Skip to main content

Systems of Four Alternately Excited Non-autonomous Oscillators

  • Chapter
Hyperbolic Chaos
  • 1352 Accesses

Abstract

This chapter is devoted to non-autonomous models generating successive trains of oscillations with phase chaotically varying from one train to the other. In contrast to Chap. 4, here we examine dynamics in the phase space of larger dimensions; so, the models arc composed of four oscillators activating by turns (usually in pairs). Particularly, we consider a model, in which evolution of the phases in successive epochs of activity is described by the Arnold cat map and by a hyperchaotic torus map that has two positive Lyapunov exponents. Then, a system will be discussed that can be thought of as being composed of two coupled pairs of oscillators, each of which corresponds to a system with hyperbolic attractor of Smale-Williams type in the Poincaré map. This may be regarded as initial step of a research program for ensembles of coupled elements with hyperbolic chaotic dynamics, like coupled map lattices considered, e.g. in (Bunimovich and Sinai, 1988; 1993; Bricmont and Kupiainen, 1997; Järvenpää, 2005), but on a base of concrete physically realizable systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anishchenko, VS.: Nonlinear Dynamics of Chaotic and Stochastic Systems: Tutorial and Modern Developments. Springer, Heidelberg (2002).

    MATH  Google Scholar 

  • Anishcheriko, V.S., Kopeikin, A.S.. Kurths, J., Vadivasova. T.E., Strelkova G.I.: Studying hyper-bolicity in chaotic systems. Physics Letters A 270, 301–307 (2000).

    Google Scholar 

  • Anosov, D.V., Gould, G.G., Aranson, S.K., Grines, V.Z., Plykin, R.V., Safonov, A.V.

    Google Scholar 

  • Sataev, E.A., Shlyachkov, S.V., Solodov, V.V., Starkov, A.N., Stepin, A.M.: Dynamical Systems IX: Dynamical Systems with Hyperbolic Behaviour (Encyclopaedia of Mathematical Sciences) (v. 9). Springer-Verlag, New York (1995).

    Google Scholar 

  • Arnold, V.I.: Ordinary Differential Equations. The MIT Press, Somerville, MA (1978).

    Google Scholar 

  • Arnold, V I., Avez, A.: Ergodic Problems in Classical Mechanics. Benjamin, New York (1968).

    Google Scholar 

  • Ashwin, P.: Riddled basins and coupled dynamical systems. In: Chazottes, J.-R. and Fernandez, B. (eds.): Dynamics of Coupled Map Lattices and of Related Spatially Extended Systems, pp. 181–208. Springer, Berlin (2005).

    Chapter  Google Scholar 

  • Bricmont, J., Kupiainen, A.: Infinite-dimensional SRB measures. Physica D 103, 18–33 (1997).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Bunimovich, L.A., Sinai, Ya.G.: Space-time chaos in coupled map lattices. Nonlinearity 1, 491–516 (1988).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Bunimovich, L.A., Sinai, Ya.G.: Statistical mechanics of coupled map lattices. In: Kaneko, K. (ed.) Theory and Application of Coupled Map Lattices, pp. 169–189. John Wiley & Sons Ltd., New York (1993).

    Google Scholar 

  • Devaney, R.L.: An Introduction to Chaotic Dynamical Systems. Westview Press, New York (2003).

    MATH  Google Scholar 

  • Farmer. J., Ott. F., Yorke, I: The dimension of chaotic attractors. Physica D 7, 153–180 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  • Ford, J.: The Fermi-Pasta-Ulam problem: Paradox turns discovery. Physics Reports 213, 271–310 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  • Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Physica D 9, 189–208 (1983).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Hilborn, R.C.: Chaos and Nonlinear Dynamics. Oxford University Press, Cambridge (2000).

    Book  MATH  Google Scholar 

  • Isaeva, O.B., Jalnine, A.Yu., Kuznetsov, S.P.: Arnold’s cat map dynamics in a system of coupled nonautonomous van der Pol oscillators. Phys. Rev. E 74, 046207 (2006).

    Article  ADS  Google Scholar 

  • Järvenpää. E.: SRB-measures for coupled map lattices. In: Chazottes, J.-R. and Fernandez, B. (eds.): Dynamics of Coupled Map Lattices and of Related Spatially Extended Systems, pp. 95–114. Springer (2005).

    Google Scholar 

  • Kaneko, K. (ed.): Theory and Application of Coupled Map Lattices. John Wiley & Sons Ltd., Chichester (1993).

    Google Scholar 

  • Kuptsov, P.V., Kuznetsov, S.P.: Transition to a synchronous chaos regime in a system of coupled non-autonomous oscillators presented in terms of amplitude equations. Nonlinear Dynamics (Izhevsk) 2(3), 307–331 (2006) (In Russian).

    Google Scholar 

  • Kuznetsov. S.P., Sokha, Y.I.: Hyperchaos in model nonautonomous system with a cascade excitation transmission through the spectrum. Izvestija VUZov — Applied Nonlinear Dynamics (Saratov) 18, 24–32 (2010).

    MATH  Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: Fluid Mechanics (Course of Theoretical Physics, vol.6). Pergamon Press, London (1959).

    Google Scholar 

  • Letellier C., Rössler, O.E.: Hyperchaos. Scholarpedia, 2, 1936 (2007).

    Article  Google Scholar 

  • Matsumoto, T., Chua, L.O., Kobayashi, K.: Hyperchaos laboratory experiment and numerical confirmation. IEEE Trans, Circuits & Syst. 33, 1143–1147 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  • Monin. A.S., Yaglom, A.M.: Statistical Fluid Mechanics. Volume II: Mechanics of Turbulence. Dover Publication, New York (2007).

    Google Scholar 

  • Mosekilde, E., Maistrenko, Yu., Postnov, D.: Chaotic Synchronization: Applications To Living Systems. World Scientific Publication, Singapore (2002).

    Google Scholar 

  • Ott, E.: Chaos in dynamical systems. Cambridge University Press, Cambridge (2002).

    MATH  Google Scholar 

  • Pikovsky, A.. Rosenblum, M., Kurtz, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2002).

    Google Scholar 

  • Platt, N., Spiegel, E.A., Tresser C: On-off inlermillency: A mechanism for bursting. Phys. Rev. Lett. 70. 279–282 (1993).

    Article  ADS  Google Scholar 

  • Reiterer, P., Lainscsek, C., Schürrer, F., Letellier C., Maquet, J.: A nine-dimensional Lorenz system to study high-dimensional chaos. Journal of Physics A 31, 7121–7139 (1998).

    Article  MATH  Google Scholar 

  • Rössler, O.E.: An equation for hyperchaos. Physics Letters A 71, 155–157 (1979).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Schuster, H.G., Just, W. Deterministic Chaos: An Introduction. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG (2005).

    Book  MATH  Google Scholar 

  • Stoop, R., Peinkc, J., Parisi, J., Röhricht B., Hübcner, R. P.: A p-Ge semiconductor experiment showing chaos and hyperchaos. Physica D 35, 425–435 (1989).

    Article  ADS  Google Scholar 

  • Wolfram, S.: Theory and applications of cellular automata. World Scientific Publication, Singapore (1986).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kuznetsov, S.P. (2012). Systems of Four Alternately Excited Non-autonomous Oscillators. In: Hyperbolic Chaos. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23666-2_8

Download citation

Publish with us

Policies and ethics