Skip to main content

The Intersection of Genetics and Epigenetics: Reactivation of Mammalian LINE-1 Retrotransposons by Environmental Injury

  • Chapter
  • First Online:

Part of the book series: Epigenetics and Human Health ((EHH))

Abstract

Transposable elements such as LINE-1 (long interspersed nuclear element-1 or L1) are mobile genetic moieties within the genome. L1 retrotransposons comprise 21 % of the human genome by mass, and up to 100 are believed to remain retrotransposition competent within the human genome. During embryonic development, the genome undergoes reprogramming events defined by specific patterns of DNA methylation established de novo after implantation and preferentially targeted to repetitive sequences. Recent studies in the Ramos laboratory have shown that the ability of polycyclic aromatic hydrocarbon carcinogens, such as benzo(a)pyrene, to reactivate L1 transcription and retrotransposition in mammalian cells involves dysregulation of epigenetic programming mediated in part via mechanisms involving the aryl hydrocarbon receptor, a ligand-activated transcription factor and regulator of several other biological processes. The most detrimental effect of L1 on the genome is believed to be insertion into functional sequences that severely compromise gene function. Other studies have shown that L1 reactivation mediates changes in genetic programming of differentiation networks. Because L1 insertions can have a profound impact on primary genetic structure as well as epigenetic status of the host, they represent ideal molecular targets for development of novel epigenetic therapies targeting medical conditions that involve derangements of L1 activity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

3′ UTR:

3′ Untranslated region

5′ UTR:

5′ Untranslated region

α NP or ANF:

α-Naphthoflavone

Ac:

Activator

AHR:

Aryl hydrocarbon receptor

AIDS:

Acquired immune deficiency syndrome

AML:

Acute myeloid leukemia

AP-1:

Activator protein-1

APL:

Acute promyelocytic leukemia

AR:

Androgen receptor

ARE/EpRE:

Antioxidant/electrophile response element

ARNT:

Aryl hydrocarbon receptor nuclear translocator protein

ATM:

Ataxia telangiectasia mutated

AZT:

Azidothymidine

BaP:

Benzo(a)pyrene

bHLH:

Basic helix-loop-helix

c-myc:

Myelocytomatosis viral oncogene homolog (avian)

C/EBP:

CCAAT/enhancer-binding protein

CpG:

5′ Cytosine-phospho-guanine

CREB:

Cyclic AMP-responsive element binding protein 1

Ds:

Dissociator

DNMT:

DNA methyltransferase

ERα:

Estrogen receptor α

ETO:

Eight-twenty-one

GFP:

Green fluorescent protein

H2BK:

Histone H2B lysine residue

H3K:

Histone H3 lysine residue

HAT:

Histone acetylase

HATi:

Histone acetylase inhibitor

HCG or Beta-HCG:

Human chorionic gonadotropin

HDAC:

Histone deacetylase

HDACi:

Histone deacetylase inhibitor

HIV:

Human immunodeficiency virus

HMEC:

Human mammary epithelial cell

HMT:

Histone methyltransferases

HP-1:

Heterochromatin protein-1

Hsp90:

90 kDa heat shock protein

IAP:

Intracisternal A-particle

L1Md :

L1 in Mus domesticus

L1Rn:

L1 in Rattus norvegicus

LINE-1 or L1:

Long interspersed nuclear element-1

LTR:

Long terminal repeat

MBD:

Methyl binding protein

MGST 1:

Microsomal glutathione S-transferase 1

mVSMC:

Murine vascular smooth muscle cells

NAC:

N-Acetyl-L-cysteine

N-CoR:

Nuclear receptor co-repressor 1

nnRTI:

Non-nucleoside reverse transcriptase inhibitor

Nrf-2:

Nuclear factor erythroid 2-related factor 2

nRTI:

Nucleoside reverse transcriptase inhibitor

ORF:

Open reading frame

PAH:

Polycyclic aromatic hydrocarbon

PER:

Period circadian protein

PCAF:

p300/CBP-associated factor

PLZF:

Promyelocytic leukemia zinc finger protein

PML:

Promyelocytic leukemia

RAR:

Retinoic acid receptor alpha

RB:

Retinoblastoma

RP2:

Retinitis pigmentosa

RT:

Reverse transcriptase

RUNX:

Runt-domain transcription factor

SGPL1:

Sphingosine phosphate lyase 1

SIM:

Single-minded protein

SINE:

Short interspersed nuclear elements

siRNA:

Small interfering RNA

SP-1:

Specificity protein 1

SynBP:

Syndecan binding protein

TCDD:

2,3,7,8 Tetrachlorodibenzo-p-dioxin

TERT:

Telomerase reverse transcriptase

WT1:

Wilms’ tumor suppressor

YY1:

Yin yang 1

References

  • Adhikary G, Crish JF, Bone F, Gopalakrishnan R, Lass J, Eckert RL (2005) An involucrin promoter AP1 transcription factor binding site is required for expression of involucrin in the corneal epithelium in vivo. Invest Ophthalmol Vis Sci 46:1219–1227

    PubMed  Google Scholar 

  • Amann JM, Nip J, Strom DK, Lutterbach B, Harada H, Lenny N, Downing JR, Meyers S, Hiebert SW (2001) ETO, a target of t(8;21) in acute leukemia, makes distinct contacts with multiple histone deacetylases and binds mSin3A through its oligomerization domain. Mol Cell Biol 21:6470–6483

    PubMed  CAS  Google Scholar 

  • Andersson P, McGuire J, Rubio C, Gradin K, Whitelaw ML, Pettersson S, Hanberg A, Poellinger L (2002) A constitutively active dioxin/aryl hydrocarbon receptor induces stomach tumors. Proc Natl Acad Sci U S A 99:9990–9995

    PubMed  CAS  Google Scholar 

  • Athanikar JN, Badge RM, Moran JV (2004) A YY1-binding site is required for accurate human LINE-1 transcription initiation. Nucleic Acids Res 32:3846–3855

    PubMed  CAS  Google Scholar 

  • Babushok DV, Kazazian HH Jr (2007) Progress in understanding the biology of the human mutagen LINE-1. Hum Mutat 28:527–539

    PubMed  CAS  Google Scholar 

  • Balasubramanyam K, Altaf M, Varier RA, Swaminathan V, Ravindran A, Sadhale PP, Kundu TK (2004) Polyisoprenylated benzophenone, garcinol, a natural histone acetyltransferase inhibitor, represses chromatin transcription and alters global gene expression. J Biol Chem 279:33716–33726

    PubMed  CAS  Google Scholar 

  • Banerjee G, Gupta N, Tiwari J, Raman G (2005) Ultraviolet-induced transformation of keratinocytes: possible involvement of long interspersed element-1 reverse transcriptase. Photodermatol Photoimmunol Photomed 21:32–39

    PubMed  CAS  Google Scholar 

  • Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    PubMed  CAS  Google Scholar 

  • Baylin SB, Esteller M, Rountree MR, Bachman KE, Schuebel K, Herman JG (2001) Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet 10:687–692

    PubMed  CAS  Google Scholar 

  • Beck CR, Collier P, Macfarlane C, Malig M, Kidd JM, Eichler EE, Badge RM, Moran JV (2010) LINE-1 retrotransposition activity in human genomes. Cell 141:1159–1170

    PubMed  CAS  Google Scholar 

  • Becker KG, Swergold GD, Ozato K, Thayer RE (1993) Binding of the ubiquitous nuclear transcription factor YY1 to a cis regulatory sequence in the human LINE-1 transposable element. Hum Mol Genet 2:1697–1702

    PubMed  CAS  Google Scholar 

  • Beischlag TV, Luis Morales J, Hollingshead BD, Perdew GH (2008) The aryl hydrocarbon receptor complex and the control of gene expression. Crit Rev Eukaryot Gene Expr 18:207–250

    PubMed  CAS  Google Scholar 

  • Belancio VP, Hedges DJ, Deininger P (2006) LINE-1 RNA splicing and influences on mammalian gene expression. Nucleic Acids Res 34:1512–1521

    PubMed  CAS  Google Scholar 

  • Belancio VP, Hedges DJ, Deininger P (2008) Mammalian non-LTR retrotransposons: for better or worse, in sickness and in health. Genome Res 18:343–358

    PubMed  CAS  Google Scholar 

  • Ben-Porath I, Cedar H (2001) Epigenetic crosstalk. Mol Cell 8:933–935

    PubMed  CAS  Google Scholar 

  • Bourc’his D, Bestor TH (2004) Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431:96–99

    PubMed  Google Scholar 

  • Bourc’his D, Xu GL, Lin CS, Bollman B, Bestor TH (2001) Dnmt3L and the establishment of maternal genomic imprints. Science 294:2536–2539

    PubMed  Google Scholar 

  • Bratthauer GL, Fanning TG (1992) Active LINE-1 retrotransposons in human testicular cancer. Oncogene 7:507–510

    PubMed  CAS  Google Scholar 

  • Brauze D, Widerak M, Cwykiel J, Szyfter K, Baer-Dubowska W (2006) The effect of aryl hydrocarbon receptor ligands on the expression of AhR, AhRR, ARNT, Hif1alpha, CYP1A1 and NQO1 genes in rat liver. Toxicol Lett 167:212–220

    PubMed  CAS  Google Scholar 

  • Brouha B, Schustak J, Badge RM, Lutz-Prigge S, Farley AH, Moran JV, Kazazian HH Jr (2003) Hot L1s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci U S A 100:5280–5285

    PubMed  CAS  Google Scholar 

  • Brown SE, Suderman MJ, Hallett M, Szyf M (2008) DNA demethylation induced by the methyl-CpG-binding domain protein MBD3. Gene 420:99–106

    PubMed  CAS  Google Scholar 

  • Byun HM, Wong HL, Birnstein EA, Wolff EM, Liang G, Yang AS (2007) Examination of IGF2 and H19 loss of imprinting in bladder cancer. Cancer Res 67:10753–10758

    PubMed  CAS  Google Scholar 

  • Casavant NC, Hardies SC, Funk FD, Comer MB, Edgell MH, Hutchison CA 3rd (1988) Extensive movement of LINES ONE sequences in beta-globin loci of Mus caroli and Mus domesticus. Mol Cell Biol 8:4669–4674

    PubMed  CAS  Google Scholar 

  • Chen YH, Ramos KS (2000) A CCAAT/enhancer-binding protein site within antioxidant/electrophile response element along with CREB-binding protein participate in the negative regulation of rat GST-Ya gene in vascular smooth muscle cells. J Biol Chem 275:27366–27376

    PubMed  CAS  Google Scholar 

  • Chen ZX, Mann JR, Hsieh CL, Riggs AD, Chedin F (2005a) Physical and functional interactions between the human DNMT3L protein and members of the de novo methyltransferase family. J Cell Biochem 95:902–917

    PubMed  CAS  Google Scholar 

  • Chen JM, Stenson PD, Cooper DN, Ferec C (2005b) A systematic analysis of LINE-1 endonuclease-dependent retrotranspositional events causing human genetic disease. Hum Genet 117:411–427

    PubMed  CAS  Google Scholar 

  • Chen HL, Li T, Qiu XW, Wu J, Ling JQ, Sun ZH, Wang W, Chen W, Hou A, Vu TH, Hoffman AR, Hu JF (2006) Correction of aberrant imprinting of IGF2 in human tumors by nuclear transfer-induced epigenetic reprogramming. EMBO J 25:5329–5338

    PubMed  CAS  Google Scholar 

  • Cheng X, Blumenthal RM (2008) Mammalian DNA methyltransferases: a structural perspective. Structure 16:341–350

    PubMed  Google Scholar 

  • Clark SJ, Melki J (2002) DNA methylation and gene silencing in cancer: which is the guilty party? Oncogene 21:5380–5387

    PubMed  CAS  Google Scholar 

  • Claus R, Lubbert M (2003) Epigenetic targets in hematopoietic malignancies. Oncogene 22:6489–6496

    PubMed  CAS  Google Scholar 

  • Cordaux R, Batzer MA (2009) The impact of retrotransposons on human genome evolution. Nat Rev Genet 10:691–703

    PubMed  CAS  Google Scholar 

  • Cost GJ, Feng Q, Jacquier A, Boeke JD (2002) Human L1 element target-primed reverse transcription in vitro. EMBO J 21:5899–5910

    PubMed  CAS  Google Scholar 

  • Damiani LA, Yingling CM, Leng S, Romo PE, Nakamura J, Belinsky SA (2008) Carcinogen-induced gene promoter hypermethylation is mediated by DNMT1 and causal for transformation of immortalized bronchial epithelial cells. Cancer Res 68:9005–9014

    PubMed  CAS  Google Scholar 

  • Dante R, Dante-Paire J, Rigal D, Roizes G (1992) Methylation patterns of long interspersed repeated DNA and alphoid repetitive DNA from human cell lines and tumors. Anticancer Res 12:559–563

    PubMed  CAS  Google Scholar 

  • Davis HJ (1968) Gas chromatographic determination of benzo(a)pyrene in cigarette smoke. Anal Chem 40:1583–1585

    PubMed  CAS  Google Scholar 

  • DeCaprio JA (2009) How the Rb tumor suppressor structure and function was revealed by the study of Adenovirus and SV40. Virology 384:274–284

    PubMed  CAS  Google Scholar 

  • Deininger PL, Batzer MA (2002) Mammalian retroelements. Genome Res 12:1455–1465

    PubMed  CAS  Google Scholar 

  • Deragon JM, Sinnett D, Labuda D (1990) Reverse transcriptase activity from human embryonal carcinoma cells NTera2D1. EMBO J 9:3363–3368

    PubMed  CAS  Google Scholar 

  • Dombroski BA, Mathias SL, Nanthakumar E, Scott AF, Kazazian HH Jr (1991) Isolation of an active human transposable element. Science 254:1805–1808

    PubMed  CAS  Google Scholar 

  • Ehrlich M (2002) DNA methylation in cancer: too much, but also too little. Oncogene 21:5400–5413

    PubMed  CAS  Google Scholar 

  • Esteller M (2000) Epigenetic lesions causing genetic lesions in human cancer: promoter hypermethylation of DNA repair genes. Eur J Cancer 36:2294–2300

    PubMed  CAS  Google Scholar 

  • Ewing AD, Kazazian HH Jr (2010) High-throughput sequencing reveals extensive variation in human-specific L1 content in individual human genomes. Genome Res 20:1262–1270

    PubMed  CAS  Google Scholar 

  • Ewing AD, Kazazian HH Jr (2011) Whole-genome resequencing allows detection of many rare LINE-1 insertion alleles in humans. Genome Res 21:985–990

    PubMed  CAS  Google Scholar 

  • Fabbro C, Braghetta P, Girotto D, Piccolo S, Volpin D, Bressan GM (1999) Cell type-specific transcription of the alpha1(VI) collagen gene. Role of the AP1 binding site and of the core promoter. J Biol Chem 274:1759–1766

    PubMed  CAS  Google Scholar 

  • Falahatpisheh MH, Ramos KS (2003) Ligand-activated Ahr signaling leads to disruption of nephrogenesis and altered Wilms’ tumor suppressor mRNA splicing. Oncogene 22:2160–2171

    PubMed  Google Scholar 

  • Fanning TG (1983) Size and structure of the highly repetitive BAM HI element in mice. Nucleic Acids Res 11:5073–5091

    PubMed  CAS  Google Scholar 

  • Farkash EA, Kao GD, Horman SR, Prak ET (2006) Gamma radiation increases endonuclease-dependent L1 retrotransposition in a cultured cell assay. Nucleic Acids Res 34:1196–1204

    PubMed  CAS  Google Scholar 

  • Farrar GJ, Kenna PF, Humphries P (2002) On the genetics of retinitis pigmentosa and on mutation-independent approaches to therapeutic intervention. EMBO J 21:857–864

    PubMed  CAS  Google Scholar 

  • Fawcett TW, Martindale JL, Guyton KZ, Hai T, Holbrook NJ (1999) Complexes containing activating transcription factor (ATF)/cAMP-responsive-element-binding protein (CREB) interact with the CCAAT/enhancer-binding protein (C/EBP)-ATF composite site to regulate Gadd153 expression during the stress response. Biochem J 339(Pt 1):135–141

    PubMed  CAS  Google Scholar 

  • Feinberg AP, Vogelstein B (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301:89–92

    PubMed  CAS  Google Scholar 

  • Feng Q, Moran JV, Kazazian HH Jr, Boeke JD (1996) Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87:905–916

    PubMed  CAS  Google Scholar 

  • Florl AR, Lower R, Schmitz-Drager BJ, Schulz WA (1999) DNA methylation and expression of LINE-1 and HERV-K provirus sequences in urothelial and renal cell carcinomas. Br J Cancer 80:1312–1321

    PubMed  CAS  Google Scholar 

  • Friso S, Choi SW (2002) Gene-nutrient interactions and DNA methylation. J Nutr 132:2382S–2387S

    PubMed  CAS  Google Scholar 

  • Fukunaga BN, Probst MR, Reisz-Porszasz S, Hankinson O (1995) Identification of functional domains of the aryl hydrocarbon receptor. J Biol Chem 270:29270–29278

    PubMed  CAS  Google Scholar 

  • Furano AV, Robb SM, Robb FT (1988) The structure of the regulatory region of the rat L1 (L1Rn, long interspersed repeated) DNA family of transposable elements. Nucleic Acids Res 16:9215–9231

    PubMed  CAS  Google Scholar 

  • Gasior SL, Wakeman TP, Xu B, Deininger PL (2006) The human LINE-1 retrotransposon creates DNA double-strand breaks. J Mol Biol 357:1383–1393

    PubMed  CAS  Google Scholar 

  • Gilbert N, Doucet AJ, Bucheton A (2004) Genomic instability associated with human LINE-1 retrotransposition. J Soc Biol 198:419–424

    PubMed  CAS  Google Scholar 

  • Goll MG, Kirpekar F, Maggert KA, Yoder JA, Hsieh CL, Zhang X, Golic KG, Jacobsen SE, Bestor TH (2006) Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 311:395–398

    PubMed  CAS  Google Scholar 

  • Goodier JL, Ostertag EM, Du K, Kazazian HH Jr (2001) A novel active L1 retrotransposon subfamily in the mouse. Genome Res 11:1677–11685

    PubMed  CAS  Google Scholar 

  • Goodrich DW, Lee WH (1993) Molecular characterization of the retinoblastoma susceptibility gene. Biochim Biophys Acta 1155:43–61

    PubMed  CAS  Google Scholar 

  • Granger MP, Wright WE, Shay JW (2002) Telomerase in cancer and aging. Crit Rev Oncol Hematol 41:29–40

    PubMed  Google Scholar 

  • Guil S, Esteller M (2009) DNA methylomes, histone codes and miRNAs: tying it all together. Int J Biochem Cell Biol 41:87–95

    PubMed  CAS  Google Scholar 

  • Han JS, Boeke JD (2004) A highly active synthetic mammalian retrotransposon. Nature 429:314–318

    PubMed  CAS  Google Scholar 

  • Han JS, Boeke JD (2005) LINE-1 retrotransposons: modulators of quantity and quality of mammalian gene expression? Bioessays 27:775–784

    PubMed  CAS  Google Scholar 

  • Han JS, Szak ST, Boeke JD (2004) Transcriptional disruption by the L1 retrotransposon and implications for mammalian transcriptomes. Nature 429:268–274

    PubMed  CAS  Google Scholar 

  • Han K, Lee J, Meyer TJ, Remedios P, Goodwin L, Batzer MA (2008) L1 recombination-associated deletions generate human genomic variation. Proc Natl Acad Sci U S A 105:19366–19371

    PubMed  CAS  Google Scholar 

  • Hann SR, Dixit M, Sears RC, Sealy L (1994) The alternatively initiated c-Myc proteins differentially regulate transcription through a noncanonical DNA-binding site. Genes Dev 8:2441–2452

    PubMed  CAS  Google Scholar 

  • Hargreaves DC, Crabtree GR (2011) ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res 21:396–420

    PubMed  CAS  Google Scholar 

  • Harony H, Bernes S, Siman-Tov R, Ankri S (2006) DNA methylation and targeting of LINE retrotransposons in Entamoeba histolytica and Entamoeba invadens. Mol Biochem Parasitol 147:55–63

    PubMed  CAS  Google Scholar 

  • Hata K, Sakaki Y (1997) Identification of critical CpG sites for repression of L1 transcription by DNA methylation. Gene 189:227–234

    PubMed  CAS  Google Scholar 

  • Hattemer-Frey HA, Travis CC (1991) Benzo-a-pyrene: environmental partitioning and human exposure. Toxicol Ind Health 7:141–157

    PubMed  CAS  Google Scholar 

  • Hedges DJ, Deininger PL (2007) Inviting instability: transposable elements, double-strand breaks, and the maintenance of genome integrity. Mutat Res 616:46–59

    PubMed  CAS  Google Scholar 

  • Holderman MT, Miller KP, Dangott LJ, Ramos KS (2002) Identification of albumin precursor protein, Phi AP3, and alpha-smooth muscle actin as novel components of redox sensing machinery in vascular smooth muscle cells. Mol Pharmacol 61:1174–1183

    PubMed  CAS  Google Scholar 

  • Huang CR, Schneider AM, Lu Y, Niranjan T, Shen P, Robinson MA, Steranka JP, Valle D, Civin CI, Wang T, Wheelan SJ, Ji H, Boeke JD, Burns KH (2010) Mobile interspersed repeats are major structural variants in the human genome. Cell 141:1171–1182

    PubMed  CAS  Google Scholar 

  • Johnson CD, Balagurunathan Y, Lu KP, Tadesse M, Falahatpisheh MH, Carroll RJ, Dougherty ER, Afshari CA, Ramos KS (2003) Genomic profiles and predictive biological networks in oxidant-induced atherogenesis. Physiol Genomics 13:263–275

    PubMed  CAS  Google Scholar 

  • Jones B, Su H, Bhat A, Lei H, Bajko J, Hevi S, Baltus GA, Kadam S, Zhai H, Valdez R, Gonzalo S, Zhang Y, Li E, Chen T (2008) The histone H3K79 methyltransferase Dot1L is essential for mammalian development and heterochromatin structure. PLoS Genet 4:e1000190

    PubMed  Google Scholar 

  • Kato TA, Nagasawa H, Weil MM, Genik PC, Little JB, Bedford JS (2006) gamma-H2AX foci after low-dose-rate irradiation reveal ATM haploinsufficiency in mice. Radiat Res 166:47–54

    PubMed  CAS  Google Scholar 

  • Kazazian HH Jr, Moran JV (1998) The impact of L1 retrotransposons on the human genome. Nat Genet 19:19–24

    PubMed  CAS  Google Scholar 

  • Kazazian HH Jr, Wong C, Youssoufian H, Scott AF, Phillips DG, Antonarakis SE (1988) Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332:164–166

    PubMed  CAS  Google Scholar 

  • Kazerouni N, Sinha R, Hsu CH, Greenberg A, Rothman N (2001) Analysis of 200 food items for benzo[a]pyrene and estimation of its intake in an epidemiologic study. Food Chem Toxicol 39:423–436

    PubMed  CAS  Google Scholar 

  • Kedar PS, Widen SG, Englander EW, Fornace AJ Jr, Wilson SH (1991) The ATF/CREB transcription factor-binding site in the polymerase beta promoter mediates the positive effect of N-methyl-N′-nitro-N-nitrosoguanidine on transcription. Proc Natl Acad Sci U S A 88:3729–3733

    PubMed  CAS  Google Scholar 

  • Kerzee JK, Ramos KS (2000) Activation of c-Ha-ras by benzo(a)pyrene in vascular smooth muscle cells involves redox stress and aryl hydrocarbon receptor. Mol Pharmacol 58:152–158

    PubMed  CAS  Google Scholar 

  • Kim HG, Lee KW, Cho YY, Kang NJ, Oh SM, Bode AM, Dong Z (2008) Mitogen- and stress-activated kinase 1-mediated histone H3 phosphorylation is crucial for cell transformation. Cancer Res 68:2538–2547

    PubMed  CAS  Google Scholar 

  • Kimberland ML, Divoky V, Prchal J, Schwahn U, Berger W, Kazazian HH Jr (1999) Full-length human L1 insertions retain the capacity for high frequency retrotransposition in cultured cells. Hum Mol Genet 8:1557–1560

    PubMed  CAS  Google Scholar 

  • Kleymenova EV, Yuan X, LaBate ME, Walker CL (1998) Identification of a tumor-specific methylation site in the Wilms tumor suppressor gene. Oncogene 16:713–720

    PubMed  CAS  Google Scholar 

  • Kondo Y, Shen L, Cheng AS, Ahmed S, Boumber Y, Charo C, Yamochi T, Urano T, Furukawa K, Kwabi-Addo B, Gold DL, Sekido Y, Huang TH, Issa JP (2008) Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nat Genet 40:741–750

    PubMed  CAS  Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33:479–532

    PubMed  CAS  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia N, Blöcker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kasprzyk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowski J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    PubMed  CAS  Google Scholar 

  • Landriscina M, Fabiano A, Altamura S, Bagala C, Piscazzi A, Cassano A, Spadafora C, Giorgino F, Barone C, Cignarelli M (2005) Reverse transcriptase inhibitors down-regulate cell proliferation in vitro and in vivo and restore thyrotropin signaling and iodine uptake in human thyroid anaplastic carcinoma. J Clin Endocrinol Metab 90:5663–5671

    PubMed  CAS  Google Scholar 

  • Lee RF, Sauerheber R, Benson AA (1972) Petroleum hydrocarbons: uptake and discharge by the marine mussel Mytilus edulis. Science 177:344–346

    PubMed  CAS  Google Scholar 

  • Lee J, Cordaux R, Han K, Wang J, Hedges DJ, Liang P, Batzer MA (2007) Different evolutionary fates of recently integrated human and chimpanzee LINE-1 retrotransposons. Gene 390:18–27

    PubMed  CAS  Google Scholar 

  • Leng S, Stidley CA, Bernauer AM, Picchi MA, Sheng X, Frasco MA, Van Den Berg D, Gilliland FD, Crowell RE, Belinsky SA (2008) Haplotypes of DNMT1 and DNMT3B are associated with mutagen sensitivity induced by benzo[a]pyrene diol epoxide among smokers. Carcinogenesis 29:1380–1385

    PubMed  CAS  Google Scholar 

  • Li W, Zhang P, Fellers JP, Friebe B, Gill BS (2004) Sequence composition, organization, and evolution of the core Triticeae genome. Plant J 40:500–511

    PubMed  CAS  Google Scholar 

  • Li PW, Li J, Timmerman SL, Krushel LA, Martin SL (2006) The dicistronic RNA from the mouse LINE-1 retrotransposon contains an internal ribosome entry site upstream of each ORF: implications for retrotransposition. Nucleic Acids Res 34:853–864

    PubMed  CAS  Google Scholar 

  • Lin CH, Hsieh SY, Sheen IS, Lee WC, Chen TC, Shyu WC, Liaw YF (2001) Genome-wide hypomethylation in hepatocellular carcinogenesis. Cancer Res 61:4238–4243

    PubMed  CAS  Google Scholar 

  • Lindroth AM, Park YJ, McLean CM, Dokshin GA, Persson JM, Herman H, Pasini D, Miro X, Donohoe ME, Lee JT, Helin K, Soloway PD (2008) Antagonism between DNA and H3K27 methylation at the imprinted Rasgrf1 locus. PLoS Genet 4:e1000145

    PubMed  Google Scholar 

  • Linhart HG, Lin H, Yamada Y, Moran E, Steine EJ, Gokhale S, Lo G, Cantu E, Ehrich M, He T, Meissner A, Jaenisch R (2007) Dnmt3b promotes tumorigenesis in vivo by gene-specific de novo methylation and transcriptional silencing. Genes Dev 21:3110–3122

    PubMed  CAS  Google Scholar 

  • Liu L, Saldanha SN, Pate MS, Andrews LG, Tollefsbol TO (2004) Epigenetic regulation of human telomerase reverse transcriptase promoter activity during cellular differentiation. Genes Chromosomes Cancer 41:26–37

    PubMed  CAS  Google Scholar 

  • Lovsin N, Gubensek F, Kordi D (2001) Evolutionary dynamics in a novel L2 clade of non-LTR retrotransposons in Deuterostomia. Mol Biol Evol 18:2213–2224

    PubMed  CAS  Google Scholar 

  • Lu KP, Ramos KS (1998) Identification of genes differentially expressed in vascular smooth muscle cells following benzo[a]pyrene challenge: implications for chemical atherogenesis. Biochem Biophys Res Commun 253:828–833

    PubMed  CAS  Google Scholar 

  • Lu KP, Ramos KS (2003) Redox regulation of a novel L1Md-A2 retrotransposon in vascular smooth muscle cells. J Biol Chem 278:28201–28209

    PubMed  CAS  Google Scholar 

  • Lu KP, Hallberg LM, Tomlinson J, Ramos KS (2000) Benzo(a)pyrene activates L1Md retrotransposon and inhibits DNA repair in vascular smooth muscle cells. Mutat Res 454:35–44

    PubMed  CAS  Google Scholar 

  • Lu X, Simon MD, Chodaparambil JV, Hansen JC, Shokat KM, Luger K (2008) The effect of H3K79 dimethylation and H4K20 trimethylation on nucleosome and chromatin structure. Nat Struct Mol Biol 15:1122–1124

    PubMed  CAS  Google Scholar 

  • Lubbert M (2000) DNA methylation inhibitors in the treatment of leukemias, myelodysplastic syndromes and hemoglobinopathies: clinical results and possible mechanisms of action. Curr Top Microbiol Immunol 249:135–164

    PubMed  CAS  Google Scholar 

  • Machala M, Vondracek J, Blaha L, Ciganek M, Neca JV (2001) Aryl hydrocarbon receptor-mediated activity of mutagenic polycyclic aromatic hydrocarbons determined using in vitro reporter gene assay. Mutat Res 497:49–62

    PubMed  CAS  Google Scholar 

  • Macpherson D (2008) Insights from mouse models into human retinoblastoma. Cell Div 3:9

    PubMed  Google Scholar 

  • Maier A, Schumann BL, Chang X, Talaska G, Puga A (2002) Arsenic co-exposure potentiates benzo[a]pyrene genotoxicity. Mutat Res 517:101–111

    PubMed  CAS  Google Scholar 

  • Majumder S, Ghoshal K, Datta J, Smith DS, Bai S, Jacob ST (2006) Role of DNA methyltransferases in regulation of human ribosomal RNA gene transcription. J Biol Chem 281:22062–22072

    PubMed  CAS  Google Scholar 

  • Mangiacasale R, Pittoggi C, Sciamanna I, Careddu A, Mattei E, Lorenzini R, Travaglini L, Landriscina M, Barone C, Nervi C, Lavia P, Spadafora C (2003) Exposure of normal and transformed cells to nevirapine, a reverse transcriptase inhibitor, reduces cell growth and promotes differentiation. Oncogene 22:2750–2761

    PubMed  CAS  Google Scholar 

  • Mastronardi FG, Wood DD, Mei J, Raijmakers R, Tseveleki V, Dosch HM, Probert L, Casaccia-Bonnefil P, Moscarello MA (2006) Increased citrullination of histone H3 in multiple sclerosis brain and animal models of demyelination: a role for tumor necrosis factor-induced peptidylarginine deiminase 4 translocation. J Neurosci 26:11387–11396

    PubMed  CAS  Google Scholar 

  • McClintock B (1950) The origin and behavior of mutable loci in maize. Proc Natl Acad Sci U S A 36:344–355

    PubMed  CAS  Google Scholar 

  • Medstrand P, Blomberg J (1993) Characterization of novel reverse transcriptase encoding human endogenous retroviral sequences similar to type A and type B retroviruses: differential transcription in normal human tissues. J Virol 67:6778–6787

    PubMed  CAS  Google Scholar 

  • Meyerson M (2000) Role of telomerase in normal and cancer cells. J Clin Oncol 18:2626–2634

    PubMed  CAS  Google Scholar 

  • Miller KP, Ramos KS (2001) Impact of cellular metabolism on the biological effects of benzo[a]pyrene and related hydrocarbons. Drug Metab Rev 33:1–35

    PubMed  CAS  Google Scholar 

  • Miller KP, Ramos KS (2005) DNA sequence determinants of nuclear protein binding to the c-Ha-ras antioxidant/electrophile response element in vascular smooth muscle cells: identification of Nrf2 and heat shock protein 90 beta as heterocomplex components. Cell Stress Chaperones 10:114–125

    PubMed  CAS  Google Scholar 

  • Miller KP, Chen YH, Hastings VL, Bral CM, Ramos KS (2000) Profiles of antioxidant/electrophile response element (ARE/EpRE) nuclear protein binding and c-Ha-ras transactivation in vascular smooth muscle cells treated with oxidative metabolites of benzo[a]pyrene. Biochem Pharmacol 60:1285–1296

    PubMed  CAS  Google Scholar 

  • Mills RE, Bennett EA, Iskow RC, Luttig CT, Tsui C, Pittard WS, Devine SE (2006) Recently mobilized transposons in the human and chimpanzee genomes. Am J Hum Genet 78:671–679

    PubMed  CAS  Google Scholar 

  • Minakami R, Kurose K, Etoh K, Furuhata Y, Hattori M, Sakaki Y (1992) Identification of an internal cis-element essential for the human L1 transcription and a nuclear factor(s) binding to the element. Nucleic Acids Res 20:3139–3145

    PubMed  CAS  Google Scholar 

  • Mirmohammadsadegh A, Marini A, Nambiar S, Hassan M, Tannapfel A, Ruzicka T, Hengge UR (2006) Epigenetic silencing of the PTEN gene in melanoma. Cancer Res 66:6546–6552

    PubMed  CAS  Google Scholar 

  • Moennikes O, Loeppen S, Buchmann A, Andersson P, Ittrich C, Poellinger L, Schwarz M (2004) A constitutively active dioxin/aryl hydrocarbon receptor promotes hepatocarcinogenesis in mice. Cancer Res 64:4707–4710

    PubMed  CAS  Google Scholar 

  • Moll AC, Imhof SM, Schouten-Van Meeteren AY, Kuik DJ, Hofman P, Boers M (2001) Second primary tumors in hereditary retinoblastoma: a register-based study, 1945–1997: is there an age effect on radiation-related risk? Ophthalmology 108:1109–1114

    PubMed  CAS  Google Scholar 

  • Montoya-Durango DE, Liu Y, Teneng I, Kalbfleisch T, Lacy ME, Steffen MC, Ramos KS (2009) Epigenetic control of mammalian LINE-1 retrotransposon by retinoblastoma proteins. Mutat Res 665:20–28

    PubMed  CAS  Google Scholar 

  • Moran JV, Holmes SE, Naas TP, DeBerardinis RJ, Boeke JD, Kazazian HH Jr (1996) High frequency retrotransposition in cultured mammalian cells. Cell 87:917–927

    PubMed  CAS  Google Scholar 

  • Morrish TA, Gilbert N, Myers JS, Vincent BJ, Stamato TD, Taccioli GE, Batzer MA, Moran JV (2002) DNA repair mediated by endonuclease-independent LINE-1 retrotransposition. Nat Genet 31:159–165

    PubMed  CAS  Google Scholar 

  • Mulhardt C, Fischer M, Gass P, Simon-Chazottes D, Guenet JL, Kuhse J, Betz H, Becker CM (1994) The spastic mouse: aberrant splicing of glycine receptor beta subunit mRNA caused by intronic insertion of L1 element. Neuron 13:1003–1015

    PubMed  CAS  Google Scholar 

  • Muotri AR, Marchetto MC, Coufal NG, Oefner R, Yeo G, Nakashima K, Gage FH (2010) L1 retrotransposition in neurons is modulated by MeCP2. Nature 468:443–446

    PubMed  CAS  Google Scholar 

  • Musova Z, Hedvicakova P, Mohrmann M, Tesarova M, Krepelova A, Zeman J, Sedlacek Z (2006) A novel insertion of a rearranged L1 element in exon 44 of the dystrophin gene: further evidence for possible bias in retroposon integration. Biochem Biophys Res Commun 347:145–149

    PubMed  CAS  Google Scholar 

  • Myers JS, Vincent BJ, Udall H, Watkins WS, Morrish TA, Kilroy GE, Swergold GD, Henke J, Henke L, Moran JV, Jorde LB, Batzer MA (2002) A comprehensive analysis of recently integrated human Ta L1 elements. Am J Hum Genet 71:312–326

    PubMed  CAS  Google Scholar 

  • Narita N, Nishio H, Kitoh Y, Ishikawa Y, Minami R, Nakamura H, Matsuo M (1993) Insertion of a 5′ truncated L1 element into the 3′ end of exon 44 of the dystrophin gene resulted in skipping of the exon during splicing in a case of Duchenne muscular dystrophy. J Clin Invest 91:1862–1867

    PubMed  CAS  Google Scholar 

  • Narita M, Nunez S, Heard E, Lin AW, Hearn SA, Spector DL, Hannon GJ, Lowe SW (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113:703–716

    PubMed  CAS  Google Scholar 

  • Nightingale KP, Gendreizig S, White DA, Bradbury C, Hollfelder F, Turner BM (2007) Cross-talk between histone modifications in response to histone deacetylase inhibitors: MLL4 links histone H3 acetylation and histone H3K4 methylation. J Biol Chem 282:4408–4416

    PubMed  CAS  Google Scholar 

  • Ohshima K, Hattori M, Yada T, Gojobori T, Sakaki Y, Okada N (2003) Whole-genome screening indicates a possible burst of formation of processed pseudogenes and Alu repeats by particular L1 subfamilies in ancestral primates. Genome Biol 4:R74

    PubMed  Google Scholar 

  • Ohtake F, Fujii-Kuriyama Y, Kato S (2009) AhR acts as an E3 ubiquitin ligase to modulate steroid receptor functions. Biochem Pharmacol 77:474–484

    PubMed  CAS  Google Scholar 

  • Okano M, Xie S, Li E (1998) Dnmt2 is not required for de novo and maintenance methylation of viral DNA in embryonic stem cells. Nucleic Acids Res 26:2536–2540

    PubMed  CAS  Google Scholar 

  • Oricchio E, Sciamanna I, Beraldi R, Tolstonog GV, Schumann GG, Spadafora C (2007) Distinct roles for LINE-1 and HERV-K retroelements in cell proliferation, differentiation and tumor progression. Oncogene 26:4226–4233

    PubMed  CAS  Google Scholar 

  • Ostertag EM, Kazazian HH Jr (2001) Twin priming: a proposed mechanism for the creation of inversions in L1 retrotransposition. Genome Res 11:2059–2065

    PubMed  CAS  Google Scholar 

  • Packer AI, Manova K, Bachvarova RF (1993) A discrete LINE-1 transcript in mouse blastocysts. Dev Biol 157:281–283

    PubMed  CAS  Google Scholar 

  • Pan G, Tian S, Nie J, Yang C, Ruotti V, Wei H, Jonsdottir GA, Stewart R, Thomson JA (2007) Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. Cell Stem Cell 1:299–312

    PubMed  CAS  Google Scholar 

  • Perepelitsa-Belancio V, Deininger P (2003) RNA truncation by premature polyadenylation attenuates human mobile element activity. Nat Genet 35:363–366

    PubMed  CAS  Google Scholar 

  • Pittoggi C, Sciamanna I, Mattei E, Beraldi R, Lobascio AM, Mai A, Quaglia MG, Lorenzini R, Spadafora C (2003) Role of endogenous reverse transcriptase in murine early embryo development. Mol Reprod Dev 66:225–236

    PubMed  CAS  Google Scholar 

  • Pollenz RS (2002) The mechanism of AH receptor protein down-regulation (degradation) and its impact on AH receptor-mediated gene regulation. Chem Biol Interact 141:41–61

    PubMed  CAS  Google Scholar 

  • Pollenz RS, Buggy C (2006) Ligand-dependent and -independent degradation of the human aryl hydrocarbon receptor (hAHR) in cell culture models. Chem Biol Interact 164:49–59

    PubMed  CAS  Google Scholar 

  • Poznanski AA, Calarco PG (1991) The expression of intracisternal A particle genes in the preimplantation mouse embryo. Dev Biol 143:271–281

    PubMed  CAS  Google Scholar 

  • Proffitt J, Crabtree G, Grove M, Daubersies P, Bailleul B, Wright E, Plumb M (1995) An ATF/CREB-binding site is essential for cell-specific and inducible transcription of the murine MIP-1 beta cytokine gene. Gene 152:173–179

    PubMed  CAS  Google Scholar 

  • Ramadoss P, Perdew GH (2005) The transactivation domain of the Ah receptor is a key determinant of cellular localization and ligand-independent nucleocytoplasmic shuttling properties. Biochemistry 44:11148–11159

    PubMed  CAS  Google Scholar 

  • Ramos KS, Falahatpisheh HM, Nanez A, He Q (2006) Modulation of biological regulatory networks during nephrogenesis. Drug Metab Rev 8(4):677–683

    PubMed  CAS  Google Scholar 

  • Ramos KS (2006) Transcriptional profiling and functional genomics reveal a role for AHR transcription factor in nephrogenesis. Ann N Y Acad Sci 1076:728–735

    PubMed  CAS  Google Scholar 

  • Ramos KS, Nanez A (2009) Genetic regulatory networks of nephrogenesis: deregulation of WT1 splicing by benzo(a)pyrene. Birth Defects Res C Embryo Today 87:192–197

    PubMed  CAS  Google Scholar 

  • Ramos KS, He Q, Kalbfleisch T, Montoya-Durango DE, Teneng I, Stribinskis V, Brun M (2007) Computational and biological inference of gene regulatory networks of the LINE-1 retrotransposon. Genomics 90:176–185

    PubMed  CAS  Google Scholar 

  • Ramos KS, Montoya-Durango DE, Teneng I, Nanez A, Stribinskis V (2011) Epigenetic control of embryonic renal cell differentiation by L1 retrotransposon. Birth Defects Res A Clin Mol Teratol 91:693–702

    PubMed  CAS  Google Scholar 

  • Realini CA, Althaus FR (1992) Histone shuttling by poly(ADP-ribosylation). J Biol Chem 267:18858–18865

    PubMed  CAS  Google Scholar 

  • Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293:1089–1093

    PubMed  CAS  Google Scholar 

  • Reisz-Porszasz S, Probst MR, Fukunaga BN, Hankinson O (1994) Identification of functional domains of the aryl hydrocarbon receptor nuclear translocator protein (ARNT). Mol Cell Biol 14:6075–6086

    PubMed  CAS  Google Scholar 

  • Reznikoff WS (2003) Tn5 as a model for understanding DNA transposition. Mol Microbiol 47:1199–1206

    PubMed  CAS  Google Scholar 

  • Riclet R, Chendeb M, Vonesch JL, Koczan D, Thiesen HJ, Losson R, Cammas F (2009) Disruption of the interaction between transcriptional intermediary factor 1{beta} and heterochromatin protein 1 leads to a switch from DNA hyper- to hypomethylation and H3K9 to H3K27 trimethylation on the MEST promoter correlating with gene reactivation. Mol Biol Cell 20:296–305

    PubMed  CAS  Google Scholar 

  • Robertson AG, Bilenky M, Tam A, Zhao Y, Zeng T, Thiessen N, Cezard T, Fejes AP, Wederell ED, Cullum R, Euskirchen G, Krzywinski M, Birol I, Snyder M, Hoodless PA, Hirst M, Marra MA, Jones SJ (2008) Genome-wide relationship between histone H3 lysine 4 mono- and tri-methylation and transcription factor binding. Genome Res 18:1906–1917

    PubMed  CAS  Google Scholar 

  • Roepman R, van Duijnhoven G, Rosenberg T, Pinckers AJ, Bleeker-Wagemakers LM, Bergen AA, Post J, Beck A, Reinhardt R, Ropers HH, Cremers FP, Berger W (1996) Positional cloning of the gene for X-linked retinitis pigmentosa 3: homology with the guanine-nucleotide-exchange factor RCC1. Hum Mol Genet 5:1035–1041

    PubMed  CAS  Google Scholar 

  • Roman-Gomez J, Jimenez-Velasco A, Agirre X, Cervantes F, Sanchez J, Garate L, Barrios M, Castillejo JA, Navarro G, Colomer D, Prosper F, Heiniger A, Torres A (2005) Promoter hypomethylation of the LINE-1 retrotransposable elements activates sense/antisense transcription and marks the progression of chronic myeloid leukemia. Oncogene 24:7213–7223

    PubMed  CAS  Google Scholar 

  • Roth SY, Denu JM, Allis CD (2001) Histone acetyltransferases. Annu Rev Biochem 70:81–120

    PubMed  CAS  Google Scholar 

  • Rouchka E, Montoya-Durango DE, Stribinskis V, Ramos K, Kalbfleisch T (2010) Assessment of genetic variation for the LINE-1 retrotransposon from next generation sequence data. BMC Bioinformatics 11(Suppl 9):S12

    PubMed  Google Scholar 

  • Rountree MR, Bachman KE, Herman JG, Baylin SB (2001) DNA methylation, chromatin inheritance, and cancer. Oncogene 20:3156–3165

    PubMed  CAS  Google Scholar 

  • Rowlands JC, Gustafsson JA (1997) Aryl hydrocarbon receptor-mediated signal transduction. Crit Rev Toxicol 27:109–134

    PubMed  CAS  Google Scholar 

  • Rugg-Gunn PJ, Ferguson-Smith AC, Pedersen RA (2005) Epigenetic status of human embryonic stem cells. Nat Genet 37:585–587

    PubMed  CAS  Google Scholar 

  • Ruthenburg AJ, Allis CD, Wysocka J (2007) Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol Cell 25:15–30

    PubMed  CAS  Google Scholar 

  • Sadikovic B, Rodenhiser DI (2006) Benzopyrene exposure disrupts DNA methylation and growth dynamics in breast cancer cells. Toxicol Appl Pharmacol 216:458–468

    PubMed  CAS  Google Scholar 

  • Santos F, Hendrich B, Reik W, Dean W (2002) Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol 241:172–182

    PubMed  CAS  Google Scholar 

  • Santourlidis S, Florl A, Ackermann R, Wirtz HC, Schulz WA (1999) High frequency of alterations in DNA methylation in adenocarcinoma of the prostate. Prostate 39:166–174

    PubMed  CAS  Google Scholar 

  • Sassaman DM, Dombroski BA, Moran JV, Kimberland ML, Naas TP, DeBerardinis RJ, Gabriel A, Swergold GD, Kazazian HH Jr (1997) Many human L1 elements are capable of retrotransposition. Nat Genet 16:37–43

    PubMed  CAS  Google Scholar 

  • Schwahn U, Lenzner S, Dong J, Feil S, Hinzmann B, van Duijnhoven G, Kirschner R, Hemberger M, Bergen AA, Rosenberg T, Pinckers AJ, Fundele R, Rosenthal A, Cremers FP, Ropers HH, Berger W (1998) Positional cloning of the gene for X-linked retinitis pigmentosa 2. Nat Genet 19:327–332

    PubMed  CAS  Google Scholar 

  • Sebastian T, Malik R, Thomas S, Sage J, Johnson PF (2005) C/EBPbeta cooperates with RB:E2F to implement Ras(V12)-induced cellular senescence. EMBO J 24:3301–3312

    PubMed  CAS  Google Scholar 

  • Seleme MC, Vetter MR, Cordaux R, Bastone L, Batzer MA, Kazazian HH Jr (2006) Extensive individual variation in L1 retrotransposition capability contributes to human genetic diversity. Proc Natl Acad Sci U S A 103:6611–6616

    PubMed  CAS  Google Scholar 

  • Sen SK, Han K, Wang J, Lee J, Wang H, Callinan PA, Dyer M, Cordaux R, Liang P, Batzer MA (2006) Human genomic deletions mediated by recombination between Alu elements. Am J Hum Genet 79:41–53

    PubMed  CAS  Google Scholar 

  • Servomaa K, Rytomaa T (1990) UV light and ionizing radiations cause programmed death of rat chloroleukaemia cells by inducing retropositions of a mobile DNA element (L1Rn). Int J Radiat Biol 57:331–343

    PubMed  CAS  Google Scholar 

  • Sheen FM, Sherry ST, Risch GM, Robichaux M, Nasidze I, Stoneking M, Batzer MA, Swergold GD (2000) Reading between the LINEs: human genomic variation induced by LINE-1 retrotransposition. Genome Res 10:1496–1508

    PubMed  CAS  Google Scholar 

  • Shimizu Y, Nakatsuru Y, Ichinose M, Takahashi Y, Kume H, Mimura J, Fujii-Kuriyama Y, Ishikawa T (2000) Benzo[a]pyrene carcinogenicity is lost in mice lacking the aryl hydrocarbon receptor. Proc Natl Acad Sci U S A 97:779–782

    PubMed  CAS  Google Scholar 

  • Siedlecki P, Zielenkiewicz P (2006) Mammalian DNA methyltransferases. Acta Biochim Pol 53:245–256

    PubMed  CAS  Google Scholar 

  • Skalka AM, Katz RA (2005) Retroviral DNA integration and the DNA damage response. Cell Death Differ 12(Suppl 1):971–978

    PubMed  CAS  Google Scholar 

  • Skowronski J, Singer MF (1985) Expression of a cytoplasmic LINE-1 transcript is regulated in a human teratocarcinoma cell line. Proc Natl Acad Sci U S A 82:6050–6054

    PubMed  CAS  Google Scholar 

  • Smit AF, Toth G, Riggs AD, Jurka J (1995) Ancestral, mammalian-wide subfamilies of LINE-1 repetitive sequences. J Mol Biol 246:401–417

    PubMed  CAS  Google Scholar 

  • Smith GP (1976) Evolution of repeated DNA sequences by unequal crossover. Science 191:528–535

    PubMed  CAS  Google Scholar 

  • Song Z, Pollenz RS (2002) Ligand-dependent and independent modulation of aryl hydrocarbon receptor localization, degradation, and gene regulation. Mol Pharmacol 62:806–816

    PubMed  CAS  Google Scholar 

  • Spadafora C (2004) Endogenous reverse transcriptase: a mediator of cell proliferation and differentiation. Cytogenet Genome Res 105:346–350

    PubMed  CAS  Google Scholar 

  • Speek M (2001) Antisense promoter of human L1 retrotransposon drives transcription of adjacent cellular genes. Mol Cell Biol 21:1973–1985

    PubMed  CAS  Google Scholar 

  • Squires S, Coates JA, Goldberg M, Toji LH, Jackson SP, Clarke DJ, Johnson RT (2004) p53 prevents the accumulation of double-strand DNA breaks at stalled-replication forks induced by UV in human cells. Cell Cycle 3:1543–1557

    PubMed  CAS  Google Scholar 

  • Steinhoff C, Schulz WA (2003) Transcriptional regulation of the human LINE-1 retrotransposon L1.2B. Mol Genet Genomics 270:94–402

    Google Scholar 

  • Stimson L, Rowlands MG, Newbatt YM, Smith NF, Raynaud FI, Rogers P, Bavetsias V, Gorsuch S, Jarman M, Bannister A, Kouzarides T, McDonald E, Workman P, Aherne GW (2005) Isothiazolones as inhibitors of PCAF and p300 histone acetyltransferase activity. Mol Cancer Ther 4:1521–1532

    PubMed  CAS  Google Scholar 

  • Stribinskis V, Ramos KS (2006) Activation of human long interspersed nuclear element 1 retrotransposition by benzo(a)pyrene, an ubiquitous environmental carcinogen. Cancer Res 66:2616–2620

    PubMed  CAS  Google Scholar 

  • Suzuki K, Okada H, Yamauchi M, Oka Y, Kodama S, Watanabe M (2006) Qualitative and quantitative analysis of phosphorylated ATM foci induced by low-dose ionizing radiation. Radiat Res 165:499–504

    PubMed  CAS  Google Scholar 

  • Szak ST, Pickeral OK, Makalowski W, Boguski MS, Landsman D, Boeke JD (2002) Molecular archeology of L1 insertions in the human genome. Genome Biol 3:research0052

    Google Scholar 

  • Takahara T, Ohsumi T, Kuromitsu J, Shibata K, Sasaki N, Okazaki Y, Shibata H, Sato S, Yoshiki A, Kusakabe M, Muramatsu M, Ueki M, Okuda K, Hayashizaki Y (1996) Dysfunction of the Orleans reeler gene arising from exon skipping due to transposition of a full-length copy of an active L1 sequence into the skipped exon. Hum Mol Genet 5:989–993

    PubMed  CAS  Google Scholar 

  • Tanaka H, Deng G, Matsuzaki K, Kakar S, Kim GE, Miura S, Sleisenger MH, Kim YS (2006) BRAF mutation, CpG island methylator phenotype and microsatellite instability occur more frequently and concordantly in mucinous than non-mucinous colorectal cancer. Int J Cancer 118:2765–2771

    PubMed  CAS  Google Scholar 

  • Teneng I, Stribinskis V, Ramos KS (2007) Context-specific regulation of LINE-1. Genes Cells 12:1101–1110

    PubMed  CAS  Google Scholar 

  • Teneng I, Montoya-Durango DE, Quertermous JL, Lacy ME, Ramos KS (2011) Reactivation of L1 retrotransposon by benzo(a)pyrene involves complex genetic and epigenetic regulation. Epigenetics 6:355–367

    PubMed  CAS  Google Scholar 

  • Thompson PR, Fast W (2006) Histone citrullination by protein arginine deiminase: is arginine methylation a green light or a roadblock? ACS Chem Biol 1:433–441

    PubMed  CAS  Google Scholar 

  • Vaissiere T, Sawan C, Herceg Z (2008) Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutat Res 659:40–48

    PubMed  CAS  Google Scholar 

  • Valentin H, Azocar O, Horvat B, Williems R, Garrone R, Evlashev A, Toribio ML, Rabourdin-Combe C (1999) Measles virus infection induces terminal differentiation of human thymic epithelial cells. J Virol 73:2212–2221

    PubMed  CAS  Google Scholar 

  • Vogel CF, Sciullo E, Matsumura F (2004) Activation of inflammatory mediators and potential role of ah-receptor ligands in foam cell formation. Cardiovasc Toxicol 4:363–373

    PubMed  CAS  Google Scholar 

  • Wang J, Song L, Grover D, Azrak S, Batzer MA, Liang P (2006) dbRIP: a highly integrated database of retrotransposon insertion polymorphisms in humans. Hum Mutat 27:323–329

    PubMed  Google Scholar 

  • Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, Antonarakis SE, Attwood J, Baertsch R, Bailey J, Barlow K, Beck S, Berry E, Birren B, Bloom T, Bork P, Botcherby M, Bray N, Brent MR, Brown DG, Brown SD, Bult C, Burton J, Butler J, Campbell RD, Carninci P, Cawley S, Chiaromonte F, Chinwalla AT, Church DM, Clamp M, Clee C, Collins FS, Cook LL, Copley RR, Coulson A, Couronne O, Cuff J, Curwen V, Cutts T, Daly M, David R, Davies J, Delehaunty KD, Deri J, Dermitzakis ET, Dewey C, Dickens NJ, Diekhans M, Dodge S, Dubchak I, Dunn DM, Eddy SR, Elnitski L, Emes RD, Eswara P, Eyras E, Felsenfeld A, Fewell GA, Flicek P, Foley K, Frankel WN, Fulton LA, Fulton RS, Furey TS, Gage D, Gibbs RA, Glusman G, Gnerre S, Goldman N, Goodstadt L, Grafham D, Graves TA, Green ED, Gregory S, Guigó R, Guyer M, Hardison RC, Haussler D, Hayashizaki Y, Hillier LW, Hinrichs A, Hlavina W, Holzer T, Hsu F, Hua A, Hubbard T, Hunt A, Jackson I, Jaffe DB, Johnson LS, Jones M, Jones TA, Joy A, Kamal M, Karlsson EK, Karolchik D, Kasprzyk A, Kawai J, Keibler E, Kells C, Kent WJ, Kirby A, Kolbe DL, Korf I, Kucherlapati RS, Kulbokas EJ, Kulp D, Landers T, Leger JP, Leonard S, Letunic I, Levine R, Li J, Li M, Lloyd C, Lucas S, Ma B, Maglott DR, Mardis ER, Matthews L, Mauceli E, Mayer JH, McCarthy M, McCombie WR, McLaren S, McLay K, McPherson JD, Meldrim J, Meredith B, Mesirov JP, Miller W, Miner TL, Mongin E, Montgomery KT, Morgan M, Mott R, Mullikin JC, Muzny DM, Nash WE, Nelson JO, Nhan MN, Nicol R, Ning Z, Nusbaum C, O’Connor MJ, Okazaki Y, Oliver K, Overton-Larty E, Pachter L, Parra G, Pepin KH, Peterson J, Pevzner P, Plumb R, Pohl CS, Poliakov A, Ponce TC, Ponting CP, Potter S, Quail M, Reymond A, Roe BA, Roskin KM, Rubin EM, Rust AG, Santos R, Sapojnikov V, Schultz B, Schultz J, Schwartz MS, Schwartz S, Scott C, Seaman S, Searle S, Sharpe T, Sheridan A, Shownkeen R, Sims S, Singer JB, Slater G, Smit A, Smith DR, Spencer B, Stabenau A, Stange-Thomann N, Sugnet C, Suyama M, Tesler G, Thompson J, Torrents D, Trevaskis E, Tromp J, Ucla C, Ureta-Vidal A, Vinson JP, Von Niederhausern AC, Wade CM, Wall M, Weber RJ, Weiss RB, Wendl MC, West AP, Wetterstrand K, Wheeler R, Whelan S, Wierzbowski J, Willey D, Williams S, Wilson RK, Winter E, Worley KC, Wyman D, Yang S, Yang SP, Zdobnov EM, Zody MC, Lander ES (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    PubMed  CAS  Google Scholar 

  • Weisenberger DJ, Romano LJ (1999) Cytosine methylation in a CpG sequence leads to enhanced reactivity with Benzo[a]pyrene diol epoxide that correlates with a conformational change. J Biol Chem 274:23948–23955

    PubMed  CAS  Google Scholar 

  • Whitelaw M, Pongratz I, Wilhelmsson A, Gustafsson JA, Poellinger L (1993) Ligand-dependent recruitment of the Arnt coregulator determines DNA recognition by the dioxin receptor. Mol Cell Biol 13:2504–2514

    PubMed  CAS  Google Scholar 

  • Wichmann AE, Thomson NM, Peterson LA, Wattenberg EV (2003) Genotoxic methylating agents modulate extracellular signal regulated kinase activity through MEK-dependent, glutathione-, and DNA methylation-independent mechanisms in lung epithelial cells. Chem Res Toxicol 16:87–94

    PubMed  CAS  Google Scholar 

  • Wikenheiser-Brokamp KA (2006) Retinoblastoma family proteins: insights gained through genetic manipulation of mice. Cell Mol Life Sci 63:767–780

    PubMed  CAS  Google Scholar 

  • Woodcock DM, Lawler CB, Linsenmeyer ME, Doherty JP, Warren WD (1997) Asymmetric methylation in the hypermethylated CpG promoter region of the human L1 retrotransposon. J Biol Chem 272:7810–7816

    PubMed  CAS  Google Scholar 

  • Xu C, Li CY, Kong AN (2005) Induction of phase I, II and III drug metabolism/transport by xenobiotics. Arch Pharm Res 28:249–268

    PubMed  CAS  Google Scholar 

  • Yang N, Kazazian HH Jr (2006) L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells. Nat Struct Mol Biol 13:763–771

    PubMed  CAS  Google Scholar 

  • Yang N, Zhang L, Zhang Y, Kazazian HH Jr (2003) An important role for RUNX3 in human L1 transcription and retrotransposition. Nucleic Acids Res 31:4929–4940

    PubMed  CAS  Google Scholar 

  • Yang N, Zhang L, Kazazian HH Jr (2005) L1 retrotransposon-mediated stable gene silencing. Nucleic Acids Res 33:e57

    PubMed  Google Scholar 

  • Zhang Z, Harrison PM, Liu Y, Gerstein M (2003) Millions of years of evolution preserved: a comprehensive catalog of the processed pseudogenes in the human genome. Genome Res 13:2541–2558

    PubMed  CAS  Google Scholar 

  • Zhang N, Lin C, Huang X, Kolbanovskiy A, Hingerty BE, Amin S, Broyde S, Geacintov NE, Patel DJ (2005) Methylation of cytosine at C5 in a CpG sequence context causes a conformational switch of a benzo[a]pyrene diol epoxide-N2-guanine adduct in DNA from a minor groove alignment to intercalation with base displacement. J Mol Biol 346:951–965

    PubMed  CAS  Google Scholar 

  • Zhou X, Sun H, Ellen TP, Chen H, Costa M (2008) Arsenite alters global histone H3 methylation. Carcinogenesis 29:1831–1836

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth S. Ramos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ramos, K.S. et al. (2013). The Intersection of Genetics and Epigenetics: Reactivation of Mammalian LINE-1 Retrotransposons by Environmental Injury. In: Jirtle, R., Tyson, F. (eds) Environmental Epigenomics in Health and Disease. Epigenetics and Human Health. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23380-7_6

Download citation

Publish with us

Policies and ethics