Skip to main content

Moisture and Heat

  • Chapter
  • First Online:
Permafrost Hydrology
  • 3008 Accesses

Abstract

Under a cold climate, water exists in solid, liquid and gaseous states at, above and below the surface. Water can undergo change of state on time scales that vary from hours to days and seasons, to multi-year periods. Phase change involves energy and thus energy balance plays a major role in the detention or the release of water to runoff and river flow. Hinzman et al. (1991) stated that the thermal and moisture regimes are closely related to each other and to the characteristics of the active layer and therefore have a marked influence on permafrost dynamics. This chapter reviews briefly the fundamentals of moisture and heat fluxes at the atmospheric boundary layer and below-ground.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson DM, Williams PJ, Guymon GL, Kane DL (1984) Principles of soil freezing and frost heaving. In: Berg RL, Wright EA (eds) Frost action and its control. American Society of Civil Engineers, New York, pp 1–21

    Google Scholar 

  • Barry RB, Hare FK (1974) Arctic climate. In: Ives JD, Barry RG (eds) Arctic and alpine environments. Methuen, London, pp 17–54

    Google Scholar 

  • Bello R, Smith JD (1990) The effect of weather variability on the energy balance of a lake in the Hudson Bay Lowlands, Canada. Arctic Alpine Res 22:98–107

    Article  Google Scholar 

  • Benson CS (1970) Ice fog. Low temperature air pollution defined with Fairbanks, Alaska as type locality. US Army CRREL research report 121

    Google Scholar 

  • Beringer J, Lynch AH, Chapin FS III, Mack M, Bonan GB (2001) The representation of Arctic soils in the land surface model: the importance of mosses. J Clim 14:3324–3335

    Article  Google Scholar 

  • Boike J, Wille C, Abnizova A (2008) Climatology and summer energy and water balance of polygonal tundra in the Lena River Delta, Siberia. J Geophys Res 113:G03025. doi:10.1029/2007JG000540

    Article  Google Scholar 

  • Bovis MJ, Barry RG (1974) A climatological analysis of north polar desert areas. In: Smiley TL, Zumberge JH (eds) Polar deserts and modern man. University of Arizona Press, Tuscon, pp 23–31

    Google Scholar 

  • Brown J, Dingman SL, Lewellen RI (1968) Hydrology of a drainage basin on the Alaska coastal plain. US Army CRREL special report 24C

    Google Scholar 

  • Bryson RA (1966) Air masses, streamlines and the boreal forest. Geogr Bull 8:228–269

    Google Scholar 

  • Carey SK, Woo MK (2000) Within slope variability of ground heat flux, subarctic Yukon. Phys Geogr 21:407–417

    Google Scholar 

  • Carey S, Woo MK (2005) Freezing of subarctic hillslopes, Wolf Creek Basin, Yukon, Canada. Arct Antarct Alp Res 37:1–20

    Article  Google Scholar 

  • Carson JE (1963) Analysis of soil and air temperatures by Fourier techniques. J Geophys Res 68:1070–1078

    Article  Google Scholar 

  • Clapp RB, Hornberger GM (1978) Empirical equations for some soil hydraulic properties. Water Resour Res 14:601–604

    Article  Google Scholar 

  • Connolley WM, Cattle H (1994) The Antarctic climate of the UKMO unified model. Antarct Sci 6:115–122

    Article  Google Scholar 

  • Davies JA (1972) Actual, potential and equilibrium evaporation for a beanfield in southern Ontario. Agr Meteorol 10:331–348

    Article  Google Scholar 

  • Deardorff JW (1977) Efficient prediction of ground surface temperature and moisture with inclusion of a layer of vegetation. J Geophys Res (Atmos) 83:1889–1903

    Article  Google Scholar 

  • Derksen C, Brown R, MacKay M (2008) Mackenzie Basin snow cover: variability and trends from conventional data, satellite remote sensing, and Canadian regional climate model simulations. In: Woo MK (ed) Cold region atmospheric and hydrologic studies, the Mackenzie GEWEX experience, vol 1, Atmospheric dynamics. Springer, Berlin, pp 213–239

    Chapter  Google Scholar 

  • de Vries DA (1963) Theoretical properties of soils. In: van Wijk WR (ed) Physics of plant environment. North-Holland, Amsterdam, pp 210–235

    Google Scholar 

  • Dilley AC (1968) On the computer calculation of vapor pressure and specific humidity gradients from psychrometric data. J Appl Meteorol 7:717–719

    Article  Google Scholar 

  • Farouki OT (1981) The thermal properties of soils in cold regions. Cold Reg Sci Technol 5:67–75

    Article  Google Scholar 

  • Fox JD (1992) Incorporating freeze-thaw calculations into a water balance model. Water Resour Res 28:2229–2244

    Article  Google Scholar 

  • Guymon GL, Hromadka TV II, Berg RL (1980) A one dimensional frost heave model based upon simulation of simultaneous heat and water flux. Cold Reg Sci Technol 3:253–262

    Article  Google Scholar 

  • Guymon GL, Luthin JN (1974) A coupled heat and moisture transport model for Arctic soils. Water Resour Res 10:995–1001

    Article  Google Scholar 

  • Hinzman LD, Goering DJ, Kane DL (1998) A distributed thermal model for calculating soil temperature profiles and depth of thaw in permafrost regions. J Geophys Res 103(D22):28,975–28,991

    Article  Google Scholar 

  • Hinzman LD, Kane DL, Gieck RE, Everett KR (1991) Hydrologic and thermal properties in the active layer in the Alaskan Arctic. Cold Reg Sci Technol 19:95–110

    Article  Google Scholar 

  • Hoskins BJ, Hodges KI (2005) A new perspective on southern hemisphere storm tracks. J Clim 18:4108–4129

    Article  Google Scholar 

  • Hromadka TV II, Guymon GL, Berg RL (1981) Some approaches to modeling phase change in freezing soils. Cold Reg Sci Technol 4:137–145

    Article  Google Scholar 

  • Hudak DR, Young JMC (2002) Summer climatology of the southern Beaufort Sea. Atmos Ocean 40:145–158

    Article  Google Scholar 

  • Jame YW, Norum DI (1980) Heat and mass transfer in a freezing unsaturated porous medium. Water Resour Res 16:811–819

    Article  Google Scholar 

  • Jumikis AR (1977) Thermal geotechnics. Rutgers University Press, New Brunswick

    Google Scholar 

  • Kane DL, Hinzman LD, Zarling JP (1991) Thermal response of the active layer to climatic warming in a permafrost environment. Cold Reg Sci Technol 19:111–122

    Article  Google Scholar 

  • Klene AE, Nelson FE, Shiklomanov NI, Hinkel KM (2001) The n-factor in natural landscapes: variability of air and soil-surface temperatures, Kuparuk River Basin, Alaska, U.S.A. Arct Antarct Alp Res 33:140–148

    Article  Google Scholar 

  • Konrad J-M (2001) Cold region engineering. In: Rowe RK (ed) Geotechnical and geoenvironmental engineering handbook. Kluwer, Dordrecht, pp 593–613

    Chapter  Google Scholar 

  • Kristensen L, Christiansen HH, Caline F (2008) Temperature in coastal permafrost in the Svea area, Svalbard. In: Proceedings of the 9th international conference on permafrost., Fairbanks, Alaska. University of Alaska, Fairbanks, pp 1005–1010

    Google Scholar 

  • Li X, Koike T (2003) Frozen soil parameterization in SiB2 and its validation with GAME-Tibet observations. Cold Reg Sci Technol 36:165–182

    Article  Google Scholar 

  • Lunardini VJ (1978) Theory of n-factors and correlation of data. In: Proceedings of the 3rd international conference on permafrost, vol 1. National Research Council of Canada, Ottawa, pp 40–46

    Google Scholar 

  • Mackay JR (1974) Ice wedge cracks, Garry Island, Northwest Territories. Can J Earth Sci 11:1366–1383

    Article  Google Scholar 

  • Marsh P, Bigras SC (1988) Evaporation from Mackenzie delta lakes, N.W.T., Canada. Arctic Alpine Res 20:220–229

    Article  Google Scholar 

  • Marsh P, Rouse WR, Woo MK (1981) Evaporation at a high Arctic site. J Appl Meteorol 20:713–716

    Article  Google Scholar 

  • McRoberts EC, Morgenstern NR (1974) The stability of thawing slopes. Can Geotech J 11:447–469

    Article  Google Scholar 

  • Mendez J, Hinzman LD, Kane DL (1998) Evapotranspiration from a wetland complex on the Arctic coastal plain of Alaska. Nord Hydrol 29:303–330

    Google Scholar 

  • Nakano Y, Brown J (1972) Mathematical modeling and validation of the thermal regimes in tundra soils, Barrow, Alaska. Arctic Alpine Res 4:19–38

    Article  Google Scholar 

  • Nicholson FH (1976) Permafrost thermal amelioration tests near Schefferville, Quebec. Can J Earth Sci 13:1694–1705

    Article  Google Scholar 

  • Ohmura A (1982) Objective criteria for rejecting data for Bowen ratio flux calculations. J Appl Meteorol 21:595–598

    Article  Google Scholar 

  • Oke TR (1987) Boundary layer climates, 2nd edn. Routledge, London

    Google Scholar 

  • O’Neill K, Miller RD (1982) Numerical solutions for a rigid-ice model of secondary frost heave. US Army CRREL Report 82–13

    Google Scholar 

  • Osterkamp TE, Romanovsky VE (1997) Freezing of the active layer on the coastal plain of the Alaskan Arctic. Permafrost Periglac 8:23–44

    Article  Google Scholar 

  • Priestley CHB, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Mon Weather Rev 100:81–92

    Article  Google Scholar 

  • Riseborough D, Shiklomonov N, Etzelmüller B, Gruber S, Marchenko S (2008) Recent advances in permafrost modeling. Permafrost Periglac 19:137–156

    Article  Google Scholar 

  • Rouse WR, Mills PF, Stewart RB (1977) Evaporation in high latitudes. Water Resour Res 13:909–914

    Article  Google Scholar 

  • Serreze MC, Barry RG (2005) The Arctic climate system. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Sheppard MI, Kay BD, Loch JPG (1978) Development and testing of a computer model for heat and mass flow in freezing soils. In: Proceedings of the 3rd international conference on permafrost, Edmonton, Alberta, vol 1. National Research Council of Canada, Edmonton, pp 75–81

    Google Scholar 

  • Shur Y, Hinkel KM, Nelson FE (2005) The transient layer: implications for geocryology and climate-change science. Permafrost Periglac 16:5–17

    Article  Google Scholar 

  • Shutov V, Gieck RE, Hinzman LD, Kane DL (2006) Evaporation from land surface in high latitude areas: a review of methods and study results. Nord Hydrol 37:393–411

    Article  Google Scholar 

  • Simmonds I, Keay K, Lim EP (2003) Synoptic activity in the seas around Antarctica. Mon Weather Rev 131:272–288

    Article  Google Scholar 

  • Smith MW (1985) Models of soil freezing. In: Church MA, Slaymaker HO (eds) Field and theory: lectures in geocryology. University of British Columbia Press, Vancouver, pp 96–120

    Google Scholar 

  • Stewart RB, Rouse WR (1977) Substantiation of the Priestley and Taylor parameter α-1.26 for potential evaporation in high latitudes. J Appl Meteorol 16:649–650

    Article  Google Scholar 

  • Szeto KK, Liu JL, Wong A (2008a) Precipitation recycling in the Mackenzie and three other major river basins. In: Woo MK (ed) Cold region atmospheric and hydrologic studies, the Mackenzie GEWEX experience, vol 1, Atmospheric dynamics. Springer, Berlin, pp 137–154

    Chapter  Google Scholar 

  • Szeto KK, Stewart RE, Yau MK, Gyakum J (2008b) The Mackenzie climate system: a synthesis of MAGS atmospheric research. In: Woo MK (ed) Cold region atmospheric and hydrologic studies, the Mackenzie GEWEX experience, vol 1, Atmospheric dynamics. Springer, Berlin, pp 23–50

    Chapter  Google Scholar 

  • Williams PJ (1967) The nature of freezing soil and its field behavior. Norwegian Geotech Inst Publ 72:91–119

    Google Scholar 

  • Williams PJ (1986) Pipelines and permafrost: science in a cold climate. Carleton University Press, Ottawa

    Google Scholar 

  • Woo MK, Arain A, Mollinga M, Yi S (2004) A two-directional freeze and thaw algorithm for hydrologic and land surface modelling. Geophys Res Lett 31:L12501. doi:10.1029/2004GL019475

    Article  Google Scholar 

  • Woo MK, Mollinga M, Smith SL (2006) Simulating active layer thaw in a boreal environment. Geogr Phys Quatern 60:9–17

    Google Scholar 

  • Woo MK, Mollinga M, Smith SL (2007) Climate warming and active layer thaw in the boreal and tundra environments of the Mackenzie Valley. Can J Earth Sci 44:733–743

    Article  Google Scholar 

  • Woo MK, Steer P (1979) Measurement of trace rainfall at a high Arctic site. Arctic 32:80–84

    Google Scholar 

  • Yi S, Woo MK, Arain A (2007) Impacts of peat and vegetation on permafrost degradation under climate warming. Geophys Res Lett 34:L16504. doi:10.1029/2007GL030550

    Article  Google Scholar 

  • Zhou YW, Guo DX, Qiu GQ, Cheng GD, Li SD (2000) Geocryology in China. Chinese Academy of Sciences, Beijing

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-ko Woo .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Woo, Mk. (2012). Moisture and Heat. In: Permafrost Hydrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23462-0_2

Download citation

Publish with us

Policies and ethics