrio sp (B strain) isolated from an anaerobic digester. Curr Microbiol 25:235–241

    CAS  Google Scholar 

  • Boopathy R, Kulpa CF (1994) Biotransformation of 2,4,6-trinitrotoluene (TNT) by a Methanococcus sp (strain B) isolated from a lake sediment. Can J Microbiol 40:273–278

    CAS  Google Scholar 

  • Boopathy R, Manning JF (1996) Characterization of partial anaerobic metabolic pathway for 2,4,6-trinitrotoluene degradation by a sulfate-reducing bacterial consortium. Can J Microbiol 42:1203–1208

    CAS  Google Scholar 

  • Boopathy R, Kulpa CF, Wilson M (1993) Metabolism of 2,4,6-trinitrotoluene (TNT) by Desulfovibrio sp (B strain). Appl Microbiol Biotechnol 39:270–275

    CAS  Google Scholar 

  • Boopathy R, Manning J, Kulpa CF (1997) Optimization of environmental factors for the biological treatment of trinitrotoluene-contaminated soil. Arch Environ Contam Toxicol 32:94–98

    CAS  Google Scholar 

  • Borch T, Inskeep WP, Harwood JA, Gerlach R (2005) Impact of ferrihydrite and anthraquinone-2,6-disulfonate on the reductive transformation of 2,4,6-trinitrotoluene by a gram-positive fermenting bacterium. Environ Sci Technol 39:7126–7133

    CAS  Google Scholar 

  • Bordeleau G, Savard MM, Martel R, Ampleman G, Thiboutot S (2008) Determination of the origin of groundwater nitrate at an air weapons range using the dual isotope approach. J Contam Hydrol 98:97–105

    CAS  Google Scholar 

  • Brenner A, Ronen Z, Harel Y, Abeliovich A (2000) Degradation of RDX during biological treatment of munitions waste. Water Environ Res 72:469–475

    CAS  Google Scholar 

  • Charles PT, Gauger PR, Patterson CH Jr, Kusterbeck AW (2000) On-site immunoanalysis of nitrate and nitroaromatic compounds in groundwater. Environ Sci Technol 34:4641–4650

    CAS  Google Scholar 

  • Cho Y-S, Lee B-U, Oh K-H (2008) Simultaneous degradation of nitroaromatic compounds TNT, RDX, atrazine, and simazine by Pseudomonas putida HK-6 in bench-scale bioreactors. J Chem Technol Biotechnol 83:1211–1217

    CAS  Google Scholar 

  • Clark B, Boopathy R (2007) Evaluation of bioremediation methods for the treatment of soil contaminated with explosives in Louisiana Army Ammunition Plant, Minden, Louisiana. J Hazard Mater 143:643–648

    CAS  Google Scholar 

  • Claus H, Bausinger T, Lehmler I, Perret N, Fels G, Dehner U, Preuß J, König H (2007) Transformation of 2,4,6-trinitrotoluene (TNT) by Raoultella terrigena. Earth Environ Sci 18:27–35

    CAS  Google Scholar 

  • Coleman NV, Nelson DR, Duxbury T (1998) Aerobic biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) as a nitrogen source by a Rhodococcus sp., strain DN22. Soil Biol Biochem 30:1159–1167

    Google Scholar 

  • Coleman NV, Spain JC, Duxbury T (2002) Evidence that RDX biodegradation by Rhodococcus strain DN22 is plasmid-borne and involves a cytochrome p-450. J Appl Microbiol 93:463–472

    CAS  Google Scholar 

  • Cooper PW, Kurowski SR (1997) Chemistry of explosives. In: Introduction to the Technology of Explosives. Wiley-VCH Inc, New York, pp 1–38

    Google Scholar 

  • Crocker FH, Indest KJ, Fredrickson HL (2006) Biodegradation of the cyclic nitramine explosives RDX, HMX, and CL-20. Appl Microbiol Biotechnol 73:274–290

    CAS  Google Scholar 

  • Danielson PB (2002) The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans. Curr Drug Metab 37:561–597

    Google Scholar 

  • Darrach MR, Chutjian A, Plett GA (1998) Trace explosives signatures from World War II unexploded undersea ordnance. Environ Sci Technol 32:1354–1358

    CAS  Google Scholar 

  • Daun G, Lenke H, Reuss M, Knackmuss H-J (1998) Biological treatment of TNT-contaminated soil. 1. Anaerobic cometabolic reduction and interaction of TNT and metabolites with soil components. Environ Sci Technol 32:1956–1963

    CAS  Google Scholar 

  • Diegor EJM, Abrajano T, Stehmeier L, Patel T, Winsor L (1999) In: Proceedings of the 19th international meeting on organic geochemistry, Istanbul, Turkey, pp 29

    Google Scholar 

  • DiGnazio FJ, Krothe NC, Baedke SJ, Spalding RF (1998) ?15N of nitrate derived from explosive sources in karst aquifer beneath the ammunition burning ground. J Hydrol 206:164–175

    CAS  Google Scholar 

  • Drzyzga O, Gorontzy T, Schmidt A, Blotevogel KH (1995) Toxicity of explosives and related compounds to the luminescent bacterium Vibrio fischeri NRRL-B-11177. Arch Environ Contam Toxicol 28:229–235

    CAS  Google Scholar 

  • Drzyzga O, Bruns-Nagel D, Gorontzy T, Blotevogel K-H, von Löw E (1999) Anaerobic incorporation of the radiolabeled explosive TNT and metabolites into the organic soil matrix of contaminated soil after different treatment procedures. Chemosphere 38:2081–2095

    CAS  Google Scholar 

  • Duque E, Ha?dour A, Godoy F, Ramos J-L (1993) Construction of a Pseudomonas hybrid strain that mineralizes 2,4,6-trinitrotoluene. J Bacteriol 175:2278–2283

    CAS  Google Scholar 

  • Ederer MM, Lewis TA, Crawford RL (1997) 2,4,6-Trinitrotoluene (TNT) transformation by Clostridia isolated from a munition-fed bioreactor: comparison with non-adapted bacteria. J Ind Microbiol Biotechnol 18:82–88

    CAS  Google Scholar 

  • Esteve-Núñez A, Ramos JL (1998) Metabolism of 2,4,6-trinitrotoluene by Pseudomonas sp. JLR11. Environ Sci Technol 32:3802–3808

    Google Scholar 

  • Esteve-Nuñez A, Lucchesi G, Philipp B, Schink B, Ramos JL (2000) Respiration of 2,4,6-trinitrotoluene by Pseudomonas sp. strain JLR11. J Bacteriol 182:1352–1355

    Google Scholar 

  • Esteve-Núñez A, Caballero A, Ramos JL (2001) Biological degradation of 2,4,6trinitrotoluene. Microbiol Mol Biol Rev 65:335–352

    Google Scholar 

  • Eyers L, Stenuit L, Agathos SN (2008) Denitration of 2,4,6-trinitrotoluene by Pseudomonas aeruginosa ESA-5 in the presence of ferrihydrite. Appl Microbiol Biotechnol 79:489–497

    CAS  Google Scholar 

  • Fiorella PD, Spain JC (1997) Transformation of 2,4,6-trinitrotoluene by Pseudomonas pseudoalcaligenes JS52. Appl Environ Microbiol 63:2007–2015

    CAS  Google Scholar 

  • Fournier D, Halasz A, Spain J, Fiurasek P, Hawari J (2002) Determination of key metabolites during biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine with Rhodococcus sp. strain DN22. Appl Environ Microbiol 68:166–172

    CAS  Google Scholar 

  • Fournier D, Halasz A, Thiboutot S, Ampleman G, Manno D, Hawari J (2004) Biodegradation of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) by Phanerochaete chrysosporium: new insight into the degradation pathway. Environ Sci Technol 38:4130–4133

    CAS  Google Scholar 

  • Freedman DL, Sutherland KW (1998) Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) under nitrate-reducing conditions. Water Sci Technol 38:33–40

    CAS  Google Scholar 

  • French CE, Nicklin S, Bruce NC (1998) Aerobic degradation of 2,4,6-trinitrotoluene by Enterobacter cloacae PB2 and by pentaerythritol tetranitrate reductase. Appl Environ Microbiol 64:2864–2868

    CAS  Google Scholar 

  • Fuchs JS, Oneto ML, Casabé NB, Gómez Segura O, Tarulla R, Vaccarezza M, Sánchez-Rivas C, Kesten EM, Wood EJ (2001) Ecotoxicological characterization of a disposal lagoon from a munition plant. Bull Environ Contam Toxicol 67:696–703

    CAS  Google Scholar 

  • Fuller ME, Manning JF (1997) Aerobic gram-positive and gram-negative bacteria exhibit differential sensitivity to and transformation of 2,4,6-trinitrotoluene (TNT). Curr Microbiol 35:77–83

    CAS  Google Scholar 

  • Fuller M, McClay K, Hawari J, Paquet L, Malone T, Fox B, Steffan R (2009) Transformation of RDX and other energetic compounds by xenobiotic reductases XenA and XenB. Appl Microbiol Biotechnol 84:535–544

    CAS  Google Scholar 

  • Fuller ME, Perreault N, Hawari J (2010) Microaerophilic degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by three Rhodococcus strains. Lett Appl Microbiol 51:313–318

    CAS  Google Scholar 

  • Funk SB, Roberts DJ, Crawford DL, Crawford RL (1993) Initial-phase optimization for bioremediation of munition compound-contaminated soils. Appl Environ Microbiol 59:2171–2177

    CAS  Google Scholar 

  • Gelman F, Kotlyar A, Chiguala D, Ronen Z (2011) Precise and accurate compound-specific carbon and nitrogen isotope analysis of RDX by GC-IRMS. Intl J Environ Anal Chem (in press)

    Google Scholar 

  • George SE, Huggins-Clark G, Brooks LR (2001) Use of a Salmonella microsuspension bioassay to detect the mutagenicity of munitions compounds at low concentrations. Mutation Res 490:45–56

    CAS  Google Scholar 

  • Gilcrease CP, Murphy VG (1995) Bioconversion of 2,4-diamino-6-nitrotoluene to a novel metabolite under anoxic and aerobic conditions. Appl Environ Microbiol 61:4209–4214

    CAS  Google Scholar 

  • Groom CA, Beaudet S, Halasz A, Paquet L, Hawari J (2001) Detection of the cyclic nitramine explosives hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazine (HMX) and their degradation products in soil environments. J Chromatogr A 909:53–60

    CAS  Google Scholar 

  • Haïdour A, Ramos JL (1996) Identification of products resulting from the biological reduction of 2,4,6-trinitrotoluene, 2,4-dinitrotoluene and 2,6-dinitrotoluene by Pseudomonas sp. Environ Sci Technol 30:2365–2370

    Google Scholar 

  • Halasz A, Spain J, Paquet L, Beaulieu C, Hawari J (2002) Insights into the formation and degradation mechanisms of methylenedinitramine during the incubation of RDX with anaerobic sludge. Environ Sci Technol 36:633–638

    CAS  Google Scholar 

  • Halasz A, Manno D, Strand SE, Bruce NC, Hawari J (2010) Biodegradation of RDX and MNX with Rhodococcus sp. strain DN22: new insights into the degradation pathway. Environ Sci Technol 44:9330–9336

    Google Scholar 

  • Hartenbach A, Hofstetter TB, Berg M, Bolotin J, Schwarzenbach RP (2006) Using nitrogen isotope fractionation to assess abiotic reduction of nitroaromatic compounds. Environ Sci Technol 40:7710–7716

    CAS  Google Scholar 

  • Hawari J, Halasz A, Paquet L, Zhou E, Spencer B, Ampleman G, Thiboutot S (1998) Characterization of metabolites in the biotransformacion of 2,4,6-trinitrotoluene with anaerobic sludge: role of triaminotoluene. Appl Environ Microbiol 64:2200–2206

    CAS  Google Scholar 

  • Hawari J, Halasz A, Beaudet S, Paquet L, Ampleman G, Thiboutot S (1999) Biotransformation of 2,4,6-trinitrotoluene with Phanerochaete chrysosporium in agitated cultures at pH 4.5. Appl Environ Microbiol 65:2977–2986

    CAS  Google Scholar 

  • Hawari J, Beaudet S, Halasz A, Thiboutot S, Ampleman G (2000a) Microbial degradation of explosives: biotransformation versus mineralization. Appl Microbiol Biotechnol 54:605–618

    CAS  Google Scholar 

  • Hawari J, Halasz A, Sheremata T, Beaudet S, Groom C, Paquet L, Rhofir C, Ampleman G, Thiboutot S (2000b) Characterization of metabolites during biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) with municipal anaerobic sludge. Appl Environ Microbiol 66:2652–2657

    CAS  Google Scholar 

  • Hawari J, Halasz A, Beaudet S, Paquet L, Ampleman G, Thiboutot S (2001) Biotransformation routes of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine by municipal anaerobic sludge. Environ Sci Technol 35:70–75

    CAS  Google Scholar 

  • Hlavica P (2009) Assembly of non-natural electron transfer conduits in the cytochrome P450 system: a critical assessment and update of artificial redox constructs amenable to exploitation in biotechnological areas. Biotechnol Adv 27:103–121

    CAS  Google Scholar 

  • Hoffsommer JC, Kubose DA, Glover DJ (1977) Kinetic isotope effects and intermediate formation for the aqueous alkaline homogeneous hydrolysis of 1,3,5-triaza-1,3,5-trinitrocyclohexane (RDX). J Phys Chem 81:380–385

    CAS  Google Scholar 

  • Hofstetter TB, Neumann A, Arnold WA, Bolotin J, Cramer CJ, Schwarzenbach RP (2008) Substituent effects on nitrogen isotope fractionation during abiotic reduction of nitroaromatic compounds. Environ Sci Technol 42:1997–2003

    CAS  Google Scholar 

  • Huang S, Lindahl PA, Wang C, Bennett GN, Rudolph FB, Hughes JB (2000) 2,4,6-Trinitrotoluene reduction by carbon monoxide dehydrogenase from Clostridium thermoaceticum. Appl Environ Microbiol 66:1474–1478

    CAS  Google Scholar 

  • Hughes JB, Wang C, Yesland K, Richardson A, Bhadra R, Bennet G, Rudolph F (1998) Bamberger rearrangement during TNT metabolism by Clostridium acetobutylicum. Environ Sci Technol 32:494–500

    CAS  Google Scholar 

  • Hunkeler D, Chollet N, Pittet X, Aravena R, Cherry JA, Parker BL (2004) Effect of source variability and transport processes on carbon isotope ratio of TCE and PCE in two sandy aquifers. J Contam Hydrol 74:265–282

    CAS  Google Scholar 

  • Indest KJ, Crocker FH, Athow R (2007) A TaqMan polymerase chain reaction method for monitoring RDX-degrading bacteria based on the xplA functional gene. J Microbiol Methods 68:267–274

    CAS  Google Scholar 

  • Indest KJ, Jung CM, Chen H-P, Hancock D, Florizone C, Eltis LD, Crocker FH (2010) Functional characterization of pGKT2, a 182-kilobase plasmid containing the xplAB genes, which are involved in the degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine by Gordonia sp. strain KTR9. Appl Environ Microbiol 76:6329–6337

    CAS  Google Scholar 

  • Jackson RJ, Rylott EL, Fournier D, Hawari J, Bruce NC (2007) Exploring the biochemical properties and remediation applications of the unusual explosive-degrading P450 system XplA/B. Proc Natl Acad Sci U S A 104:16822–16827

    CAS  Google Scholar 

  • Kalafut T, Wales ME, Rastogi VK, Naumova RP, Zaripova SK, Wild JR (1998) Biotransformation patterns of 2,4,6-trinitrotoluene by aerobic bacteria. Curr Microbiol 36:45–54

    CAS  Google Scholar 

  • Khan TA, Bhadra R, Hughes J (1997) Anaerobic transformation of 2,4,6-TNT and related nitroaromatic compounds by Clostridium acetobutylicum. J Ind Microbiol Biotechnol 18:198–203

    CAS  Google Scholar 

  • Kim HY, Song HG (2000) Comparison of 2,4,6-trinitrotoluene degradation by seven strains of white rot fungi. Curr Microbiol 41:317–320

    CAS  Google Scholar 

  • Kim H-Y, Bennett GN, Song H-G (2002) Degradation of 2,4,6-trinitrotoluene by Klebsiella sp isolated from activated sludge. Biotechnol Lett 24:2023–2028

    CAS  Google Scholar 

  • Kitts CL, Cunningham DP, Unkefer PJ (1994) Isolation of three hexahydro-1,3,5-trinitro-1,3,5-triazine-degrading species of the family Enterobacteriaceae from nitramine explosive-contaminated soil. Appl Environ Microbiol 60:4608–4711

    CAS  Google Scholar 

  • Kitts CL, Green CE, Otley RA, Alvarez MA, Unkefer PJ (2000) Type 1 nitroreductases in soil enterobacteria reduce TNT (2,4,6-trinitrotoluene) and RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine). Can J Microbiol 26:278–282

    Google Scholar 

  • Kuder T, Wilson JT, Kaiser P, Kolhatkar R, Philp P, Allen J (2005) Enrichment of stable carbon and hydrogen isotopes during anaerobic biodegradation of MTBE: microcosm and field evidence. Environ Sci Technol 39:213–220

    CAS  Google Scholar 

  • Kwon MJ, Finneran KT (2008) Biotransformation products and mineralization potential for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in abiotic versus biological degradation pathways with anthraquinone-2,6-disulfonate (AQDS) and Geobacter metallireducens. Biodegradation 19:705–715

    CAS  Google Scholar 

  • Lachance B, Robidoux PY, Hawari J, Ampleman G, Thiboutot S, Sunahara GI (1999) Cytotoxic and genotoxic effects of energetic compounds on bacterial and mammalian cells in vitro. Mutat Res 444:25–39

    CAS  Google Scholar 

  • Lenke H, Knackmuss H-J (1992) Initial hydrogenation during catabolism of picric acid by Rhodococcus erythropolis HL 24–2. Appl Environ Microbiol 58:2933–2937

    CAS  Google Scholar 

  • Lewin U, Efer J, Engewald W (1996) High-performance liquid chromatographic analysis with electrochemical detection for residues of explosives in water samples around a former ammunition plant. J Chromatogr A 730:161–167

    CAS  Google Scholar 

  • Lewis TA, Goszczynski S, Crawford RL, Korus RA, Admassu W (1996) Products of anaerobic 2,4,6-trinitrotoluene (TNT) transformation by Clostridium bifermentans. Appl Environ Microbiol 62:4669–4674

    CAS  Google Scholar 

  • Mak KS, Griebler C, Meckenstock RU, Liedl R, Peter A (2006) Combined application of conservative transport modelling and compound-specific carbon isotope analyses to assess in situ attenuation of benzene, toluene, and o-xylene. J Contam Hydrol 88:306–320

    CAS  Google Scholar 

  • Martel R, Robertson TJ, Doan MQ, Thiboutot S, Ampleman G, Provatas A, Jenkins T (2008) 2,4,6-Trinitrotoluene in soil and groundwater under a waste lagoon at the former explosives factory Maribyrnong (EFM), Environ Geol 53:1249–1259

    CAS  Google Scholar 

  • McCormick NG, Feeherry FE, Levinson HS (1976) Microbial transformation of 2,4,6-TNT and other nitroaromatic compounds. Appl Environ Microbiol 31:949–958

    CAS  Google Scholar 

  • McCormick NG, Cornell JH, Kaplan AM (1981) Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine. Appl Environ Microbiol 42:817–823

    CAS  Google Scholar 

  • McGrath CJ (1995) Review of formulations for processes affecting the subsurface transport of explosives. Technical Report IRRP-95-2. US Army Corps of Engineers, Waterways Experiment Station, Vicksburg, MS

    Google Scholar 

  • McGuire RR, Lee CG, Velsko CA, Raber E (1995) Application of stable isotope ratios to the analysis of explosive residues. In: Proceedings of the fifth international symposium on the analysis and detection of explosives, Washington DC, Dec 4–8

    Google Scholar 

  • McKelvie JR, Lindstrom JE, Beller HR, Richmond SA, Sherwood Lollar B (2005) Analysis of anaerobic BTX biodegradation in a subarctic aquifer using isotopes and benzylsuccinates. J Contam Hydrol 81:167–186

    CAS  Google Scholar 

  • McKelvie JR, Mackay DM, de Sieyes NR, Lacrampe-Couloume G, Sherwood Lollar B (2007) Quantifying MTBE biodegradation in the Vandenberg Air Force Base ethanol release study using stable carbon isotopes. J Contam Hydrol 94:157–165

    CAS  Google Scholar 

  • Meckenstock RU, Morasch B, Griebler C, Richnow HH (2004) Stable isotope fractionation analysis as a tool to monitor biodegradation in contaminated aquifers. J Contam Hydrol 75:215–255

    CAS  Google Scholar 

  • Montpas S, Samson J, Langlois E, Lei J, Piche Y, Chêvenert R (1997) Degradation of 2,4,6-trinitrotoluene by Serratia marcescens. Biotechnol Lett 19:291–294

    CAS  Google Scholar 

  • Moonkoo K, Mahlon CK, Yaorong Q (2006) Molecular and stable carbon isotopic characterization of PAH contaminants at McMurdo Station, Antarctica. Marine Poll Bull 52:1585–1590

    Google Scholar 

  • Morley MC, Yamamoto H, Speitel GE, Clausen J (2006) Dissolution kinetics of high explosives particles in a saturated sandy soil. J Contam Hydrol 85:141–158

    CAS  Google Scholar 

  • Morrill PL, Lacrampe-Couloume G, Slater GF, Sleep BE, Edwards EA, McMaster ML, Major DW, Sherwood Lollar B (2005) Quantifying chlorinated ethene degradation during reductive dechlorination at Kelly AFB using stable carbon isotopes. J Contam Hydrol 76:279–293

    CAS  Google Scholar 

  • Naumova RP, Selivanovskaya SLU, Mingatina FA (1988) Possibilities for the deep bacterial destruction of 2,4,6-trinitrotoluene. Mikrobiologia 57:218–222

    CAS  Google Scholar 

  • Nejidat A, Kafka L, Tekoah Y, Ronen Z (2008) Effect of organic and inorganic nitrogenous compounds on RDX degradation and cytochrome P-450 expression in Rhodococcus strain YH1. Biodegradation 19:313–320

    CAS  Google Scholar 

  • Neuwoehner J, Schofer A, Erlenkaemper B, Steinbach K, Hund-Rinke K, Eisentraeger A (2007) Toxicological characterization of 2,4,6-trinitrotoluene, its transformation products, and two nitramine explosives. Environ Toxicol Chem 26:1090–1099

    CAS  Google Scholar 

  • Nissenbaum A (1975) The distribution of natural stable isotopes of carbon as a possible tool for the differentiation of samples of TNT. J Forensic Sci 20:455–459

    CAS  Google Scholar 

  • Oh B-T, Sarath G, Shea PJ (2001) TNT nitroreductase from a Pseudomonas aeruginosa strain isolated from TNT-contaminated soil. Soil Biol Biochem 33:875–881

    CAS  Google Scholar 

  • Oh B-T, Shea PJ, Drijber RA, Vasilyeva GK, Sarath G (2003) TNT biotransformation and detoxification by a Pseudomonas aeruginosa strain. Biodegradation 14:309–319

    CAS  Google Scholar 

  • Pak JW, Knoke KL, Noguera DR, Fox BG, Chambliss GH (2000) Transformation of 2,4,6-trinitrotoluene by purified xenobiotic reductase B from Pseudomonas fluorescens I-C. Appl Environ Microbiol 66:4742–4750

    CAS  Google Scholar 

  • Park C, Kim T-H, Kim S, Kim S-W, Lee J, Kim S-H (2003) Optimization for biodegradation of 2,4,6-trinitrotoluene (TNT) by Pseudomonas putida. J Biosci Bioeng 95:567–571

    CAS  Google Scholar 

  • Pasti-Grigsby MB, Lewis TA, Crawford DL, Crawford RL (1996) Transformation of 2,4,6-trinitrotoluene (TNT) by Actinomycetes isolated from TNT-contaminated and uncontaminated environments. Appl Environ Microbiol 62:1120–1123

    CAS  Google Scholar 

  • Pavlostathis SG, Jackson GH (1999) Biotransformation of 2,4,6-trinitrotoluene in Anabaena sp cultures. Environ Toxicol Chem 18:412–419

    CAS  Google Scholar 

  • Pennington JC, Brannon JM (2002) Environmental fate of explosives. Thermochim Acta 384:163–172

    CAS  Google Scholar 

  • Pennington JC, Brannon JM, Gunnison D, Harrelson DW, Zakikhani M, Miyares P, Jenkins TF, Clarke J, Hayes C, Ringleberg D, Perkins E, Fredrickson H (2001) Monitored natural attenuation of explosives. Soil Sediment Contam 10:45–70

    CAS  Google Scholar 

  • Peterson FJ, Mason RP, Horspian J, Holtzman JL (1979) Oxygen-sensitive and insensitive nitroreduction by Escherichia coli and rat hepatic microcosomes. J Biol Chem 254:4009–4014

    CAS  Google Scholar 

  • Phillips SA, Doyle S, Philp L, Coleman M (2003) Proceedings: network developing forensic applications of stable isotope ratio mass spectrometry conference. Sci Justice 43:153–160

    CAS  Google Scholar 

  • Preuss A, Fimpel J, Dickert G (1993) Anaerobic transformation of 2,4,6-trinitrotoluene (TNT). Arch Microbiol 159:345–353

    CAS  Google Scholar 

  • Price CB, Brannon JM, Yost SL, Hayes CA (2001) Relationship between redox potential and pH on RDX transformation in soil–water slurries. J Environ Eng 127:26–31

    CAS  Google Scholar 

  • Pudge IB, Daugulis AJ, Dubois C (2003) The use of Enterobacter cloacae ATCC 43560 in the development of a two-phase partitioning bioreactor for the destruction of hexahydro-1,3,5-trinitro-1,3,5-s-triazine (RDX). J Biotechnol 100:65–75

    CAS  Google Scholar 

  • Regan KM, Crawford RL (1994) Characterization of Clostridium bifermentans and its biotransformation of 2,4,6-trinitrotoluene (TNT) and 1,3,5-triaza-1,3,5-trinitrocyclohexane (RDX). Biotechnol Lett 16:1081–1086

    CAS  Google Scholar 

  • Rieger P-G, Knackmuss HJ (1995) Basic knowledge and perspectives on biodegradation of 2,4,6-trinitrotoluene and related nitroaromatic compounds in contaminated soil. In: Spain JC (ed) Biodegradation of Nitroaromatic Compounds. Plenum Press, New York, pp 1–18

    Google Scholar 

  • Rieger P-G, Sinnwell V, Preuss A, Franke W, Knackmuss H-J (1999) Hydride-Meisenheimer complex formation and protonation as key reactions of 2,4,6-trinitrophenol biodegradation by Rhodococcus erythropolis. J Bacteriol 181:1189–1195

    CAS  Google Scholar 

  • Ringelberg DB, Reynolds CM, Walsh ME, Jenkins TF (2003) RDX loss in a surface soil under saturated and well drained conditions. J Environ Qual 32:1244–1249

    CAS  Google Scholar 

  • Roh H, Yu C, Fuller M, Chu K-H (2009) Identification of hexahydro-1,3,5-trinitro-1,3,5-triazine-degrading microorganisms via 15N-stable isotope probing. Environ Sci Technol 43:2505–2511

    CAS  Google Scholar 

  • Ronen Z, Brenner A, Abeliovich A (1998) Biodegradation of RDX-contaminated wastes in a nitrogen-deficient environment. Water Sci Technol 38:219–224

    CAS  Google Scholar 

  • Ronen Z, Yanovich Y, Goldin R, Adar E (2008) Metabolism of the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in a contaminated vadose zone. Chemosphere 73:1492–1498

    CAS  Google Scholar 

  • Rylott EL, Jackson RG, Sabbadin F, Seth-Smith HMB, Edwards J, Chong CS, Strand SE, Grogan G, Bruce NC (2011) The explosive-degrading cytochrome P450 XplA: biochemistry, structural features and prospects for bioremediation. Biochim Biophys Acta 1:230–236

    Google Scholar 

  • Sagi-Ben Moshe S (2011) Biodegradation and transport of explosives in sandy unsaturated zone. PhD Thesis, The Hebrew University of Jerusalem, pp 119

    Google Scholar 

  • Sagi-Ben Moshe S, Ronen Z, Dahan O, Weisbrod N, Groisman L, Adar E, Nativ R (2009) Sequential biodegradation of TNT, RDX and HMX in a mixture. Environ Pollut 157:2231–2238

    CAS  Google Scholar 

  • Sagi-Ben Moshe S, Ronen Z, Dahan O, Bernstein A, Weisbrod N, Gelman F, Adar E (2010) Isotopic evidence and quantification assessment of in situ RDX biodegradation in the deep unsaturated zone. Soil Biol Biochem 42:1253–1262

    CAS  Google Scholar 

  • Schmidt TC, Zwank L, Elsner M, Berg M, Meckenstock RU, Haderlein SB (2004) Compound-specific stable isotope analysis of organic contaminants in natural environments: a critical review of the state of the art, prospects, and future challenges. Anal Bioanal Chem 378:283–300

    CAS  Google Scholar 

  • Seth-Smith HMB, Rosser SJ, Basran A, Travis ER, Dabbs ER, Nicklin S, Bruce NC (2002) Cloning, sequencing, and characterization of the hexahydro-1,3,5-trinitro-1,3,5-triazine degradation gene cluster from Rhodococcus rhodochrous. Appl Environ Microbiol 68:4764–4771

    CAS  Google Scholar 

  • Seth-Smith HMB, Edwards J, Rosser SJ, Rathbone DA, Bruce NC (2008) The explosive-degrading cytochrome P450 system is highly conserved among strains of Rhodococcus spp. Appl Environ Microbiol 74:4550–4552

    CAS  Google Scholar 

  • Sherburne LA, Shrout JD, Alvarez PJJ (2005) Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) degradation by Acetobacterium paludosum. Biodegradation 16:539–547

    CAS  Google Scholar 

  • Sheremata TW, Hawari J (2000) Mineralization of RDX by the white rot fungus Phanerochaete chrysosporium to carbon dioxide and nitrous oxide. Environ Sci Technol 34:3384–3388

    CAS  Google Scholar 

  • Singh R, Soni P, Kumar P, Purohit S, Singh A (2009) Biodegradation of high explosive production effluent containing RDX and HMX by denitrifying bacteria. World J Microbiol Biotechnol 25:269–275

    CAS  Google Scholar 

  • Soojhawon I, Lokhande PD, Kodam KM, Gawai KR (2005) Biotransformation of nitroaromatics and their effects on mixed function oxidase system. Enzyme Microb Technol 37:527–533

    CAS  Google Scholar 

  • Spanggord RJ, Mabey WR, Chuo T, Haynes DL, Alferness PL, Tee DS, Mill T (1982) Environmental fate studies of HMX. Phase 1, screening studies, final report. SRI International, Menlo Park, CA

    Google Scholar 

  • Speitel G, Engels T, McKinney D (2001) Biodegradation of RDX in unsaturated soil. Bioremediation J 5:1–11

    Google Scholar 

  • Spence MJ, Bottrell SH, Thornton SF, Richnow HH, Spence KH (2005) Hydrochemical and isotopic effects associated with petroleum fuel biodegradation pathways in a chalk aquifer. J Contam Hydrol 79:67–88

    CAS  Google Scholar 

  • Spiker JK, Crawford DL, Crawford RL (1992) Influence of 2,4,6-trinitrotoluene (TNT) concentration on the degradation of TNT in explosive-contaminated soils by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 58:3199–3202

    CAS  Google Scholar 

  • Stenuit B, Eyers L, El Fantroussi S, Agathos SN (2005) Promising strategies for the mineralisation of 2,4,6-trinitrotoluene. Rev Environ Sci Biotechnol 4:39–60

    CAS  Google Scholar 

  • Stenuit B, Eyers L, Rozenberg R, Habib-Jiwan J-L, Agathos SN (2006) Aerobic growth of Escherichia coli with 2,4,6-trinitrotoluene (TNT) as the sole nitrogen source and evidence of TNT denitration by whole cells and cell-free extracts. Appl Environ Microbiol 72:7945–7948

    CAS  Google Scholar 

  • Stenuit B, Eyers L, Rozenberg R, Habib-Jiwan J-L, Matthijs S, Cornelis P, Agathos SN (2009) Denitration of 2,4,6-trinitrotoluene in aqueous solutions using small-molecular-weight catalyst(s) secreted by Pseudomonas aeruginosa ESA-5. Environ Sci Technol 43:2011–2017

    CAS  Google Scholar 

  • Steuckart C, Berger-Prelss E, Levsen K (1994) Determination of explosives and their biodegradation products in contaminated soil and water from former ammunition plants by automated multiple development high-performance thin-layer chromatography. Anal Chem 66:2570–2577

    CAS  Google Scholar 

  • Tekoah Y, Abeliovich A, Nejidat A (1999) Participation of cytochrome P450 in the biodegradation of RDX by a Rhodococcus strain. In: 2nd international symposium, biodegradation of nitroaromatic compounds and explosives, Leesburg, VA, pp 7

    Google Scholar 

  • Thompson KT, Crocker FH, Fredrickson HL (2005) Mineralization of the cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine by Gordonia and Williamsia spp. Appl Environ Microbiol 71:8265–8272

    CAS  Google Scholar 

  • Uchimiya M, Gorb L, Isayev O, Qasim MM, Leszczynski J (2010) One-electron standard reduction potentials of nitroaromatic and cyclic nitramine explosives. Environ Pollut 158:3048–3053

    CAS  Google Scholar 

  • US EPA (2006) 2006 Edition of the Drinking Water Standards and Health Advisories. Office of Water, EPA 822-R-06-013, Washington, DC

    Google Scholar 

  • US EPA (2010) Risk-Based Concentration Table [online]. Available from: http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/Generic_Tables/pdf/master_sl_table_run_MAY2010.pdf

  • Van Aken B, Yoon JM, Schnoor JL (2004) Biodegradation of nitro-substituted explosives 2,4,6-trinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine, and octahydro-1,3,5, 7-tetranitro-1,3,5-tetrazocine by a phytosymbiotic Methylobacterium sp. associated with poplar tissues (Populus deltoides x nigra DN34). Appl Environ Microbiol 70:508–517

    Google Scholar 

  • Van Dillewijn P, Caballero A, Paz JA, González-Pérez MM, Oliva JM, Ramos JL (2007) Bioremediation of 2,4,6-trinitrotoluene under field conditions. Environ Sci Technol 41:1378–1383

    Google Scholar 

  • Van Dillewijn P, Wittich R-M, Caballero A, Ramos J-L (2008) Type II hydride transferases from different microorganisms yield nitrite and diarylamines from polynitroaromatic compounds. Appl Environ Microbiol 74:6820–6823

    Google Scholar 

  • Vanderberg LA, Perry JJ, Unkefer PJ (1995) Catabolism of 2,4,6-trinitrotoluene by Mycobacterium vaccae. Appl Microbiol Biotechnol 43:937–945

    CAS  Google Scholar 

  • Vorbeck C, Lenke H, Fischer P, Knackmuss H-J (1994) Identification of a hydride-Meisenheimer complex as a metabolite of 2,4,6-trinitrotoluene by a Mycobacterium strain. J Bacteriol 176:932–934

    CAS  Google Scholar 

  • Vorbeck C, Lenke H, Fischer P, Spain JC, Knackmuss H-J (1998) Initial reductive reactions in aerobic microbial metabolism of 2,4,6-trinitrotoluene. Appl Environ Microbiol 64:246–252

    CAS  Google Scholar 

  • Waisner S, Hansen L, Fredrickson H, Nestler C, Zappi M, Banerji S, Bajpai R (2002) Biodegradation of RDX within soil-water slurries using a combination of differing redox incubation conditions. J Hazard Mater B95:91–106

    Google Scholar 

  • Wani AH, Davis JL (2003) RDX biodegradation column study: influence of ubiquitous electron acceptors on anaerobic biotransformation of RDX. J Chem Technol Biotechnol 78:1082–1092

    CAS  Google Scholar 

  • Williams RE, Rathbone DA, Scrutton NS, Bruce NC (2004) Biotransformation of explosives by the old yellow enzyme family of flavoproteins. Appl Environ Microbiol 70:3566–3574

    CAS  Google Scholar 

  • Wilson RD, Thornton SF, Mackay DM (2004) Challenges in monitoring the natural attenuation of spatially variable plumes. Biodegradation 15:359–369

    Google Scholar 

  • Wingfors H, Edlund C, Hägglund L, Waleij A, Sjöström J, Karlsson R-M, Leffler P, Qvarfort U, Ahlberg M, Thiboutot S, Ampelman G, Martel R, Duvalois W, Creemers A, Van Ham N (2006) Evaluation of the Contamination by Explosives and Metals in Soils at the Älvdalen Shooting Range. Part II: Results and Discussion. NBC Defence Scientific report, FOI-R-1877-SE

    Google Scholar 

  • Wittich R-M, Haïdour A, Van Dillewijn P, Ramos J-L (2008) OYE flavoprotein reductases initiate the condensation of TNT-derived intermediates to secondary diarylamines and nitrite. Environ Sci Technol 42:734–739

    CAS  Google Scholar 

  • Wittich R-M, Ramos J-L, Van Dillewijn P (2009) Microorganisms and explosives: mechanisms of nitrogen release from TNT for use as an N-source for growth. Environ Sci Technol 43:2773–2776

    CAS  Google Scholar 

  • Won WD, Heckly RJ, Glover DJ, Hoffsommer JC (1974) Metabolic disposition of 2,4,6-trinitrotoluene. Appl Microbiol 27:513–516

    CAS  Google Scholar 

  • Yinon J (1990) Toxicity and metabolism of explosives. CRC Press Inc., Boca Raton, FL

    Google Scholar 

  • Yinon J, Zitrin S (1993) Modern methods and applications in analysis of explosives. Wiley, Chichester

    Google Scholar 

  • Young DM, Unkefer PJ, Ogden KL (1997) Biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by a prospective consortium and its most effective isolate Serratia marcescens. Biotechnol Bioeng 53:515–522

    CAS  Google Scholar 

  • Zhang C, Hughes JB (2003) Biodegradation pathways of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Clostridium acetobutylicum cell-free extract. Chemosphere 50:665–671

    CAS  Google Scholar 

  • Zhang B, Kendall RJ, Anderson TA (2006) Toxicity of the explosive metabolites hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX) and hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) to the earthworm Eisenia fetida. Chemosphere 64:86–95

    CAS  Google Scholar 

  • Zhao J-S, Halasz A, Paquet L, Beaulieu C, Hawari J (2002) Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine and its mononitroso derivative hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine by Klebsiella pneumoniae strain SCZ-1 isolated from an anaerobic sludge. Appl Environ Microbiol 68:5336–5341

    CAS  Google Scholar 

  • Zhao J-S, Paquet L, Halasz A, Hawari J (2003a) Metabolism of hexahydro-1,3-5-trinitro-1,3,5-triazine through initial reduction to hexahydro-1-nitroso-3, 5-dinitro-1,3,5-triazine followed by denitration in Clostridium bifermentans HAW-1. Appl Microbiol Biotechnol 63:187–193

    CAS  Google Scholar 

  • Zhao J-S, Spain J, Hawari J (2003b) Phylogenetic and metabolic diversity of hexahydro-1,3,5-trintitro-1,3,5-triazine (RDX) transforming bacteria in strictly anaerobic mixed cultures enriched on RDX as nitrogen source. FEMS Microbiol Ecol 46:189–196

    CAS  Google Scholar 

  • Zhao J-S, Paquet L, Halasz A, Manno D, Hawari J (2004a) Metabolism of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine by Clostridium bifermentans strain HAW-1 and several other H2-producing fermentative anaerobic bacteria. FEMS Microbiol Lett 237:65–72

    CAS  Google Scholar 

  • Zhao J-S, Spain J, Thiboutot S, Ampleman G, Greer C, Hawari J (2004b) Phylogeny of cyclic nitramine-degrading psychrophilic bacteria in marine sediment and their potential role in the natural attenuation of explosives. FEMS Microbiol Ecol 49:349–357

    CAS  Google Scholar 

  • Zhao J-S, Manno D, Beaulieu C, Paquet L, Hawari J (2005) Shewanella sediminis sp. nov., a novel Na+-requiring and hexahydro-1,3,5-trinitro-1,3,5-triazine-degrading bacterium from marine sediment. Intl J Syst Evol Microbiol 55:1511–1520

    CAS  Google Scholar 

  • Zhao J-S, Manno D, Leggiadro C, O’Neil D, Hawari J (2006) Shewanella halifaxensis sp nov., a novel obligately respiratory and denitrifying psychrophile. Intl J Syst Evol Microbiol 56:205–212

    CAS  Google Scholar 

  • Zhao J-S, Manno D, Hawari J (2007) Abundance and diversityofoctahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)-metabolizing bacteria in UXO-contaminated marine sediments. FEMS Microbiol Ecol 59:706–717

    CAS  Google Scholar 

  • Zhao J-S, Den Y, Manno D, Hawari J (2010) Shewanella spp. genomic evolution for a cold marine lifestyle and in situ explosive biodegradation. PLoS One 5:e9109

    Google Scholar 

  • Ziganshin AM, Gerlach R, Borch T, Naumov AV, Naumova RP (2007) Production of eight different hydride complexes and nitrite release from 2,4,6-trinitrotoluene by Yarrowia lipolytica. Appl Environ Microbiol 73:7898–7905

    CAS  Google Scholar 

Download references

Acknowledgments

The work of A. Bernstein was supported by a generous contribution from Vera Barcza, Toronto, Canada Rosinger-Barcza Family Fund In support of Young Researchers at the Zuckerberg Institute for Water Research. This work was also supported in part by a grant 167/2008 from Israel Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeev Ronen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bernstein, A., Ronen, Z. (2012). Biodegradation of the Explosives TNT, RDX and HMX. In: Singh, S. (eds) Microbial Degradation of Xenobiotics. Environmental Science and Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23789-8_5

Download citation

Publish with us

Policies and ethics