Skip to main content

Molecular Diagnostics in the Evaluation of Thyroid Samples

  • Chapter
  • First Online:
Surgery of the Thyroid and Parathyroid Glands

Abstract

Whereas, over time, the scalpel has come to identify the surgeon, so the microscope has come to identify the pathologist. Recent technological developments, however, have expanded the tools available to the surgeon in the practice of surgery, e.g., robot-assisted (da Vinci) minimally invasive surgery. Similarly, revolutionary leaps in the field of molecular biology have exponentially shifted the information available to the pathologist from the cellular morphologic realm to the submicroscopic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Watanabe G (2010) Are you ready to take off as a robo-­surgeon? Surg Today 40(6):491–493

    PubMed  Google Scholar 

  2. Bernard PS, Wittwer CT (2002) Real-time PCR technology for cancer diagnostics. Clin Chem 48(8):1178–1185

    PubMed  CAS  Google Scholar 

  3. Manolio TA (2010) Genomewide association studies and assessment of the risk of disease. N Engl J Med 363(2):166–176

    PubMed  CAS  Google Scholar 

  4. Antoniou AC, Chenevix-Trench G (2010) Common genetic variants and cancer risk in Mendelian cancer syndromes. Curr Opin Genet Dev 20(3):299–307

    PubMed  CAS  Google Scholar 

  5. Bertram JS (2000) The molecular biology of cancer. Mol Aspects Med 21(6):167–223

    PubMed  CAS  Google Scholar 

  6. Heinmoller E, Renke B, Beyser K, Dietmaier W, Langner C, Ruschoff J (2001) Piffalls in diagnostic molecular pathology – significance of sampling error. Virchows Arch 439(4):504–511

    PubMed  CAS  Google Scholar 

  7. Hofman P (2005) DNA microarrays. Nephron Physiol 99(3):p85–p89

    PubMed  CAS  Google Scholar 

  8. Ikonomou G, Samiotaki M, Panayotou G (2009) Proteomic methodologies and their application in colorectal cancer research. Crit Rev Clin Lab Sci 46(5–6):319–342

    PubMed  CAS  Google Scholar 

  9. Reymond MA, Schlegel W (2007) Proteomics in cancer. Adv Clin Chem 44:103–142

    PubMed  CAS  Google Scholar 

  10. Lewis F, Maughan NJ, Smith V, Hillan K, Quirke P (2001) Unlocking the archive – gene expression in paraffin-embedded tissue. J Pathol 195(1):66–71

    PubMed  CAS  Google Scholar 

  11. Elisei R, Romei C, Cosci B, Agate L, Bottici V, Molinaro E et al (2007) RET genetic screening in patients with medullary thyroid cancer and their relatives: experience with 807 individuals at one center. J Clin Endocrinol Metab 92(12):4725–4729

    PubMed  CAS  Google Scholar 

  12. Mullis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155:335–350

    PubMed  CAS  Google Scholar 

  13. Mies C (1994) Molecular biological analysis of paraffin-embedded tissues. Hum Pathol 25(6):555–560

    PubMed  CAS  Google Scholar 

  14. Baehner FL, Achacoso N, Maddala T, Shak S, Quesenberry CP Jr, Goldstein LC et al (2010) Human epidermal growth factor receptor 2 assessment in a case–control study: comparison of fluorescence in situ hybridization and quantitative reverse transcription polymerase chain reaction performed by central laboratories. J Clin Oncol 28(28):4300–4306, Epub 2010 Aug 9

    PubMed  Google Scholar 

  15. Vogel UF (2010) Confirmation of a low HER2 positivity rate of breast carcinomas – limitations of immunohistochemistry and in situ hybridization. Diagn Pathol 5:50

    PubMed  Google Scholar 

  16. Penido MG, Lima EM, Marino VS, Tupinamba AL, Franca A, Souto MF (2003) Bone alterations in children with idiopathic hypercalciuria at the time of diagnosis. Pediatr Nephrol 18(2):133–139

    PubMed  Google Scholar 

  17. ten Bosch JR, Grody WW (2008) Keeping up with the next generation: massively parallel sequencing in clinical diagnostics. J Mol Diagn 10(6):484–492

    PubMed  Google Scholar 

  18. Nikiforova MN, Nikiforov YE (2009) Molecular diagnostics and predictors in thyroid cancer. Thyroid 19(12):1351–1361

    PubMed  CAS  Google Scholar 

  19. Carpi A, Mechanick JI, Saussez S, Nicolini A (2010) Thyroid tumor marker genomics and proteomics: diagnostic and clinical implications. J Cell Physiol 224(3):612–619

    PubMed  CAS  Google Scholar 

  20. Jin L, Sebo TJ, Nakamura N, Qian X, Oliveira A, Majerus JA et al (2006) BRAF mutation analysis in fine needle aspiration (FNA) cytology of the thyroid. Diagn Mol Pathol 15(3):136–143

    PubMed  CAS  Google Scholar 

  21. Kakavas VK, Plageras P, Vlachos TA, Papaioannou A, Noulas VA (2008) PCR-SSCP: a method for the molecular analysis of genetic diseases. Mol Biotechnol 38(2):155–163

    PubMed  Google Scholar 

  22. Sheen P, Mendez M, Gilman RH, Pena L, Caviedes L, Zimic MJ et al (2009) Sputum PCR-single-strand conformational polymorphism test for same-day detection of pyrazinamide resistance in tuberculosis patients. J Clin Microbiol 47(9):2937–2943

    PubMed  CAS  Google Scholar 

  23. Cantara S, Capezzone M, Marchisotta S, Capuano S, Busonero G, Toti P et al (2010) Impact of proto-oncogene mutation detection in cytological specimens from thyroid nodules improves the diagnostic accuracy of cytology. J Clin Endocrinol Metab 95(3):1365–1369

    PubMed  CAS  Google Scholar 

  24. Zhu Z, Ciampi R, Nikiforova MN, Gandhi M, Nikiforov YE (2006) Prevalence of RET/PTC rearrangements in thyroid papillary carcinomas: effects of the detection methods and genetic heterogeneity. J Clin Endocrinol Metab 91(9):3603–3610

    PubMed  CAS  Google Scholar 

  25. Algeciras-Schimnich A, Milosevic D, McIver B, Flynn H, Reddi HV, Eberhardt NL et al (2010) Evaluation of the PAX8/PPARG translocation in follicular thyroid cancer with a 4-color reverse-transcription PCR assay and automated high-resolution fragment analysis. Clin Chem 56(3):391–398

    PubMed  CAS  Google Scholar 

  26. Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA (2003) High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res 63(7):1454–1457

    PubMed  CAS  Google Scholar 

  27. Xing M, Tufano RP, Tufaro AP, Basaria S, Ewertz M, Rosenbaum E et al (2004) Detection of BRAF mutation on fine needle aspiration biopsy specimens: a new diagnostic tool for papillary thyroid cancer. J Clin Endocrinol Metab 89(6):2867–2872

    PubMed  CAS  Google Scholar 

  28. Mitsutake N, Miyagishi M, Mitsutake S, Akeno N, Mesa C Jr, Knauf JA et al (2006) BRAF mediates RET/PTC-induced mitogen-activated protein kinase activation in thyroid cells: functional support for requirement of the RET/PTC-RAS-BRAF pathway in papillary thyroid carcinogenesis. Endocrinology 147(2):1014–1019

    PubMed  CAS  Google Scholar 

  29. Carta C, Moretti S, Passeri L, Barbi F, Avenia N, Cavaliere A et al (2006) Genotyping of an Italian papillary thyroid carcinoma cohort revealed high prevalence of BRAF mutations, absence of RAS mutations and allowed the detection of a new mutation of BRAF oncoprotein (BRAF(V599lns)). Clin Endocrinol (Oxf) 64(1):105–109

    CAS  Google Scholar 

  30. Giordano TJ, Kuick R, Thomas DG, Misek DE, Vinco M, Sanders D et al (2005) Molecular classification of papillary thyroid carcinoma: distinct BRAF, RAS, and RET/PTC mutation-specific gene expression profiles discovered by DNA microarray analysis. Oncogene 24(44):6646–6656

    PubMed  CAS  Google Scholar 

  31. Ciampi R, Nikiforov YE (2005) Alterations of the BRAF gene in thyroid tumors. Endocr Pathol 16(3):163–172

    PubMed  CAS  Google Scholar 

  32. Ciampi R, Zhu Z, Nikiforov YE (2005) BRAF copy number gains in thyroid tumors detected by fluorescence in situ hybridization. Endocr Pathol 16(2):99–105

    PubMed  CAS  Google Scholar 

  33. Cohen Y, Xing M, Mambo E, Guo Z, Wu G, Trink B et al (2003) BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst 95(8):625–627

    PubMed  CAS  Google Scholar 

  34. Nikiforova MN, Kimura ET, Gandhi M, Biddinger PW, Knauf JA, Basolo F et al (2003) BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab 88(11):5399–5404

    PubMed  CAS  Google Scholar 

  35. Begum S, Rosenbaum E, Henrique R, Cohen Y, Sidransky D, Westra WH (2004) BRAF mutations in anaplastic thyroid carcinoma: implications for tumor origin, diagnosis and treatment. Mod Pathol 17(11):1359–1363

    PubMed  CAS  Google Scholar 

  36. Nikiforov YE (2004) Genetic alterations involved in the transition from well-differentiated to poorly differentiated and anaplastic thyroid carcinomas. Endocr Pathol 15(4):319–327

    PubMed  CAS  Google Scholar 

  37. Rosenbaum E, Hosler G, Zahurak M, Cohen Y, Sidransky D, Westra WH (2005) Mutational activation of BRAF is not a major event in sporadic childhood papillary thyroid carcinoma. Mod Pathol 18(7):898–902

    PubMed  CAS  Google Scholar 

  38. Lupi C, Giannini R, Ugolini C, Proietti A, Berti P, Minuto M et al (2007) Association of BRAF V600E mutation with poor clinicopathological outcomes in 500 consecutive cases of papillary thyroid carcinoma. J Clin Endocrinol Metab 92(11):4085–4090

    PubMed  CAS  Google Scholar 

  39. Xing M (2010) Prognostic utility of BRAF mutation in papillary thyroid cancer. Mol Cell Endocrinol 321(1):86–93

    PubMed  CAS  Google Scholar 

  40. Sapio MR, Posca D, Raggioli A, Guerra A, Marotta V, Deandrea M et al (2007) Detection of RET/PTC, TRK and BRAF mutations in preoperative diagnosis of thyroid nodules with indeterminate cytological findings. Clin Endocrinol (Oxf) 66(5):678–683

    CAS  Google Scholar 

  41. Pizzolanti G, Russo L, Richiusa P, Bronte V, Nuara RB, Rodolico V et al (2007) Fine-needle aspiration molecular analysis for the diagnosis of papillary thyroid carcinoma through BRAF V600E mutation and RET/PTC rearrangement. Thyroid 17(11):1109–1115

    PubMed  CAS  Google Scholar 

  42. Sapio MR, Posca D, Troncone G, Pettinato G, Palombini L, Rossi G et al (2006) Detection of BRAF mutation in thyroid papillary carcinomas by mutant allele-specific PCR amplification (MASA). Eur J Endocrinol 154(2):341–348

    PubMed  CAS  Google Scholar 

  43. Zhou L, Palais RA, Smith GD, Anderson D, Rowe LR, Wittwer CT (2010) Enrichment and detection of rare alleles by means of snapback primers and rapid-cycle PCR. Clin Chem 56(5):814–822

    PubMed  CAS  Google Scholar 

  44. Hayashi K, Yandell DW (1993) How sensitive is PCR-SSCP? Hum Mutat 2(5):338–346

    PubMed  CAS  Google Scholar 

  45. Nikiforov YE, Steward DL, Robinson-Smith TM, Haugen BR, Klopper JP, Zhu Z et al (2009) Molecular testing for mutations in improving the fine-needle aspiration diagnosis of thyroid nodules. J Clin Endocrinol Metab 94(6):2092–2098

    PubMed  CAS  Google Scholar 

  46. Sapio MR, Guerra A, Posca D, Limone PP, Deandrea M, Motta M et al (2007) Combined analysis of galectin-3 and BRAFV600E improves the accuracy of fine-needle aspiration biopsy with cytological findings suspicious for papillary thyroid carcinoma. Endocr Relat Cancer 14(4):1089–1097

    PubMed  CAS  Google Scholar 

  47. Volante M, Rapa I, Gandhi M, Bussolati G, Giachino D, Papotti M et al (2009) RAS mutations are the predominant molecular alteration in poorly differentiated thyroid carcinomas and bear prognostic impact. J Clin Endocrinol Metab 94(12):4735–4741

    PubMed  CAS  Google Scholar 

  48. Zhu Z, Gandhi M, Nikiforova MN, Fischer AH, Nikiforov YE (2003) Molecular profile and clinical-pathologic features of the follicular variant of papillary thyroid carcinoma. An unusually high prevalence of ras mutations. Am J Clin Pathol 120(1):71–77

    PubMed  CAS  Google Scholar 

  49. Rivera M, Ricarte-Filho J, Knauf J, Shaha A, Tuttle M, Fagin JA et al (2010) Molecular genotyping of papillary thyroid carcinoma follicular variant according to its histological subtypes (encapsulated vs infiltrative) reveals distinct BRAF and RAS mutation patterns. Mod Pathol 23(9):1191–1200

    PubMed  CAS  Google Scholar 

  50. Marsh DJ, Mulligan LM, Eng C (1997) RET proto-­oncogene mutations in multiple endocrine neoplasia type 2 and medullary thyroid carcinoma. Horm Res 47(4–6):168–178

    PubMed  CAS  Google Scholar 

  51. Wells SA Jr, Santoro M (2009) Targeting the RET pathway in thyroid cancer. Clin Cancer Res 15(23):7119–7123

    PubMed  CAS  Google Scholar 

  52. Ciampi R, Nikiforov YE (2007) RET/PTC rearrangements and BRAF mutations in thyroid tumorigenesis. Endocrinology 148(3):936–941

    PubMed  CAS  Google Scholar 

  53. Mulligan LM, Kwok JB, Healey CS, Elsdon MJ, Eng C, Gardner E et al (1993) Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature 363(6428):458–460

    PubMed  CAS  Google Scholar 

  54. Carlson KM, Dou S, Chi D, Scavarda N, Toshima K, Jackson CE et al (1994) Single missense mutation in the tyrosine kinase catalytic domain of the RET protooncogene is associated with multiple endocrine neoplasia type 2B. Proc Natl Acad Sci USA 91(4):1579–1583

    PubMed  CAS  Google Scholar 

  55. Elisei R, Cosci B, Romei C, Bottici V, Renzini G, Molinaro E et al (2008) Prognostic significance of somatic RET oncogene mutations in sporadic medullary thyroid cancer: a 10-year follow-up study. J Clin Endocrinol Metab 93(3):682–687

    PubMed  CAS  Google Scholar 

  56. Donis-Keller H, Dou S, Chi D, Carlson KM, Toshima K, Lairmore TC et al (1993) Mutations in the RET proto-oncogene are associated with MEN 2A and FMTC. Hum Mol Genet 2(7):851–856

    PubMed  CAS  Google Scholar 

  57. Eng C, Smith DP, Mulligan LM, Nagai MA, Healey CS, Ponder MA et al (1994) Point mutation within the tyrosine kinase domain of the RET proto-oncogene in multiple endocrine neoplasia type 2B and related sporadic tumours. Hum Mol Genet 3(2):237–241

    PubMed  CAS  Google Scholar 

  58. Plaza-Menacho I, Burzynski GM, de Groot JW, Eggen BJ, Hofstra RM (2006) Current concepts in RET-related genetics, signaling and therapeutics. Trends Genet 22(11):627–636

    PubMed  CAS  Google Scholar 

  59. de Groot JW, Plaza Menacho I, Schepers H, Drenth-Diephuis LJ, Osinga J, Plukker JT et al (2006) Cellular effects of imatinib on medullary thyroid cancer cells harboring multiple endocrine neoplasia Type 2A and 2B associated RET mutations. Surgery 139(6):806–814

    PubMed  Google Scholar 

  60. Marsh DJ, Andrew SD, Eng C, Learoyd DL, Capes AG, Pojer R et al (1996) Germline and somatic mutations in an oncogene: RET mutations in inherited medullary thyroid carcinoma. Cancer Res 56(6):1241–1243

    PubMed  CAS  Google Scholar 

  61. de Groot JW, Links TP, Plukker JT, Lips CJ, Hofstra RM (2006) RET as a diagnostic and therapeutic target in sporadic and hereditary endocrine tumors. Endocr Rev 27(5):535–560

    PubMed  Google Scholar 

  62. Marsh DJ, Learoyd DL, Andrew SD, Krishnan L, Pojer R, Richardson AL et al (1996) Somatic mutations in the RET proto-oncogene in sporadic medullary thyroid carcinoma. Clin Endocrinol (Oxf) 44(3):249–257

    CAS  Google Scholar 

  63. Zedenius J, Wallin G, Hamberger B, Nordenskjold M, Weber G, Larsson C (1994) Somatic and MEN 2A de novo mutations identified in the RET proto-oncogene by screening of sporadic MTC:s. Hum Mol Genet 3(8):1259–1262

    PubMed  CAS  Google Scholar 

  64. Komminoth P, Kunz EK, Matias-Guiu X, Hiort O, Christiansen G, Colomer A et al (1995) Analysis of RET protooncogene point mutations distinguishes heritable from nonheritable medullary thyroid carcinomas. Cancer 76(3):479–489

    PubMed  CAS  Google Scholar 

  65. Margraf RL, Mao R, Wittwer CT (2008) Rapid diagnosis of MEN2B using unlabeled probe melting analysis and the LightCycler 480 instrument. J Mol Diagn 10(2):123–128

    PubMed  CAS  Google Scholar 

  66. Le HN, Norton JA (2000) Perspective on RET proto-oncogene and thyroid cancer. Cancer J 6(2):50–57

    PubMed  CAS  Google Scholar 

  67. Grieco M, Santoro M, Berlingieri MT, Melillo RM, Donghi R, Bongarzone I et al (1990) PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell 60(4):557–563

    PubMed  CAS  Google Scholar 

  68. Santoro M, Dathan NA, Berlingieri MT, Bongarzone I, Paulin C, Grieco M et al (1994) Molecular characterization of RET/PTC3; a novel rearranged version of the RETproto-oncogene in a human thyroid papillary carcinoma. Oncogene 9(2):509–516

    PubMed  CAS  Google Scholar 

  69. Bongarzone I, Butti MG, Coronelli S, Borrello MG, Santoro M, Mondellini P et al (1994) Frequent activation of ret protooncogene by fusion with a new activating gene in papillary thyroid carcinomas. Cancer Res 54(11):2979–2985

    PubMed  CAS  Google Scholar 

  70. Nikiforov YE, Rowland JM, Bove KE, Monforte-Munoz H, Fagin JA (1997) Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Res 57(9):1690–1694

    PubMed  CAS  Google Scholar 

  71. Kjellman P, Learoyd DL, Messina M, Weber G, Hoog A, Wallin G et al (2001) Expression of the RET proto-oncogene in papillary thyroid carcinoma and its correlation with clinical outcome. Br J Surg 88(4):557–563

    PubMed  CAS  Google Scholar 

  72. Sadetzki S, Calderon-Margalit R, Modan B, Srivastava S, Tuttle RM (2004) Ret/PTC activation in benign and malignant thyroid tumors arising in a population exposed to low-dose external-beam irradiation in childhood. J Clin Endocrinol Metab 89(5):2281–2289

    PubMed  CAS  Google Scholar 

  73. Rabes HM, Demidchik EP, Sidorow JD, Lengfelder E, Beimfohr C, Hoelzel D et al (2000) Pattern of radiation-induced RET and NTRK1 rearrangements in 191 post-chernobyl papillary thyroid carcinomas: biological, phenotypic, and clinical implications. Clin Cancer Res 6(3):1093–1103

    PubMed  CAS  Google Scholar 

  74. Tallini G, Santoro M, Helie M, Carlomagno F, Salvatore G, Chiappetta G et al (1998) RET/PTC oncogene activation defines a subset of papillary thyroid carcinomas lacking evidence of progression to poorly differentiated or undifferentiated tumor phenotypes. Clin Cancer Res 4(2):287–294

    PubMed  CAS  Google Scholar 

  75. Nikiforov YE (2002) RET/PTC rearrangement in thyroid tumors. Endocr Pathol 13(1):3–16

    PubMed  CAS  Google Scholar 

  76. Nikiforov YE (2008) Thyroid carcinoma: molecular pathways and therapeutic targets. Mod Pathol 21(Suppl 2):S37–S43

    PubMed  CAS  Google Scholar 

  77. Rhoden KJ, Unger K, Salvatore G, Yilmaz Y, Vovk V, Chiappetta G et al (2006) RET/papillary thyroid cancer rearrangement in nonneoplastic thyrocytes: follicular cells of Hashimoto’s thyroiditis share low-level recombination events with a subset of papillary carcinoma. J Clin Endocrinol Metab 91(6):2414–2423

    PubMed  CAS  Google Scholar 

  78. Tallini G, Ghossein RA, Emanuel J, Gill J, Kinder B, Dimich AB et al (1998) Detection of thyroglobulin, thyroid peroxidase, and RET/PTC1 mRNA transcripts in the peripheral blood of patients with thyroid disease. J Clin Oncol 16(3):1158–1166

    PubMed  CAS  Google Scholar 

  79. Adeniran AJ, Zhu Z, Gandhi M, Steward DL, Fidler JP, Giordano TJ et al (2006) Correlation between genetic alterations and microscopic features, clinical manifestations, and prognostic characteristics of thyroid papillary carcinomas. Am J Surg Pathol 30(2):216–222

    PubMed  Google Scholar 

  80. Musholt TJ, Fottner C, Weber MM, Eichhorn W, Pohlenz J, Musholt PB et al (2010) Detection of papillary thyroid carcinoma by analysis of BRAF and RET/PTC1 mutations in fine-needle aspiration biopsies of thyroid nodules. World J Surg 34(11):2595–2603

    PubMed  Google Scholar 

  81. Moses W, Weng J, Sansano I, Peng M, Khanafshar E, Ljung BM et al (2010) Molecular testing for somatic mutations improves the accuracy of thyroid fine-needle aspiration biopsy. World J Surg 34(11):2589–2594

    PubMed  Google Scholar 

  82. Kroll TG, Sarraf P, Pecciarini L, Chen CJ, Mueller E, Spiegelman BM et al (2000) PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma [corrected]. Science 289(5483):1357–1360

    PubMed  CAS  Google Scholar 

  83. Giordano TJ, Au AY, Kuick R, Thomas DG, Rhodes DR, Wilhelm KG Jr et al (2006) Delineation, functional validation, and bioinformatic evaluation of gene expression in thyroid follicular carcinomas with the PAX8-PPARG translocation. Clin Cancer Res 12(7 Pt 1):1983–1993

    PubMed  CAS  Google Scholar 

  84. Nikiforova MN, Lynch RA, Biddinger PW, Alexander EK, Dorn GW 2nd, Tallini G et al (2003) RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab 88(5):2318–2326

    PubMed  CAS  Google Scholar 

  85. French CA, Alexander EK, Cibas ES, Nose V, Laguette J, Faquin W et al (2003) Genetic and biological subgroups of low-stage follicular thyroid cancer. Am J Pathol 162(4):1053–1060

    PubMed  CAS  Google Scholar 

  86. Dwight T, Thoppe SR, Foukakis T, Lui WO, Wallin G, Hoog A et al (2003) Involvement of the PAX8/peroxisome proliferator-activated receptor gamma rearrangement in follicular thyroid tumors. J Clin Endocrinol Metab 88(9):4440–4445

    PubMed  CAS  Google Scholar 

  87. Cheung L, Messina M, Gill A, Clarkson A, Learoyd D, Delbridge L et al (2003) Detection of the PAX8-PPAR gamma fusion oncogene in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab 88(1):354–357

    PubMed  CAS  Google Scholar 

  88. Castro P, Rebocho AP, Soares RJ, Magalhaes J, Roque L, Trovisco V et al (2006) PAX8-PPARgamma rearrangement is frequently detected in the follicular variant of papillary thyroid carcinoma. J Clin Endocrinol Metab 91(1):213–220

    PubMed  CAS  Google Scholar 

  89. Rosai J (2003) Immunohistochemical markers of thyroid tumors: significance and diagnostic applications. Tumori 89(5):517–519

    PubMed  Google Scholar 

  90. Volante M, Bozzalla-Cassione F, DePompa R, Saggiorato E, Bartolazzi A, Orlandi F et al (2004) Galectin-3 and HBME-1 expression in oncocytic cell tumors of the thyroid. Virchows Arch 445(2):183–188

    PubMed  CAS  Google Scholar 

  91. Nikiforova MN, Biddinger PW, Caudill CM, Kroll TG, Nikiforov YE (2002) PAX8-PPARgamma rearrangement in thyroid tumors: RT-PCR and immunohistochemical analyses. Am J Surg Pathol 26(8):1016–1023

    PubMed  Google Scholar 

  92. Lacroix L, Mian C, Barrier T, Talbot M, Caillou B, Schlumberger M et al (2004) PAX8 and peroxisome proliferator-activated receptor gamma 1 gene expression status in benign and malignant thyroid tissues. Eur J Endocrinol 151(3):367–374

    PubMed  CAS  Google Scholar 

  93. Sobrinho-Simoes M, Preto A, Rocha AS, Castro P, Maximo V, Fonseca E et al (2005) Molecular pathology of well-­differentiated thyroid carcinomas. Virchows Arch 447(5):787–793

    PubMed  CAS  Google Scholar 

  94. Hunt J (2005) Understanding the genotype of follicular thyroid tumors. Endocr Pathol 16(4):311–321

    PubMed  CAS  Google Scholar 

  95. Delvincourt C, Patey M, Flament JB, Suarez HG, Larbre H, Jardillier JC et al (1996) Ret and trk proto-oncogene activation in thyroid papillary carcinomas in French patients from the Champagne-Ardenne region. Clin Biochem 29(3):267–271

    PubMed  CAS  Google Scholar 

  96. Wajjwalku W, Nakamura S, Hasegawa Y, Miyazaki K, Satoh Y, Funahashi H et al (1992) Low frequency of rearrangements of the ret and trk proto-oncogenes in Japanese thyroid papillary carcinomas. Jpn J Cancer Res 83(7):671–675

    PubMed  CAS  Google Scholar 

  97. Weier HU, Kwan J, Lu CM, Ito Y, Wang M, Baumgartner A et al (2009) Kinase expression and chromosomal rearrangements in papillary thyroid cancer tissues: investigations at the molecular and microscopic levels. J Physiol Pharmacol 60(Suppl 4):47–55

    PubMed  Google Scholar 

  98. Hou P, Liu D, Shan Y, Hu S, Studeman K, Condouris S et al (2007) Genetic alterations and their relationship in the phosphatidylinositol 3-kinase/Akt pathway in thyroid cancer. Clin Cancer Res 13(4):1161–1170

    PubMed  CAS  Google Scholar 

  99. Wu G, Mambo E, Guo Z, Hu S, Huang X, Gollin SM et al (2005) Uncommon mutation, but common amplifications, of the PIK3CA gene in thyroid tumors. J Clin Endocrinol Metab 90(8):4688–4693

    PubMed  CAS  Google Scholar 

  100. Dahia PL (2000) PTEN, a unique tumor suppressor gene. Endocr Relat Cancer 7(2):115–129

    PubMed  CAS  Google Scholar 

  101. Chou CK, Chen RF, Chou FF, Chang HW, Chen YJ, Lee YF et al (2010) miR-146b is highly expressed in adult papillary thyroid carcinomas with high risk features including extrathyroidal invasion and the BRAF(V600E) mutation. Thyroid 20(5):489–494

    PubMed  CAS  Google Scholar 

  102. Pierotti MA, Bongarzone I, Borello MG, Greco A, Pilotti S, Sozzi G (1996) Cytogenetics and molecular genetics of carcinomas arising from thyroid epithelial follicular cells. Genes Chromosomes Cancer 16(1):1–14

    PubMed  CAS  Google Scholar 

  103. Zitzelsberger H, Thomas G, Unger K (2010) Chromosomal aberrations in thyroid follicular-cell neoplasia: in the search of novel oncogenes and tumour suppressor genes. Mol Cell Endocrinol 321(1):57–66

    PubMed  CAS  Google Scholar 

  104. Forozan F, Karhu R, Kononen J, Kallioniemi A, Kallioniemi OP (1997) Genome screening by comparative genomic hybridization. Trends Genet 13(10):405–409

    PubMed  CAS  Google Scholar 

  105. Cowell JK (2004) High throughput determination of gains and losses of genetic material using high resolution BAC arrays and comparative genomic hybridization. Comb Chem High Throughput Screen 7(6):587–596

    PubMed  CAS  Google Scholar 

  106. Giordano TJ (2008) Genome-wide studies in thyroid neoplasia. Endocrinol Metab Clin North Am 37(2):311–331, vii–viii

    PubMed  CAS  Google Scholar 

  107. Vander John B, Gaston EA, Dawber TR (1968) The significance of nontoxic thyroid nodules. Final report of a 15-year study of the incidence of thyroid malignancy. Ann Intern Med 69(3):537–540

    Google Scholar 

  108. Rojeski MT, Gharib H (1985) Nodular thyroid disease. Evaluation and management. N Engl J Med 313(7):428–436

    PubMed  CAS  Google Scholar 

  109. Mazzaferri EL (1992) Thyroid cancer in thyroid nodules: finding a needle in the haystack. Am J Med 93(4): 359–362

    PubMed  CAS  Google Scholar 

  110. Mazzaferri EL (1993) Management of a solitary thyroid nodule. N Engl J Med 328(8):553–559

    PubMed  CAS  Google Scholar 

  111. Cooper DS, Doherty GM, Haugen BR, Kloos RT, Lee SL, Mandel SJ et al (2006) Management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 16(2):109–142

    PubMed  Google Scholar 

  112. Gharib H (1994) Fine-needle aspiration biopsy of thyroid nodules: advantages, limitations, and effect. Mayo Clin Proc 69(1):44–49

    PubMed  CAS  Google Scholar 

  113. Zagorianakou P, Malamou-Mitsi V, Zagorianakou N, Stefanou D, Tsatsoulis A, Agnantis NJ (2005) The role of fine-needle aspiration biopsy in the management of patients with thyroid nodules. In Vivo 19(3):605–609

    PubMed  CAS  Google Scholar 

  114. Werga P, Wallin G, Skoog L, Hamberger B (2000) Expanding role of fine-needle aspiration cytology in thyroid diagnosis and management. World J Surg 24(8):907–912

    PubMed  CAS  Google Scholar 

  115. Amrikachi M, Ramzy I, Rubenfeld S, Wheeler TM (2001) Accuracy of fine-needle aspiration of thyroid. Arch Pathol Lab Med 125(4):484–488

    PubMed  CAS  Google Scholar 

  116. Yang J, Schnadig V, Logrono R, Wasserman PG (2007) Fine-needle aspiration of thyroid nodules: a study of 4703 patients with histologic and clinical correlations. Cancer 111(5):306–315

    PubMed  Google Scholar 

  117. The Papanicolaou Society of Cytopathology Task Force on Standards of Practice (1997) Guidelines of the Papanicolaou Society of Cytopathology for fine-needle aspiration procedure and reporting. Mod Pathol 10(7):739–747

    Google Scholar 

  118. Baloch ZW, LiVolsi VA (2004) Fine-needle aspiration of thyroid nodules: past, present, and future. Endocr Pract 10(3):234–241

    PubMed  Google Scholar 

  119. Eedes CR, Wang HH (2004) Cost-effectiveness of immediate specimen adequacy assessment of thyroid fine-needle aspirations. Am J Clin Pathol 121(1):64–69

    PubMed  Google Scholar 

  120. Kelly NP, Lim JC, DeJong S, Harmath C, Dudiak C, Wojcik EM (2006) Specimen adequacy and diagnostic specificity of ultrasound-guided fine needle aspirations of nonpalpable thyroid nodules. Diagn Cytopathol 34(3):188–190

    PubMed  Google Scholar 

  121. Redman R, Yoder BJ, Massoll NA (2006) Perceptions of diagnostic terminology and cytopathologic reporting of fine-needle aspiration biopsies of thyroid nodules: a survey of clinicians and pathologists. Thyroid 16(10):1003–1008

    PubMed  Google Scholar 

  122. Abati A (2008) The National Cancer Institute Thyroid FNA state of the science conference: “wrapped up”. Diagn Cytopathol 36(6):388–389

    PubMed  Google Scholar 

  123. Baloch ZW, Cibas ES, Clark DP, Layfield LJ, Ljung BM, Pitman MB et al (2008) The National Cancer Institute Thyroid fine needle aspiration state of the science conference: a summation. Cytojournal 5:6

    PubMed  Google Scholar 

  124. Yoder BJ, Redman R, Massoll NA (2006) Validation of a five-tier cytodiagnostic system for thyroid fine needle aspiration biopsies using cytohistologic correlation. Thyroid 16(8):781–786

    PubMed  Google Scholar 

  125. The Papanicolaou Society of Cytopathology Task Force on Standards of Practice (1997) Guidelines of the Papanicolaou Society of Cytopathology for fine-needle aspiration procedure and reporting. Diagn Cytopathol 17(4):239–247

    Google Scholar 

  126. Theoharis CG, Schofield KM, Hammers L, Udelsman R, Chhieng DC (2009) The Bethesda thyroid fine-needle aspiration classification system: year 1 at an academic institution. Thyroid 19(11):1215–1223

    PubMed  Google Scholar 

  127. Cibas ES, Ali SZ (2009) The Bethesda system for reporting thyroid cytopathology. Thyroid 19(11):1159–1165

    PubMed  Google Scholar 

  128. Jo VY, Stelow EB, Dustin SM, Hanley KZ (2010) Malignancy risk for fine-needle aspiration of thyroid lesions according to the Bethesda System for Reporting Thyroid Cytopathology. Am J Clin Pathol 134(3):450–456

    PubMed  Google Scholar 

  129. Ohori NP, Nikiforova MN, Schoedel KE, LeBeau SO, Hodak SP, Seethala RR et al (2010) Contribution of molecular testing to thyroid fine-needle aspiration cytology of “follicular lesion of undetermined significance/atypia of undetermined significance”. Cancer Cytopathol 118(1):17–23

    PubMed  CAS  Google Scholar 

  130. Mekel M, Nucera C, Hodin RA, Parangi S (2010) Surgical implications of B-RafV600E mutation in fine-needle aspiration of thyroid nodules. Am J Surg 200(1):136–143

    PubMed  CAS  Google Scholar 

  131. Rago T, Fiore E, Scutari M, Santini F, Di Coscio G, Romani R et al (2010) Male sex, single nodularity, and young age are associated with the risk of finding a papillary thyroid cancer on fine-needle aspiration cytology in a large series of patients with nodular thyroid disease. Eur J Endocrinol 162(4):763–770

    PubMed  CAS  Google Scholar 

  132. Porterfield JR Jr, Grant CS, Dean DS, Thompson GB, Farley DR, Richards ML et al (2008) Reliability of benign fine needle aspiration cytology of large thyroid nodules. Surgery 144(6):963–968; discussion 8–9

    PubMed  Google Scholar 

  133. McCoy KL, Jabbour N, Ogilvie JB, Ohori NP, Carty SE, Yim JH (2007) The incidence of cancer and rate of false-negative cytology in thyroid nodules greater than or equal to 4 cm in size. Surgery 142(6):837–844; discussion 844.e1–844.e3

    PubMed  Google Scholar 

  134. Schmitt FC (2010) Thyroid cytology: is FNA still the best diagnostic approach? Int J Surg Pathol 18(3 Suppl):201S–204S

    PubMed  Google Scholar 

  135. Yip L, Nikiforova MN, Carty SE, Yim JH, Stang MT, Tublin MJ et al (2009) Optimizing surgical treatment of papillary thyroid carcinoma associated with BRAF mutation. Surgery 146(6):1215–1223

    PubMed  Google Scholar 

  136. Tufano RP, Kandil E (2010) Considerations for personalized surgery in patients with papillary thyroid cancer. Thyroid 20(7):771–776

    PubMed  Google Scholar 

  137. Delbridge L, Robinson B (1998) Genetic and biochemical screening for endocrine disease: III. Costs and logistics. World J Surg 22(12):1212–1217

    PubMed  CAS  Google Scholar 

  138. Chung KW, Yang SK, Lee GK, Kim EY, Kwon S, Lee SH et al (2006) Detection of BRAFV600E mutation on fine needle aspiration specimens of thyroid nodule refines cyto-pathology diagnosis, especially in BRAF600E mutation-prevalent area. Clin Endocrinol (Oxf) 65(5):660–666

    CAS  Google Scholar 

  139. Nam SY, Han BK, Ko EY, Kang SS, Hahn SY, Hwang JY et al (2010) BRAF V600E mutation analysis of thyroid nodules needle aspirates in relation to their ultrasongraphic classification: a potential guide for selection of samples for molecular analysis. Thyroid 20(3):273–279

    PubMed  CAS  Google Scholar 

  140. Antonelli A, Ferri C, Ferrari SM, Sebastiani M, Colaci M, Ruffilli I et al (2010) New targeted molecular therapies for dedifferentiated thyroid cancer. J Oncol 2010:921682

    PubMed  Google Scholar 

  141. Hong D, Ye L, Gagel R, Chintala L, El Naggar AK, Wright J et al (2008) Medullary thyroid cancer: targeting the RET kinase pathway with sorafenib/tipifarnib. Mol Cancer Ther 7(5):1001–1006

    PubMed  CAS  Google Scholar 

  142. Sherman SI (2010) Targeted therapy of thyroid cancer. Biochem Pharmacol 80(5):592–601

    PubMed  CAS  Google Scholar 

  143. Couto JP, Prazeres H, Castro P, Lima J, Maximo V, Soares P et al (2009) How molecular pathology is changing and will change the therapeutics of patients with follicular cell-derived thyroid cancer. J Clin Pathol 62(5):414–421

    PubMed  CAS  Google Scholar 

  144. Spitzweg C (2009) Gene therapy in thyroid cancer. Horm Metab Res 41(6):500–509

    PubMed  CAS  Google Scholar 

  145. Lanzi C, Cassinelli G, Nicolini V, Zunino F (2009) Targeting RET for thyroid cancer therapy. Biochem Pharmacol 77(3):297–309

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantine Theoharis M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Theoharis, C., Hui, P. (2012). Molecular Diagnostics in the Evaluation of Thyroid Samples. In: Oertli, D., Udelsman, R. (eds) Surgery of the Thyroid and Parathyroid Glands. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23459-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23459-0_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23458-3

  • Online ISBN: 978-3-642-23459-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics