Skip to main content

PGPR as Inoculants in Management of Lands Contaminated with Trace Elements

  • Chapter
  • First Online:
Bacteria in Agrobiology: Stress Management

Abstract

The role of plant growth-promoting rhizobacteria (PGPR) in phytoremediation strategies in trace element-contaminated soils is not well understood. It is known that these bacteria have many abilities, which characterize them as a special tool in the plant rhizosphere. They stimulate plant root growth directly or indirectly through production of indole-3-acetic acid, siderophores, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, and defense against soil-borne pathogens. This chapter is a review on the role of PGPR in the management of soils contaminated with trace elements. Special attention is paid to the interactions with plant roots in phytoextraction and phytoimmobilization strategies in contaminated soils. Finally, the ultimate achievements in the efforts to transfer the ACC deaminase gene into plants used in phytoremediation to regulate ethylene level under abiotic stress have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Shanab RAI, Angle JS, Chaney RL (2006) Bacterial inoculants affecting nickel uptake by Allysum murale from low, moderate and high Ni soils. Soil Biol Biochem 38:2882–2889

    Article  CAS  Google Scholar 

  • Akerblom S, Bååth E, Bringmark L, Bringmark E (2007) Experimentally induced effects of heavy metal on microbial activity and community structure of forest mor layers. Biol Fertil Soils 44:79–91

    Article  CAS  Google Scholar 

  • Antoun H, Prevost D (2005) Ecology of plant growth promoting rhizobacteria In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Berlin, pp 1–38

    Google Scholar 

  • Ashraf M, Hasnain S, Berge O (2006) Effect of exo-polysacharides producing bacterial inoculation on growth of roots of wheat (Triticum aestivum L.) plants grown in a salt-affected soil. Int J Environ Sci Technol 3:43–51

    CAS  Google Scholar 

  • Bååth E (1989) Effects of heavy-metals in soil on microbial processes and populations (a review). Water Air Soil Pollut 47:335–379

    Article  Google Scholar 

  • Belimov AA, Safronova VI, Mimura T (2002) Response of spring rape (Brassica napus var. oleifera L.) to inoculation with plant growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase depends on nutrient status of the plant. Can J Microbiol 48:189–199

    Article  PubMed  CAS  Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium tolerant plant growth-promoting bacteria associated to the root of Indian mustard (Brassica juncea L.). Soil Biol Biochem 37:241–250

    Article  CAS  Google Scholar 

  • Belimov AA, Dodd IC, Safronova VI, Hontzeas N, Davies WJ (2007) Pseudomonas brassicacearum strain Am3 containing 1-aminocyclopropane-1-carboxylate deaminase can show both pathogenic and growth-promoting properties in its interaction with tomato. J Exp Bot 58:1485–1495

    Article  PubMed  CAS  Google Scholar 

  • Blagodatskaya EV, Blagodatsky SA, Anderson T-H, Kuzyakov Y (2007) Priming effects in Chernozem induced by glucose and N in relation to microbial growth strategies. Appl Soil Ecol 37:95–105. doi:10.1016/j.physletb.2003.10.071

    Article  Google Scholar 

  • Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350

    Article  PubMed  CAS  Google Scholar 

  • Braud A, Jezequel K, Vieille E, Tritter A, Lebeau T (2006) Changes in extractability of Cr and Pb in a polycontaminated soil after bioaugmentation with microbial producers of biosurfactants, organic acids and siderophores. Water Air Soil Pollut Focus 6:261–279

    Article  CAS  Google Scholar 

  • Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45:198–207

    Article  PubMed  CAS  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (1998) A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64:3663–3668

    PubMed  CAS  Google Scholar 

  • Cao A, Carucci A, Lai T, La Colla P, Tamburini E (2007) Effect of biodegradable chelating agents on heavy metals phytoextraction with Mirabilis jalapa and on its associated bacteria. Eur J Soil Biol 43:200–206

    Article  CAS  Google Scholar 

  • Carson KC, Glenn AR, Dilworth MJ (1994) Specificity of siderophore-mediated transport of iron in rhizobia. Arch Microbiol 161:333–339

    Article  CAS  Google Scholar 

  • Chen YX, Wang YP, Lin Q, Luo YM (2005) Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens. Environ Int 31:861–866

    Article  PubMed  CAS  Google Scholar 

  • Chincholkar SB, Chaudhari BL, Rane MR (2007) Microbial siderophores: state of art. In: Chincholkar SB, Varma A (eds) Microbial siderophores. Springer, Berlin, pp 233–242

    Google Scholar 

  • Ciccillo F, Fiore A, Bevivino A, Chiarini L (2002) Effects of two different application methods of Burkholderia ambifaria MCI 7 on plant growth and rhizospheric bacterial diversity. Environ Microbiol 4:238–245

    Article  PubMed  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  PubMed  CAS  Google Scholar 

  • Dary M, Chamber-Pérez MA, Palomares AJ, Pajuelo E (2010) “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177:323–330

    Article  PubMed  CAS  Google Scholar 

  • Davison J (1988) Plant beneficial bacteria. Biotechnology 6:282–286

    Article  CAS  Google Scholar 

  • De Souza MP, Chu D, Zhao M, Zayed AM, Ruzin SE, Schichnes D, Terry N (1999) Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian Mustard. Plant Physiol 119:565–573

    Article  PubMed  Google Scholar 

  • Dell’Amico E, Cavalca L, Andreoni V (2008) Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biol Biochem 40:74–84

    Article  CAS  Google Scholar 

  • Di Gregorio S, Barbafieri M, Lampis S, Sanangelantoni AM, Tassi E, Vallini G (2006) Combined application of Triton X-100 and Sinorhizobium sp. Pb002 inoculum for the improvement of lead phytoextraction by Brassica juncea in EDTA amended soil. Chemosphere 63:293–299

    Article  PubMed  CAS  Google Scholar 

  • Diels L, Spaans PH, Van Roy S, Hooyberghs L, Ryngaert A, Wouters H, Walter E, Winters J, Macaskie L, Finlay J, Pernfuss B, Woebking H, Pümpel T, Tsezos M (2003) Heavy metals removal by sand filters inoculated with metal sorbing and precipitating bacteria. Hydrometallurgy 71:235–241

    Article  CAS  Google Scholar 

  • Doelman P, Haanstra L (1979) Effect of lead on soil respiration and dehydrogenase activity. Soil Biol Biochem 11:475–479

    Article  CAS  Google Scholar 

  • Dubbin WE, Ander EL (2003) Influence of microbial hydroxamate siderophores on Pb(II) desorption from α-FeOOH. Appl Geochem 18:1751–1756

    Article  CAS  Google Scholar 

  • Egamberdieva D (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol Plant 31:861–864

    Article  CAS  Google Scholar 

  • Ernst WHO (1998) Effects of heavy metals in plants at the cellular and organismic level. In: Schürmann G, Markert B (eds) Ecotoxicology. Wiley, New York, pp 587–620

    Google Scholar 

  • Farwell AJ, Vesely S, Nero V, Rodriguez H, Shah S, Dixon DG, Glick BR (2006) The use of transgenic canola (Brassica napus) and plant growth-promoting bacteria to enhance plant biomass at a nickel-contaminated field site. Plant Soil 288:309–318

    Article  CAS  Google Scholar 

  • Farwell AJ, Vesely S, Nero V, Rodriguez H, McCormack K, Shah S, Dixon DG, Glick BR (2007) Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal-contaminated field site. Environ Pollut 147:540–545

    Article  PubMed  CAS  Google Scholar 

  • Fässler E, Evangelou MW, Robinson BH, Schulin R (2010) Effects of indole-3-acetic acid (IAA) on sunflower growth and heavy metals uptake in combination with ethylene diamine disuccinic acid (EDDS). Chemosphere 80:901–907

    Article  PubMed  CAS  Google Scholar 

  • Frankenberger WT, Arshad M (1995) Phytohormones in soils: microbial production and function. Marcel Dekker, New York

    Google Scholar 

  • Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem 30:1389–1414

    Article  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR, Bashan Y (1997) Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of fungal phytopathogens. Biotechnol Adv 15:353–378

    Article  PubMed  CAS  Google Scholar 

  • Glick BR, Jacobson CB, Schwarze MMK, Pasternak JJ (1994) 1-aminocyclopropane-1-carboxylic acid deaminase mutants of the plant growth promoting rhizobacterium Pseudomonas putida GR12-2 do not stimulate canola root elongation. Can J Microbiol 40:911–915

    Article  CAS  Google Scholar 

  • Glick BR, Karaturovich DM, Newell PC (1995) A novel procedure for rapid isolation of plant growth promoting pseudomonds. Can J Microbiol 41:533–536

    Article  CAS  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68

    Article  PubMed  CAS  Google Scholar 

  • Grichko VP, Glick BR, Grishko VI, Pauls KP (2005) Evaluation of tomato plants with constitutive, root-specific, and stress-induced ACC deaminase gene expression. Russ J Plant Physiol 52:359–364

    Article  CAS  Google Scholar 

  • Haas D, Blumer C, Keel C (2000) Biocontrol ability of fluorescent pseudomonads genetically dissected: importance of positive feedback regulation. Curr Opin Biotechnol 11:290–297

    Article  PubMed  CAS  Google Scholar 

  • Hall JA, Peirson D, Ghosh S, Glick BR (1996) Root elongation in various agronomic crops by the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. Isr J Plant Sci 44:37–42

    Google Scholar 

  • Hallman J, Quadt-Hallman A, Mahafee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  Google Scholar 

  • Hasky-Günter K, Hoffman-Hergarten S, Sikora RA (1998) Resistance against the potato cyst nematode Globodera pallida systemically induced by the rhizobacterla Agrobacterium radiobacter (G12) and Bacillus sphaericus (B43). Fundam Appl Nemarol 5:1164–5571

    Google Scholar 

  • Hassanein WA, Awny NM, El-Mougith AA, Salah El-Dien SH (2009) The antagonistic activities of some metabolites produced by Pseudomonas aeruginosa Sha8. J Appl Sci Res 5:404–414

    CAS  Google Scholar 

  • He ZL, Yang XE, Stoffella PJ (2005) Trace elements in agroecosystems and impacts on environment. J Trace Elem Med Biol 19:125–140

    Article  PubMed  CAS  Google Scholar 

  • Honma M, Shimomura T (1978) Metabolism of 1-aminocyclopropane-1-carboxilic acid. Agric Biol Chem 42:1825–1831

    Article  CAS  Google Scholar 

  • Howie WJ, Suslow TV (1991) Role of antibiotic biosynthesis in the inhibition of Pythium ultimum in the cotton spermosphere and rhizosphere by Pseudomonas fluorescens. Mol Plant Microbe Interact 4:393–399

    Article  CAS  Google Scholar 

  • Jackson MB (1991) Ethylene in root growth and development. In: Matoo AK, Suttle JC (eds) The plant hormone ethylene. CRC, Boca Raton, FL, pp 159–181

    Google Scholar 

  • Jézéquel K, Lebeau T (2008) Soil bioaugmentation by free and immobilized bacteria to reduce potentially phytoavailable cadmium. Bioresour Technol 99:690–698

    Article  PubMed  CAS  Google Scholar 

  • Jiang C, Sun H, Sun T, Zhang Q, Zhang Y (2009) Immobilization of cadmium in soils by UV-mutated Bacillus subtilis 38 bioaugmentation and NovoGro amendment. J Hazard Mater 167:1170–1177

    Article  PubMed  CAS  Google Scholar 

  • Jing Y, He Z, Yang X (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci B 8:192–207

    Article  PubMed  CAS  Google Scholar 

  • Karami A, Shamsuddin ZH (2010) Phytoremediation of heavy metals with several efficiency enhancer methods. Afr J Biotechnol 9:3689–3698

    CAS  Google Scholar 

  • Kayser G, Korckritz T, Markert B (2001) Bioleaching for the decontamination of heavy metals. Wasser Boden 53:54–58

    CAS  Google Scholar 

  • Keel C, Voisard C, Berling CH, Kahr G, Defag G (1989) Iron sufficiency, a prerequisite for the suppression of tobacco black root rot by Pseudomonas fluorescens strain CHA0 under gnotobiotic condition. Phytopathology 79:584–589

    Article  Google Scholar 

  • Kidd P, Barceló J, Bernal MP, Navari-Izzo F, Poschenrieder C, Shilev S, Clemente R, Monterroso C (2009) Trace element behaviour at the root-soil interface: implications to phytoremediation. Environ Exp Bot 67:243–259

    Article  CAS  Google Scholar 

  • Kim KY, Jordan D, McDonald GA (1998) Enterobacter agglomerans a phosphate solubilizing bacteria and microbial activity in soil: effect of carbon source. Soil Sci Soc Am 30:995–1003

    CAS  Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–43

    Article  Google Scholar 

  • Kuhad RC, Kothamasi DM, Tripathi KK, Singh A (2004) Diversity and functions of soils microflora in development of plants. In: Varma A, Abbot L, Werner D, Hampp R (eds) Plant surface microbiology. Springer, New York, pp 71–98

    Google Scholar 

  • Kumar T, Wahla V, Pandey P, Dubey RC, Maheshwari DK (2009) Rhizosphere competent Pseudomonas aeruginosa in the management of Heterodera cajani on sesame. World J Microbiol Biotechnol 25:277–285

    Article  Google Scholar 

  • Lebeau T, Braud A, Jézéquel K (2008) Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review. Environ Pollut 153:497–522

    Article  PubMed  CAS  Google Scholar 

  • Ledin M, Krantz-Rülcker C, Allard B (1999) Microorganisms as metal sorbent: comparison with other soil constituents in multi-compartment systems. Soil Biol Biochem 31:1639–1648

    Article  Google Scholar 

  • Leung HM, Ye ZH, Wong MH (2006) Interactions of mycorrhizal fungi with Pteris vittata (As hyperaccumulator) in As-contaminated soils. Environ Pollut 139:1–8

    Article  PubMed  CAS  Google Scholar 

  • Lodewyckx C, Vangronsveld J, Porteous F, Moore ERB, Taghavi S, Mezgeay M, van der Lelie D (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21:583–606

    Article  Google Scholar 

  • Lu WB, Shi JJ, Wang CH, Chang JS (2006) Biosorption of lead, copper and cadmium by an indigenous isolate Enterobacter sp. J1 possessing high heavy-metal resistance. J Hazard Mater 134:80–86

    Article  PubMed  CAS  Google Scholar 

  • Lynch J, Brown KM (1997) Ethylene and plant and plant responses to nutritional stress. Physiol Plant 100:613–619

    Article  CAS  Google Scholar 

  • Maiz I, Arambarri I, Garcia R, Millán E (2000) Evaluation of heavy metal availability in polluted soils by two sequential extraction procedures using factor analysis. Environ Pollut 110:3–9

    Article  PubMed  CAS  Google Scholar 

  • Maheshwari DK (2010) Plant growth and health promoting bacteria, Microbiology monographs (Springer series). Springer, Heidelberg

    Google Scholar 

  • Malcova R, Vosatka M, Gryndler M (2003) Effects of inoculation with Glomus intraradices on lead uptake by Zea mays L. and Agrostis capillaris L. Appl Soil Ecol 23:55–67

    Article  Google Scholar 

  • Marc V, Vistor DL (2002) Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 26:327–328

    Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  PubMed  CAS  Google Scholar 

  • McGrath SP, Cegarra J (1992) Chemical extractability of heavy metals during and after long-term applications of sewage sludge to soil. J Soil Sci 43:313–321

    Article  CAS  Google Scholar 

  • Meyer J-M, Stintzi A (1998) Iron metabolism and siderophores in Pseudomonas and related species. In: Montie TC (ed) Biotechnology handbooks, vol 10, Pseudomonas. Plenum, New York, pp 201–243

    Google Scholar 

  • Neilands JB (1986) Siderophores in relation to plant growth and disease. Annu Rev Plant Physiol 37:187–208

    Article  CAS  Google Scholar 

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726

    PubMed  CAS  Google Scholar 

  • Nie L, Shah S, Rashid A, Burd GI, Dixon DG, Glick BR (2002) Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiol Biochem 40:355–361

    Article  CAS  Google Scholar 

  • Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339

    Article  PubMed  CAS  Google Scholar 

  • Nies DH, Silver S (1995) Ion efflux systems involved in bacterial metal resistances. J Ind Microbiol 14:186–199

    Article  PubMed  CAS  Google Scholar 

  • Nowak J, Shulaev V (2003) Priming for transplant stress resistance in vitro propagation. In Vitro Cell Dev Biol Plant 39:107–124

    Google Scholar 

  • Oostendorp M, Sikora RA (1989) Seed treatment with antagonistic rhizobacteria for the suppression of Heterodera schachtii early root infection of sugar beet. Revue Nérnatol 12:77–83

    Google Scholar 

  • Oostendorp M, Sikora RA (1990) In-vitro interrelationships between rhizosphere bacteria and Heterodera schachtii. Revue Nématol 13:269–274

    Google Scholar 

  • Pandey P, Maheshwari DK (2007) Two-species microbial consortium for growth promotion of Cajanus cajan. Curr Sci 92:1137–1142

    CAS  Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  PubMed  CAS  Google Scholar 

  • Penrose DM, Glick BR (2001) Levels of ACC and related compounds in exudate and extracts on canola seeds treated with ACC deaminase-containing plant growth-promoting bacteria. Can J Microbiol 47:368–372

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Miranda S, Cabirol N, George-Téllez R, Zamudio-Rivera LS, Fernández FJ (2007) O-CAS, a fast and universal method for siderophore detection. J Microbiol Methods 70:127–131

    Article  PubMed  CAS  Google Scholar 

  • Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie van Leeuwenhoek 81:537–547

    Article  PubMed  CAS  Google Scholar 

  • Reed MLE, Glick BR (2005) Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Can J Microbiol 51:1061–1069

    Article  PubMed  CAS  Google Scholar 

  • Rodecap KD, Tingey DT, Tibbs JH (1981) Cadmium-induced ethylene production in bean plants. Z Pfanzenphysiol 105:65–74

    CAS  Google Scholar 

  • Safronova VI, Stepanok VV, Engqvist GL, Alekseyev YV, Belimov AA (2006) Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol Fertil Soils 42:267–272

    Article  CAS  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:46–56

    Article  Google Scholar 

  • Sheng XF, Xia JJ (2006) Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere 64:1036–1042

    Article  PubMed  CAS  Google Scholar 

  • Shilev S, Ruso J, Puig A, Benlloch M, Jorrin J, Sancho ED (2001) Rhizospheric bacteria promote sunflower (Helianthus annuus L.) plant growth and tolerance to heavy metals. Minerva Biotechnol 13:37–39

    Google Scholar 

  • Shilev S, Benlloch M, Sancho ED (2003) Pseudomonas fluorescens promotes water and arsenic transport to shoots in sunflower (Helianthus annuus L.) plants. In: Mench M, Mocquot B (eds) Risk assessment and sustainable land management using plants in trace element-contained soils, COST Action 837. Workshop, Bordeaux, France, pp 43–45

    Google Scholar 

  • Shilev S, Sancho ED, Benlloch M (2011) Rhizospheric bacteria alleviate salt-produced stress in sunflower. J Environ Manag. doi:10.1016/j.physletb.2003.10.071

    Google Scholar 

  • Stearns JC, Shah S, Greenberg BM, Dixon DG, Glick BR (2005) Tolerance of transgenic canola expressing 1-aminocyclopropane-1-carboxylic acid deaminase to growth inhibition by nickel. Plant Physiol Biochem 43:701–708

    Article  PubMed  CAS  Google Scholar 

  • Stolz JF, Oremland RS (1999) Bacterial respiration of arsenic and selenium. FEMS Microbiol Rev 23:615–627

    Article  PubMed  CAS  Google Scholar 

  • Terry N, Zayed A (1998) Phytoremediation of selenium. In: Frankenberger WT, Engberg R (eds) Environmental chemistry of selenium. Marcel Dekker, New York, pp 633–656

    Google Scholar 

  • Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851

    Article  CAS  Google Scholar 

  • Tsavkelova EA, Klimova SY, Cherdyntseva TA, Netrusov AI (2006) Microbial producers of plant growth stimulators and their practical use: a review. Appl Biochem Microbiol 42:117–126

    Article  CAS  Google Scholar 

  • Vansuyt G, Robin A, Briat JF, Curie C, Lemanceau P (2007) Iron acquisition from Fe pyoverdine by Arabidopsis thaliana. Mol Plant Microbe Interact 20:441–447

    Article  PubMed  CAS  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Vivas A, Biro B, Ruiz-Lozano JM, Barea JM, Azcon R (2006) Two bacterial strains isolated from a Zn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn-toxicity. Chemosphere 62:1523–1533

    Article  PubMed  CAS  Google Scholar 

  • Wenzel WW (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321:385–408

    Article  CAS  Google Scholar 

  • Whipps JM (2001) Microbial interaction and biocontrol in the rhizasphere. J Exp Bot 52:487–511

    PubMed  CAS  Google Scholar 

  • Winkelmann G (2002) Microbial siderophores-mediated transport. Biochem Soc Trans 30:691–695

    Article  PubMed  CAS  Google Scholar 

  • Wu CH, Wood TK, Mulchandani A, Chen W (2006a) Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. Appl Environ Microbiol 71:1129–1134

    Article  CAS  Google Scholar 

  • Wu SC, Luo YM, Cheung KC, Wong MH (2006b) Influence of bacteria on Pb and Zn speciation, mobility and bioavailability in soil: a laboratory study. Environ Pollut 144:765–773

    Article  PubMed  CAS  Google Scholar 

  • Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997

    Article  PubMed  CAS  Google Scholar 

  • Zhao XW, Zhou MH, Li QB, Lu YH, He N, Sun DH, Deng X (2005) Simultaneous mercury bioaccumulation and cell propagation by genetically engineered Escherichia coli. Process Biochem 5:1611–1616

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support of Fund “Science investigation” of the Bulgarian Ministry of Education, Youth and Science for the Bulgarian part of the project COST Action FA0905 “Mineral improved crop production for health food and feed.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Shilev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shilev, S., Naydenov, M., Prieto, M.S., Vassilev, N., Sancho, E.D. (2012). PGPR as Inoculants in Management of Lands Contaminated with Trace Elements. In: Maheshwari, D. (eds) Bacteria in Agrobiology: Stress Management. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23465-1_13

Download citation

Publish with us

Policies and ethics