Skip to main content

Microbial Styrene Degradation: From Basics to Biotechnology

  • Chapter
  • First Online:

Part of the book series: Environmental Science and Engineering ((ESE))

Abstract

Styrene, the simplest representative of alkenylbenzenes, is one of the most important monomers produced by the chemical industry today. The compound shows a distinct toxicological behavior and is classified as a possible carcinogen due to its metabolism in human via a highly mutagenic epoxide. Considerable amounts of styrene are released by emissions and effluents during production and usage in polymer manufacture and by deposition of industrial wastes. A high chemical reactivity as well as its natural occurrence are reasons for the ubiquitous presence of styrene-catabolic activities among microorganisms. Rapid breakdown of styrene occurs in soils and aquifers under aerobic as well as under anaerobic conditions. As a consequence, styrene can be classified as readily biodegradable. Furthermore, a high volatility and susceptibility to photooxidation prevent bioaccumulation of styrene.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alexander M (1990) The environmental fate of styrene. SIRC Rev 1:33–42

    Google Scholar 

  • Alexandrino M, Knief C, Lipski A (2001) Stable-isotope-based labeling of styrene-degrading microorganisms in biofilters. Appl Environ Microbiol 67:4796–4804

    CAS  Google Scholar 

  • Alonso S, Bartolomé-Martín D, del Alamo M, Díaz E, García JL, Perera J (2003a) Genetic characterization of the styrene lower catabolic pathway of Pseudomonas sp. strain Y2. Gene 319:71–83

    CAS  Google Scholar 

  • Alonso S, Navarro-Llorens JM, Tormo A, Perera J (2003b) Construction of a bacterial biosensor for styrene. J Biotechnol 102:301–306

    CAS  Google Scholar 

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial use of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472

    CAS  Google Scholar 

  • Araya A, Chamy R, Mota M, Alves M (2000) Biodegradability and toxicity of styrene in the anaerobic digestion process. Biotechnol Lett 22:1477–1481

    CAS  Google Scholar 

  • Archelas A, Furstoss R (1997) Synthesis of enantiopure epoxides through biocatalytic approaches. Annu Rev Microbiol 51:491–525

    CAS  Google Scholar 

  • Archer IVJ (1997) Epoxide hydrolases as asymmetric catalysts. Tetrahedron 53:15617–15662

    CAS  Google Scholar 

  • Arnold M, Reittu A, Von Wright A, Martikainen PJ, Suihko ML (1997) Bacterial degradation of styrene in waste gases using a peat filter. Appl Microbiol Biotechnol 48:738–744

    CAS  Google Scholar 

  • Badone D, Guzzi U (1994) Synthesis of the potent and selective atypical beta-adrenergic agonist SR 59062 A. Bioorg Med Chem Lett 16:1921–1924

    CAS  Google Scholar 

  • Bae J-W, Shin S, Raj SM, Lee SE, Lee S-G, Jeong Y-J, Park S (2008) Construction and characterization of a recombinant whole-cell biocatalyst of Escherichia coli expressing styrene monooxygenase under the control of arabinose promoter. Biotechnol Bioprocess Eng 13:69–76

    CAS  Google Scholar 

  • Bae J-W, Doo E-H, Shin S-H, Lee S-G, Jeong Y-J, Park J-B, Park S (2010) Development of a recombinant Escherichia coli-based biocatalyst to enable high styrene epoxidation activity with high product yield on energy source. Process Biochem 45:147–152

    CAS  Google Scholar 

  • Baikalov I, Schröder I, Kaczor-Grzeskowiak M, Grzeskowiak K, Gunsalus RP, Dickerson RE (1996) Structure of the Escherichia coli response regulator NarL. Biochemistry 35:11053–11061

    CAS  Google Scholar 

  • Bartels I, Knackmuss HJ, Reineke W (1984) Suicide inactivation of catechol 2,3-dioxygenase from Pseudomonas putida mt-2 by 3-halocatechols. Appl Environ Microbiol 47:500–505

    CAS  Google Scholar 

  • Beltrametti F, Marconi AM, Bestetti G, Galli E, Ruzzi M, Zennaro E (1997) Sequencing and functional analysis of styrene catabolism genes from Pseudomonas fluorescens ST. Appl Environ Microbiol 63:2232–2239

    CAS  Google Scholar 

  • Bernasconi S, Orsini F, Sello G, Colmegna A, Galli E, Bestetti G (2000) Bioconversion of substituted styrenes to the corresponding enantiomerically pure epoxides by a recombinant Escherichia coli strain. Tetrahedron Lett 41:9157–9161

    CAS  Google Scholar 

  • Besse P, Veschambre H (1994) Chemical and biological synthesis of chiral epoxides. Tetrahedron 50:8885–8927

    CAS  Google Scholar 

  • Bestetti G, Galli E, Ruzzi M, Baldacci G, Zennaro E, Frontali L (1984) Molecular characterization of a plasmid from Pseudomonas fluorescens involved in styrene degradation. Plasmid 12:181–188

    CAS  Google Scholar 

  • Bestetti G, Galli E, Benigni C, Orsini F, Pelizzoni F (1989) Biotransformation of styrenes by a Pseudomonas putida. Appl Microbiol Biotechnol 30:252–256

    CAS  Google Scholar 

  • Bond JA (1989) Review of the toxicology of styrene. Crit Rev Toxicol 19:227–249

    CAS  Google Scholar 

  • Braun-Lüllemann A, Majcherczyk A, Huttermann A (1997) Degradation of styrene by white-rot fungi. Appl Microbiol Biotechnol 47:150–155

    Google Scholar 

  • Breuer M, Ditrich K, Habicher T, Hauer B, Kesseler M, Stuermer R, Zelinski T (2004) Industrial methods for the production of optically active intermediates. Angew Chem Intl Ed 43:788–824

    CAS  Google Scholar 

  • Burback BL, Perry JJ (1993) Biodegradation and biotransformation of groundwater pollutant mixtures by Mycobacterium vaccae. Appl Environ Microbiol 59:1025–1029

    CAS  Google Scholar 

  • Cho MC, Kang D-O, Yoon BD, Lee K (2000) Toluene degradation pathway from Pseudomonas putida F1: substrate specificity and gene induction by 1-substituted benzenes. J Ind Microbiol Biotech 25:163–170

    CAS  Google Scholar 

  • CMAI (2005) In: Chemical market associates, Inc. 2006 World styrene analysis. Houston, Texas, USA, Nov 2005

    Google Scholar 

  • Corsi RL, Seed L (1995) Biofiltration of BTEX: media, substrate, and loadings effects. Environ Prog 14:151–158

    CAS  Google Scholar 

  • Coschigano PW, Young LY (1997) Identification and sequence analysis of two regulatory genes involved in anaerobic toluene metabolism by strain T1. Appl Environ Microbiol 63:652–660

    CAS  Google Scholar 

  • Cox HHJ (1995) Styrene removal from waste gas by the fungus Exophiala jeanselmei in a biofilter. PhD Thesis, University of Groningen, The Netherlands

    Google Scholar 

  • Cox HH, Deshusses MA (1999) Biomass control in waste air biotrickling filters by protozoan predation. Biotechnol Bioeng 62:216–224

    CAS  Google Scholar 

  • Cox HHJ, Houtman JHM, Doddema HJ, Harder W (1993) Enrichment of fungi and degradation of styrene in biofilters. Biotechnol Lett 15:737–742

    CAS  Google Scholar 

  • Cox HH, Faber BW, Heiningen WNV, Radhoe H, Doddema HJ, Harder W (1996) Styrene metabolism in Exophiala jeanselmei and involvement of a cytochrome P-450-dependent styrene monooxygenase. Appl Environ Microbiol 62:1471–1474

    CAS  Google Scholar 

  • Cox HH, Moerman RE, van Baalen S, van Heiningen WN, Doddema HJ, Harder W (1997) Performance of a styrene-degrading biofilter containing the yeast Exophiala jeanselmei. Biotechnol Bioeng 53:259–266

    CAS  Google Scholar 

  • de Jong E, Beuling EE, van der Zwan RP, de Bont JAM (1990) Degradation of veratryl alcohol by Penicillium simplicissimum. Appl Microbiol Biotechnol 34:420–425

    Google Scholar 

  • Delhomenie M-C, Heitz M (2005) Biofiltration of air: a review. Crit Rev Biotechnol 25:53–72

    CAS  Google Scholar 

  • Deshusses MA (1997) Biological waste air treatment in biofilters. Curr Opin Biotechnol 8:335–339

    CAS  Google Scholar 

  • Di Gennaro P, Ferrara S, Ronco I, Galli E, Sello G, Papacchini M, Bestetti G (2007) Styrene lower catabolic pathway in Pseudomonas fluorescens ST: identification and characterization of genes for phenylacetic acid degradation. Arch Microbiol 188:117–125

    CAS  Google Scholar 

  • European Union Risk Assessment Report Styrene (2002) Styrene, Part I–Environment. European Communities, Luxembourg

    Google Scholar 

  • Ferrández A, Prieto MA, García JL, Díaz E (1997) Molecular characterization of PadA, a phenylacetaldehyde dehydrogenase from Escherichia coli. FEBS Lett 406:23–27

    Google Scholar 

  • Ferrández A, Miñambres B, García B, Olivera ER, Luengo JM, García JL, Díaz E (1998) Catabolism of phenylacetic acid in Escherichia coli. Characterization of a new aerobic hybrid pathway. J Biol Chem 273:25974–25986

    Google Scholar 

  • Fu MH, Alexander M (1992) Biodegradation of styrene in samples of natural environments. Environ Sci Technol 26:1540–1544

    CAS  Google Scholar 

  • Gallegos MT, Schleif R, Bairoch A, Hofmann K, Ramos JL (1997) Arac/XylS family of transcriptional regulators. Microbiol Mol Biol Rev 61:393–410

    CAS  Google Scholar 

  • Gibbs BF, Mulligan CN (1997) Styrene toxicity: an ecotoxicological assessment. Ecotoxicol Environ Saf 38:181–194

    CAS  Google Scholar 

  • Grbi?-Gali? D, Churchman-Eisel N, Mrakovi? I (1990) Microbial transformation of styrene by anaerobic consortia. J Appl Bacteriol 69:247–260

    Google Scholar 

  • Grebe TW, Stock JB (1999) The histidine protein kinase superfamily. Adv Microb Physiol 41:139–227

    CAS  Google Scholar 

  • Gross R, Hauer B, Otto K, Schmid A (2007) Microbial biofilms: new catalysts for maximizing productivity of long-term biotransformations. Biotechnol Bioeng 98:1123–1134

    CAS  Google Scholar 

  • Guan C, Ju J, Borlee BR, Williamson LL, Shen B, Raffa KF, Handelsman J (2007) Signal mimics derived from a metagenomic analysis of the gypsy moth gut microbiota. Appl Environ Microbiol 73:3669–3676

    CAS  Google Scholar 

  • Guillemin MP, Berode M (1988) Biological monitoring of styrene: a review. Am Ind Hyg Assoc J 49:497–505

    CAS  Google Scholar 

  • Gursky L, Nikodinovic-Runic J, Feenstra K, O’Connor K (2009) In vitro evolution of styrene monooxygenase from Pseudomonas putida CA-3 for improved epoxide synthesis. Appl Microbiol Biotechnol 85:995–1004

    Google Scholar 

  • Han JH, Park MS, Bae JW, Lee EY, Yoon YJ, Lee S-G, Park S (2006) Production of (S)-styrene oxide using styrene oxide isomerase negative mutant of Pseudomonas putida SN1. Enzyme Microb Technol 39:1264–1269

    CAS  Google Scholar 

  • Hartmans S (1995) Microbial degradation of styrene. In: Biotransformations: microbiological degradation of health risk compounds. Elsevier Sci 32:227–238

    CAS  Google Scholar 

  • Hartmans S, Smits JP, van der Werf MJ, Volkering F, de Bont JAM (1989) Metabolism of styrene oxide and 2-phenylethanol in the styrene-degrading Xanthobacter strain 124X. Appl Environ Microbiol 55:2850–2855

    CAS  Google Scholar 

  • Hartmans S, van der Werf MJ, De Bont JAM (1990) Bacterial degradation of styrene involving a novel flavin adenine dinucleotide-dependent styrene monooxygenase. Appl Environ Microbiol 56:1347–1351

    CAS  Google Scholar 

  • Hattori K, Nagano M, Kato T, Nakanishi I, Imai K, Kinoshita T, Sakane K (1995) Asymmetric synthesis of FR165914: a novel beta-3-adrenergic agonist with a benzocycloheptene structure. Bioorg Med Chem Lett 5:2821–2824

    CAS  Google Scholar 

  • Higashimura T, Sawamoto M, Hiza T, Karaiwa M, Tsuchii A, Suzuki T (1983) Effect of methyl substitution on microbial degradation of linear styrene dimers by two soil bacteria. Appl Environ Microbiol 46:386–391

    CAS  Google Scholar 

  • Hollmann F, Lin P-C, Witholt B, Schmid A (2003) Stereospecific biocatalytic epoxidation: the first example of direct regeneration of a FAD-dependent monooxygenase for catalysis. J Am Chem Soc 125:8209–8217

    CAS  Google Scholar 

  • Ikura Y, Yoshida Y, Kudo T (1997) Physiological properties of two Pseudomonas mendocina strains which assimilate styrene in a two-phase (solvent-aqueous) system under static culture conditions. J Ferment Bioeng 83:604–607

    CAS  Google Scholar 

  • Itoh N, Yoshida K, Okada K (1996) Isolation and identification of styrene-degrading Corynebacterium strains, and their styrene metabolism. Biosci Biotechnol Biochem 60:1826–1830

    CAS  Google Scholar 

  • Itoh N, Hayashi K, Okada K, Ito T, Mizuguchi N (1997a) Characterization of styrene oxide isomerase, a key enzyme of styrene and styrene oxide metabolism in Corynebacterium sp. Biosci Biotech Biochem 61:2058–2062

    CAS  Google Scholar 

  • Itoh N, Morihama R, Wang J, Okada K, Mizuguchi N (1997b) Purification and characterization of phenylacetaldehyde reductase from a styrene-assimilating Corynebacterium strain, ST-10. Appl Environ Microbiol 63:3783–3788

    CAS  Google Scholar 

  • Itoh N, Matsuda M, Mabuchi M, Dairi T, Wang J (2002) Chiral alcohol production by NADH-dependent phenylacetaldehyde reductase coupled with in situ regeneration of NADH. Eur J Biochem 269:2394–2402

    CAS  Google Scholar 

  • Itoh N, Nakamura M, Inoue K, Makino Y (2007) Continuous production of chiral 1,3-butanediol using immobilized biocatalysts in a packed bed reactor: promising biocatalysis method with an asymmetric hydrogen-transfer bioreduction. Appl Microbiol Biotechnol 75:1249–1256

    CAS  Google Scholar 

  • Jang JH, Hirai M, Shoda M (2004) Styrene degradation by Pseudomonas sp. SR-5 in biofilters with organic and inorganic packing materials. Appl Microbiol Biotechnol 65:349–355

    CAS  Google Scholar 

  • Jang JH, Hirai M, Shoda M (2006) Enhancement of styrene removal efficiency in biofilter by mixed cultures of Pseudomonas sp. SR-5. J Biosci Bioeng 102:53–59

    CAS  Google Scholar 

  • Juneson C, Ward OP, Singh A (2001) Microbial treatment of a styrene-contaminated air stream in a biofilter with high elimination capacities. J Ind Microbiol Biotechnol 26:196–202

    CAS  Google Scholar 

  • Jung I-G, Park C-H (2005) Characteristics of styrene degradation by Rhodococcus pyridinovorans isolated from a biofilter. Chemosphere 61:451–456

    CAS  Google Scholar 

  • Kantz A, Chin F, Nallamothu N, Nguyen T, Gassner GT (2005) Mechanism of flavin transfer and oxygen activation by the two-component flavoenzyme styrene monooxygenase. Arch Biochem Biophys 442:102–116

    CAS  Google Scholar 

  • Keane A, Phoenix P, Ghoshal S, Lau PCK (2002) Exposing culprit organic pollutants: A review. J Microbiol Methods 49:103–119

    CAS  Google Scholar 

  • Kim J, Ryu HW, Jung DJ, Lee TH, Cho K-S (2005) Styrene degradation in a polyurethane biofilter inoculated with Pseudomonas sp. IS-3. J Microbiol Biotechnol 15:1207–1213

    CAS  Google Scholar 

  • Kim HS, Lee OK, Lee SJ, Hwang S, Kim SJ, Yang S-H, Park S, Lee EY (2006) Enantioselective epoxide hydrolase activity of a newly isolated microorganism, Sphingomonas echinoides EH-983, from seawater. J Mol Catal B: Enzym 41:130–135

    CAS  Google Scholar 

  • Knackmuss H-J, Hellwig M, Lackner H, Otting W (1976) Cometabolism of 3-methylbenzoate and methylcatechols by a 3-chlorobenzoate utilizing Pseudomonas: accumulation of (+)-2,5-dihydro-4-methyl- and (+)-2,5-dihydro-2-methyl-5-oxo-furan-2-acetic acid. Eur J Appl Microbiol 2:267–276

    CAS  Google Scholar 

  • Kuhn D, Kholiq MA, Heinzle E, Bühler B, Schmid A (2010) Intensification and economic and ecological assessment of a biocatalytic oxyfunctionalization process. Green Chem 12:815–827

    CAS  Google Scholar 

  • Labbé D, Garnon J, Lau PC (1997) Characterization of the genes encoding a receptor-like histidine kinase and a cognate response regulator from a biphenyl/polychlorobiphenyl-degrading bacterium, Rhodococcus sp. strain M5. J Bacteriol 179:2772–2776

    Google Scholar 

  • Lafeuille J-L, Buniak M-L, Vioujas M-C, Lefevre S (2009) Natural formation of styrene by cinnamon mold flora. J Food Sci 74:276–283

    Google Scholar 

  • Lau PC, Wang Y, Patel A, Labbé D, Bergeron H, Brousseau R, Konishi Y, Rawlings M (1997) A bacterial basic region leucine zipper histidine kinase regulating toluene degradation. Proc Natl Acad Sci USA 94:1453–1458

    CAS  Google Scholar 

  • Leoni L, Ascenzi P, Bocedi A, Rampioni G, Castellini L, Zennaro E (2003) Styrene-catabolism regulation in Pseudomonas fluorescens ST: phosphorylation of StyR induces dimerization and cooperative DNA-binding. Biochem Biophys Res Commun 303:926–931

    CAS  Google Scholar 

  • Leoni L, Rampioni G, Stefano VD, Zennaro E (2005) Dual role of response regulator StyR in styrene catabolism regulation. Appl Environ Microbiol 71:5411–5419

    CAS  Google Scholar 

  • Leuthner B, Heider J (1998) A two-component system involved in regulation of anaerobic toluene metabolism in Thauera aromatica. FEMS Microbiol Lett 166:35–41

    CAS  Google Scholar 

  • Lin H, Qiao J, Liu Y, Wu Z-L (2010) Styrene monooxygenase from Pseudomonas sp. LQ26 catalyzes the asymmetric epoxidation of both conjugated and unconjugated alkenes. J Mol Catal B: Enzym 67:236–241

    CAS  Google Scholar 

  • Liu Z, Michel J, Wang Z, Witholt B, Li Z (2006) Enantioselective hydrolysis of styrene oxide with the epoxide hydrolase of Sphingomonas sp. HXN-200. Tetrahedron: Asymmetry 17:47–52

    Google Scholar 

  • Long MT, Bartholomew BA, Smith MJ, Trudgill PW, Hopper DJ (1997) Enzymology of oxidation of tropic acid to phenylacetic acid in metabolism of atropine by Pseudomonas sp. strain AT3. J Bacteriol 179:1044–1050

    CAS  Google Scholar 

  • Louie TM XS, Xie Xun L (2003) Coordinated production and utilization of FADH2 by NADP(H)-flavin oxidoreductase and 4-hydroxyphenylacetate 3-monooygenase. Biochemistry 42:7509–7517

    Google Scholar 

  • Lu C, Lin M-R, Lin J (2001) Removal of styrene vapor from waste gases by a trickle-bed air biofilter. J Hazard Mater B82:233–245

    Google Scholar 

  • Madison LL, Huisman GW (1999) Metabolic engineering of poly (3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53

    CAS  Google Scholar 

  • Makino Y, Dairi T, Itoh N (2007) Engineering the phenylacetaldehyde reductase mutant for improved substrate conversion in the presence of concentrated 2-propanol. Appl Microbiol Biotechnol 77:833–843

    CAS  Google Scholar 

  • Malhautier L, Khammar N, Bayle S, Fanlo J-L (2005) Biofiltration of volatile organic compounds. Appl Microbiol Biotechnol 68:16–22

    CAS  Google Scholar 

  • Marconi AM, Beltrametti F, Bestetti G, Solinas F, Ruzzi M, Galli E, Zennaro E (1996) Cloning and characterization of styrene catabolism genes from Pseudomonas fluorescens ST. Appl Environ Microbiol 62:121–127

    CAS  Google Scholar 

  • Marín M, Pérez-Pantoja D, Donoso R, Wray V, González B, Pieper DH (2010) Modified 3-oxoadipate pathway for the biodegradation of methylaromatics in Pseudomonas reinekei MT1. J Bacteriol 192:1543–1552

    Google Scholar 

  • Mars AE, Kasberg T, Kaschabek SR, van Agteren MH, Janssen DB, Reineke W (1997) Microbial degradation of chloroaromatics: use of the meta-cleavage pathway for mineralization of chlorobenzene. J Bacteriol 179:4530–4537

    CAS  Google Scholar 

  • McClay K, Boss C, Keresztes I, Steffan RJ (2005) Mutations of toluene-4-monooxygenase that alter regiospecificity of indole oxidation and lead to production of novel indigoid pigments. Appl Environ Microbiol 71:5476–5483

    CAS  Google Scholar 

  • Miyamoto K, Okuro K, Ohta H (2007) Substrate specificity and reaction mechanism of recombinant styrene oxide isomerase from Pseudomonas putida S12. Tetrahedron Lett 48:3255–3257

    CAS  Google Scholar 

  • Mooney A, O’Leary ND, Dobson ADW (2006a) Cloning and functional characterization of the styE gene, involved in styrene transport in Pseudomonas putida CA-3. Appl Environ Microbiol 72:1302–1309

    CAS  Google Scholar 

  • Mooney A, Ward PG, O’Connor KE (2006b) Microbial degradation of styrene: biochemistry, molecular genetics, and perspectives for biotechnological applications. Appl Microbiol Biotechnol 72:1–10

    CAS  Google Scholar 

  • Mosqueda G, Ramos JL (2000) A set of genes encoding a second toluene efflux system in Pseudomonas putida DOT-T1E is linked to the tod genes for toluene metabolism. J Bacteriol 182:937–943

    CAS  Google Scholar 

  • Mutti A (1988) Styrene exposure and serum prolactin. J Occup Med 30:481–482

    CAS  Google Scholar 

  • Mutti A, Falzoi M, Romanelli A, Bocchi MC, Ferroni C, Franchini I (1988) Brain dopamine as a target for solvent toxicity: effects of some monocyclic aromatic hydrocarbons. Toxicology 49:77–82

    CAS  Google Scholar 

  • Nikodinovic-Runic J, Flanagan M, Hume AR, Cagney G, O’Connor KE (2009) Analysis of the Pseudomonas putida CA-3 proteome during growth on styrene under nitrogen-limiting and non-limiting conditions. Microbiology 155:3348–3361

    CAS  Google Scholar 

  • Nöthe C, Hartmans S (1994) Formation and degradation of styrene oxide stereoisomers by different microorganisms. Biocatalysis 10:219–225

    Google Scholar 

  • O’Connor K, Buckley CM, Hartmans S, Dobson AD (1995) Possible regulatory role for nonaromatic carbon sources in styrene degradation by Pseudomonas putida CA-3. Appl Environ Microbiol 61:544–548

    Google Scholar 

  • O’Connor KE, Dobson AD, Hartmans S (1997) Indigo formation by microorganisms expressing styrene monooxygenase activity. Appl Environ Microbiol 63:4287–4291

    Google Scholar 

  • Okamoto K, Izawa M, Yanase H (2003) Isolation and application of a styrene-degrading strain of Pseudomonas putida to biofiltration. J Biosci Bioeng 95:633–636

    CAS  Google Scholar 

  • O’Leary ND, O’Connor KE, Duetz W, Dobson ADW (2001) Transcriptional regulation of styrene degradation in Pseudomonas putida CA-3. Microbiology 147:973–979

    Google Scholar 

  • O’Leary ND, Duetz WA, Dobson ADW, O’Connor KE (2002a) Induction and repression of the sty operon in Pseudomonas putida CA-3 during growth on phenylacetic acid under organic and inorganic nutrient-limiting continuous culture conditions. FEMS Microbiol Lett 208:263–268

    Google Scholar 

  • O’Leary ND, O’Connor KE, Dobson ADW (2002b) Biochemistry, genetics and physiology of microbial styrene degradation. FEMS Microbiol Rev 26:403–417

    Google Scholar 

  • Olivera ER, Miñambres B, García B, Muñiz C, Moreno MA, Ferrández A, Díaz E, García JL, Luengo JM (1998) Molecular characterization of the phenylacetic acid catabolic pathway in Pseudomonas putida U: the phenylacetyl-CoA catabolon. Proc Natl Acad Sci USA 95:6419–6424

    CAS  Google Scholar 

  • Omori T, Jigami Y, Minoda Y (1974) Microbial oxidation of ?-methylstyrene and ?-methylstyrene. Agr Biol Chem 38:409–415

    CAS  Google Scholar 

  • Orru RV, Faber K (1999) Stereoselectivities of microbial epoxide hydrolases. Curr Opin Chem Biol 3:16–21

    CAS  Google Scholar 

  • Otto K, Hofstetter K, Roethlisberger M, Witholt B, Schmid A (2004) Biochemical characterization of StyAB from Pseudomonas sp. strain VLB120 as a two-component flavin-diffusible monooxygenase. J Bacteriol 186:5292–5302

    CAS  Google Scholar 

  • Paca J, Koutsky B, Maryska M, Halecky M (2001) Styrene degradation along the bed height of perlite biofilter. J Chem Technol Biotechnol 76:873–878

    CAS  Google Scholar 

  • Panke S, Witholt B, Schmid A, Wubbolts MG (1998) Towards a biocatalyst for (S)-styrene oxide production: characterization of the styrene degradation pathway of Pseudomonas sp. strain VLB120. Appl Environ Microbiol 64:2032–2043

    CAS  Google Scholar 

  • Panke S, De Lorenzo V, Kaiser A, Witholt B, Wubbolts MG (1999) Engineering of a stable whole-cell biocatalyst capable of (S)-styrene oxide formation for continuous two-liquid-phase applications. Appl Environ Microbiol 65:5619–5623

    CAS  Google Scholar 

  • Panke S, Wubbolts MG, Schmid A, Witholt B (2000) Production of enantiopure styrene oxide by recombinant Escherichia coli synthesizing a two-component styrene monooxygenase. Biotechnol Bioeng 69:91–100

    CAS  Google Scholar 

  • Panke S, Held M, Wubbolts MG, Witholt B, Schmid A (2002) Pilot-scale production of (S)-styrene oxide from styrene by recombinant Escherichia coli synthesizing styrene monooxygenase. Biotechnol Bioeng 80:33–41

    CAS  Google Scholar 

  • Park J-B, Bühler B, Habicher T, Hauer B, Panke S, Witholt B, Schmid A (2006a) The efficiency of recombinant Escherichia coli as biocatalyst for stereospecific epoxidation. Biotechnol Bioeng 95:501–512

    CAS  Google Scholar 

  • Park MS, Bae JW, Han JH, Lee EY, Lee S-G, Park S (2006b) Characterization of styrene catabolic genes of Pseudomonas putida SN1 and construction of a recombinant Escherichia coli containing styrene monooxygenase gene for the production of (S)-styrene oxide. J Microbiol Biotechnol 16:1032–1040

    CAS  Google Scholar 

  • Patrauchan MA, Florizone C, Eapen S, Gómez-Gil L, Sethuraman B, Fukuda M, Davies J, Mohn WW, Eltis LD (2008) Roles of ring-hydroxylating dioxygenases in styrene and benzene catabolism in Rhodococcus jostii RHA1. J Bacteriol 190:37–47

    CAS  Google Scholar 

  • Przybulewska K, Wieczorek A, Nowak A (2006) Isolation of microorganisms capable of styrene degradation. Polish J Environ Stud 15:777–783

    CAS  Google Scholar 

  • Qaed AA, Lin H, Tang D-F, Wu Z-L (2010) Rational design of styrene monooxygenase mutants with altered substrate preference. Biotechnol Lett (Online publication)

    Google Scholar 

  • Qi WW, Vannelli T, Breinig S, Ben-Bassat A, Gatenby AA, Haynie SL, Sariaslani FS (2007) Functional expression of prokaryotic and eukaryotic genes in Escherichia coli for conversion of glucose to p-hydroxystyrene. Metab Eng 9:268–276

    CAS  Google Scholar 

  • Rao AVR, Gurjar MK, Kaiwar V (1992) Enantioselective catalytic reductions of ketones with new four membered oxazaborolidines: Application to (S)-Tetramisole. Tetrahedron: Asymmetry 3:859–862

    CAS  Google Scholar 

  • Reizer J, Saier MH (1997) Modular multidomain phosphoryl transfer proteins of bacteria. Curr Opin Struct Biol 7:407–415

    CAS  Google Scholar 

  • René ER, Veiga MC, Kennes C (2010) Biodegradation of gas-phase styrene using the fungus Sporothrix variecibatus: impact of pollutant load and transient operation. Chemosphere 79:221–227

    Google Scholar 

  • Rodriguez-Mozaz S, Lopez de Alda MJ, Barceló D (2006) Biosensors as useful tools for environmental analysis and monitoring. Anal Bioanal Chem 386:1025–1041

    CAS  Google Scholar 

  • Rueff J, Teixeira JP, Santos LS, Gaspar JF (2009) Genetic effects and biotoxicity monitoring of occupational styrene exposure. Clin Chim Acta 399:8–23

    CAS  Google Scholar 

  • Rustemov SA, Golovleva LA, Alieva RM, Baskunov BP (1992) New pathway of styrene oxidation by a Pseudomonas putida culture. Microbiologica 61:1–5

    Google Scholar 

  • Ruzzi M, Zennaro E (1989) pEG plasmid involved in styrene degradation: molecular dimorphism and integration of a segment into the chromosome. FEMS Microbiol Lett 50:337–343

    CAS  Google Scholar 

  • Santos PM, Blatny JM, Bartolo ID, Valla S, Zennaro E (2000) Physiological analysis of the expression of the styrene degradation gene cluster in Pseudomonas fluorescens ST. Appl Environ Microbiol 66:1305–1310

    CAS  Google Scholar 

  • Santos PM, Leoni L, Bartolo ID, Zennaro E (2002) Integration host factor is essential for the optimal expression of the styABCD operon in Pseudomonas fluorescens ST. Res Microbiol 153:527–536

    CAS  Google Scholar 

  • Schulze B, Wubbolts MG (1999) Biocatalysis for industrial production of fine chemicals. Curr Opin Biotechnol 10:609–615

    CAS  Google Scholar 

  • Shirai K, Hisatsuka K (1979) Production of ?-phenethyl alcohol from styrene by Pseudomonas 305-STR-1–4. Agric Biol Chem 43:1399–1406

    CAS  Google Scholar 

  • Sielicki M, Focht DD, Martin JP (1978) Microbial transformations of styrene and [14C] styrene in soil and enrichment cultures. Appl Environ Microbiol 35:124–128

    CAS  Google Scholar 

  • Smith MR (1990) The biodegradation of aromatic hydrocarbons by bacteria. Biodegradation 1:191–206

    CAS  Google Scholar 

  • Smith MR (1994) The physiology of aromatic hydrocarbons degrading bacteria. In: Ratledge C (ed) Biochemistry of microbial degradation. Kluwer, Dordrecht, pp 347–378

    Google Scholar 

  • Tischler D, Eulberg D, Lakner S, Kaschabek SR, van Berkel WJH, Schlömann M (2009) Identification of a novel self-sufficient styrene monooxygenase from Rhodococcus opacus 1CP. J Bacteriol 191:4996–5009

    CAS  Google Scholar 

  • Tischler D, Kermer R, Gröning JAD, Kaschabek SR, van Berkel WJH, Schlömann M (2010) StyA1 and StyA2B from Rhodococcus opacus 1CP: A multifunctional styrene monooxygenase system. J Bacteriol 192:5220–5227

    CAS  Google Scholar 

  • Tuschii A, Suzuki T, Takahara Y (1977) Microbial degradation of styrene oligomer. Agric Biol Chem 41:2417–2421

    Google Scholar 

  • US Inventory of Toxic Compounds (2001) TRI92. Toxics release inventory public data. Office of Pollution Prevention and Toxics, US EPA, Washington, DC, 94. Available at http://www.epa.gov

  • Utkin I, Yakimov M, Matveeva L, Kozlyak E, Rogozhin I, Solomon Z, Bezborodov A (1991) Degradation of styrene and ethylbenzene by Pseudomonas species Y2. FEMS Microbiol Lett 77:237–242

    CAS  Google Scholar 

  • van Berkel WJH, Kamerbeek NM, Fraaije MW (2006) Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. J Biotechnol 124:670–689

    Google Scholar 

  • van Hellemond EW, Janssen DB, Fraaije MW (2007) Discovery of a novel styrene monooxygenase originating from the metagenome. Appl Environ Microbiol 73:5832–5839

    Google Scholar 

  • Velasco A, Alonso S, Garcia JL, Perera J, Diaz E (1998) Genetic and functional analysis of the styrene catabolic cluster of Pseudomonas sp. strain Y2. J Bacteriol 180:1063–1071

    CAS  Google Scholar 

  • Verhoef S, Wierckx N, Westerhof RGM, de Winde JH, Ruijssenaars HJ (2009) Bioproduction of p-hydroxystyrene from glucose by the solvent-tolerant bacterium Pseudomonas putida S12 in a two-phase water-decanol fermentation. Appl Environ Microbiol 75:931–936

    CAS  Google Scholar 

  • Ward PG, de Roo G, O’Connor KE (2005) Accumulation of polyhydroxyalkanoate from styrene and phenylacetic acid by Pseudomonas putida CA-3. Appl Environ Microbiol 71:2046–2052

    CAS  Google Scholar 

  • Ward PG, Goff M, Donner M, Kaminsky W, O’Connor KE (2006) A two step chemo-biotechnological conversion of polystyrene to a biodegradable thermoplastic. Environ Sci Technol 40:2433–2437

    CAS  Google Scholar 

  • Warhurst AM, Fewson CA (1994) A review. Microbial metabolism and biotransformation of styrene. J Appl Bacteriol 77:597–606

    CAS  Google Scholar 

  • Warhurst AM, Clarke KF, Hill RA, Holt RA, Fewson CA (1994) Metabolism of styrene by Rhodococcus rhodochrous NCIMB 13259. Appl Environ Microbiol 60:1137–1145

    CAS  Google Scholar 

  • Weigner P, Páca J, Loskot P, Koutský B, Sobotka M (2001) The start-up period of styrene degrading biofilters. Folia Microbiol 46:211–216

    CAS  Google Scholar 

  • Zilli M, Converti A, Di Felice R (2003) Macrokinetic and quantitative microbial investigation on a bench-scale biofilter treating styrene-polluted gaseous streams. Biotechnol Bioeng 83:29–38

    CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful to the team of the Department Environmental Microbiology, TU Bergakademie Freiberg, under supervision of Prof. Michael Schlömann for substantial and critical discussion. A special thank is dedicated to Janosch Gröning for his unremitting assistance. The corresponding author was supported by two predoctoral fellowships from Deutsche Bundesstiftung Umwelt (DBU) and Fulbright.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Tischler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tischler, D., Kaschabek, S.R. (2012). Microbial Styrene Degradation: From Basics to Biotechnology. In: Singh, S. (eds) Microbial Degradation of Xenobiotics. Environmental Science and Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23789-8_3

Download citation

Publish with us

Policies and ethics