Skip to main content

Heavy Metal-Resistant Streptomycetes in Soil

  • Chapter
  • First Online:
Book cover Bio-Geo Interactions in Metal-Contaminated Soils

Part of the book series: Soil Biology ((SOILBIOL,volume 31))

Abstract

Streptomycetes are a dominant group of soil bacteria which belong to the group of Actinobacteria. They are known for their complex life cycle, including mycelial growth and spore production, as well as their production of secondary metabolites, among them a large number of antibiotics. Streptomycetes possess a wide variety of resistance mechanism like biosorption, reduction, biomineralization, extracellular binding by chelators, efflux by transport systems, and intracellular binding of metals. In comparison to pristine soils, heavy metal-contaminated soils show much higher numbers of gram-positive bacteria, with bacilli and streptomycetes dominating over gram-negative proteobateria or firmicutes. The understanding of molecular mechanisms of heavy metal resistance in laboratory cultures as well as directly in soil systems is an essential basis for applied and interdisciplinary research as well as remediation of contaminated sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acheampong MA, Meulepas RJW, Lens PNL (2009) Removal of heavy metals and cyanide from gold mine wastewater. J Chem Technol Biotechnol 85:590–613

    Article  Google Scholar 

  • Albarracín VH, Avila AL, Amoroso MJ, Abate CM (2008) Copper removal ability by Streptomyces strains with dissimilar growth patterns and endowed with cupric reductase activity. FEMS Microbiol Lett 288:141–148

    Article  PubMed  Google Scholar 

  • Amoroso MJ, Schubert D, Mitscherlich P, Schumann P, Kothe E (2000) Evidence for high affinity nickel transporter genes in heavy metal resistant Streptomyces sp. J Basic Microbiol 40:295–301

    Article  PubMed  CAS  Google Scholar 

  • Amoroso MJ, Castro GR, Duran A, Peraud O, Oliver G, Hill RT (2001) Chromium accumulation by two Streptomyces spp. isolated from riverine sediments. J Ind Microbiol Biotechnol 26:210–215

    Article  PubMed  CAS  Google Scholar 

  • Banks D, Younger PL, Arnesen RT, Iversen ER, Banks SB (1997) Mine-water chemistry: the good, the bad and the ugly. Environ Geol 32:157–174

    Article  Google Scholar 

  • Barkay T, Turner R, Saouter E, Horn J (1992) Mercury biotransformations and their potential for remediation of mercury contamination. Biodegradation 3:147–159

    Article  CAS  Google Scholar 

  • Bäuerlein E (2003) Biomineralization of unicellular organisms: an unusual membrane biochemistry for the production of inorganic nano- and microstructures. Angew Chem Int Ed 42:614–641

    Article  Google Scholar 

  • Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O'Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147

    Article  PubMed  Google Scholar 

  • Bibb M, Hesketh A (2009) Analyzing the regulation of antibiotic production in Streptomycetes sp. In: David Hopwood (Ed) Complex enzymes in microbial natural product biosynthesis, part A: overview articles and peptides, vol 458, pp 93–116

    Google Scholar 

  • Blindauer CA, Harrison MD, Robinson AK, Parkinson JA, Bowness PW, Sadler PJ, Robinson NJ (2002) Multiple bacteria encode metallothioneins and SmtA-like zinc fingers. Mol Microbiol 45:1421–1432

    Article  PubMed  CAS  Google Scholar 

  • Chater KF, Biro S, Lee KJ, Palmer T, Schrempf H (2010) The complex extracellular biology of Streptomyces. FEMS Microbiol Rev 34:171–198

    Article  PubMed  CAS  Google Scholar 

  • de Jonge LW, Moldrup P, Schjonning P (2009) Soil infrastructure, interfaces and translocation processes in inner space (“soil-it-is”): towards a road map for the constraints and crossroads of soil architecture and biophysical processes. Hydrol Earth Syst Sci 13:1485–1502

    Article  Google Scholar 

  • Dimkpa CO, Svatos A, Dabrowska P, Schmidt A, Boland W, Kothe E (2008) Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere 74:19–25

    Article  PubMed  CAS  Google Scholar 

  • Dimkpa CO, Merten D, Svatos A, Büchel G, Kothe E (2009a) Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biol Biochem 41:154–162

    Article  CAS  Google Scholar 

  • Dimkpa CO, Merten D, Svatos A, Büchel G, Kothe E (2009b) Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J Appl Microbiol 107:1687–1696

    Article  PubMed  CAS  Google Scholar 

  • Eitinger T, Mandrand-Berthelot MA (2000) Nickel transport systems in microorganisms. Arch Microbiol 173:1–9

    Article  PubMed  CAS  Google Scholar 

  • Eitinger T (2004) In vivo production of active nickel superoxide dismutase from Prochlorococcus marinus MIT9313 is dependent on its cognate peptidase. J Bacteriol 186:7821–7825

    Article  PubMed  CAS  Google Scholar 

  • Flärdh K, Buttner MJ (2009) Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Rev Microbiol 7:36–49

    Article  PubMed  Google Scholar 

  • Geslin C, Llanos J, Prieur D, Jeanthon C (2001) The manganese and iron superoxide dismutases protect Escherichia coli from heavy metal toxicity. Res Microbiol 152:901–905

    Article  PubMed  CAS  Google Scholar 

  • Haferburg G, Kothe E (2007) Microbes and metals: interactions in the environment. J Basic Microbiol 47:453–467

    Article  PubMed  CAS  Google Scholar 

  • Haferburg G, Merten D, Büchel G, Kothe E (2007a) Biosorption of metal and salt tolerant microbial isolates from a former uranium mining area. Their impact on changes in rare earth element patterns in acid mine drainage. J Basic Microbiol 47:474–484

    Article  PubMed  CAS  Google Scholar 

  • Haferburg G, Reinicke M, Merten D, Büchel G, Kothe E (2007b) Microbes adapted to acid mine drainage as source for strains active in retention of aluminum or uranium. J Geochem Explor 92:196–204

    Article  CAS  Google Scholar 

  • Haferburg G, Klöss G, Schmitz W, Kothe E (2008) “Ni-struvite” – a new biomineral formed by a nickel resistant Streptomyces acidiscabies. Chemosphere 72:517–523

    Article  PubMed  CAS  Google Scholar 

  • Haferburg G, Groth I, Möllmann U, Kothe E, Sattler I (2009) Arousing sleeping genes: shifts in secondary metabolism of metal tolerant actinobacteria under conditions of heavy metal stress. Biometals 22:225–234

    Article  PubMed  CAS  Google Scholar 

  • Haferburg G, Kothe E (2010) Metallomics: lessons for metalliferous soil remediation. Appl Microbiol Biotechnol 87:1271–1280

    Article  PubMed  CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  PubMed  CAS  Google Scholar 

  • Hider RC, Kong XL (2010) Chemistry and biology of siderophores. Nat Prod Rep 27:637–657

    Article  PubMed  CAS  Google Scholar 

  • Hopwood DA (2006) Soil to genomics: the Streptomyces chromosome. Ann Rev Genet 40:1–23

    Article  PubMed  CAS  Google Scholar 

  • Huang P-M, Wang M-K, Chiu C-Y (2005) Soil mineral-organic matter-microbe interactions: impacts on biogeochemical processes and biodiversity in soils. Pedobiologia 49:609–635

    Article  CAS  Google Scholar 

  • Huang DL, Tang DJ, Liao Q, Li HC, Chen Q, He YQ, Feng JX, Jiang BL, Lu GT, Chen BS, Tang JL (2008) The Zur of Xanthomonas campestris functions as a repressor and an activator of putative zinc homeostasis genes via recognizing two distinct sequences within its target promoters. Nucleic Acids Res 36:4295–4309

    Article  PubMed  CAS  Google Scholar 

  • Jabeen R, Ahmad A, Iqbal M (2009) Phytoremediation of heavy metals: physiological and molecular mechanisms. Bot Rev 75:339–364

    Article  Google Scholar 

  • Jroundi F, Merroun ML, Arias JM, Rossberg A, Selenska-Pobell S, Gonzalez-Munoz MT (2007) Spectroscopic and microscopic characterization of uranium biomineralization in Myxococcus xanthus. Geomicrobiol J 24:441–449

    Article  CAS  Google Scholar 

  • Kamaludeen SPB, Ramasamy K (2008) Rhizoremediation of metals: harnessing microbial communities. Indian J Microbiol 48:80–88

    Article  CAS  Google Scholar 

  • Khamna S, Yokota A, Lumyong S (2009) Actinomycetes isolated from medicinal plant rhizosphere soils: diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World J Microbiol Biotechnol 25:649–655

    Article  CAS  Google Scholar 

  • Kim YJ, Song JY, Hong SK, Smith CP, Chang YK (2008) Effects of pH shock on the secretion system in Streptomyces coelicolor A3(2). J Microbiol Biotechnol 18:658–662

    PubMed  CAS  Google Scholar 

  • Kindler R, Miltner A, RichnowH-H KM (2006) Fate of gram-negative bacterial biomass in soil-mineralization and contribution to SOM. Soil Biol Biochem 38:2860–2870

    Article  CAS  Google Scholar 

  • Kindler R, Miltner A, Thullner M, Richnow H-H, Kästner M (2009) Fate of bacterial biomass derived fatty acids in soil and their contribution to soil organic matter. Org Geochem 40:29–37

    Article  CAS  Google Scholar 

  • Kothe E, Bergmann H, Büchel G (2005) Molecular mechanisms in bio-geo-interactions: from a case study to general mechanisms. Chem Erde-Geochem 65:7–27

    Article  CAS  Google Scholar 

  • Kothe E, Dimkpa C, Haferburg G, Schmidt A, Schmidt A, Schütze E (2010) Streptomycete heavy metal resistance: extracellular and intracellular mechanisms. In: Sherameti I, Varma A (eds) Soil biology. Springer, Heidelberg

    Google Scholar 

  • Kuffner M, Puschenreiter M, Wieshammer G, Gorfer M, Sessitsch A (2008) Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant Soil 304:35–44

    Article  CAS  Google Scholar 

  • Laliberté J, Whitson LJ, Beaudoin J, Holloway SP, Hart PJ, Labbe S (2004) The Schizosaccharomyces pombe Pcs protein functions in both copper trafficking and metal detoxification pathways. J Biol Chem 279:28744–28755

    Article  PubMed  Google Scholar 

  • Lamparter A, Bachmann J, Goebel MO, Woche SK (2009) Carbon mineralization in soil: impact of wetting-drying, aggregation and water repellency. Geoderma 150:324–333

    Article  CAS  Google Scholar 

  • Liang HC, Thomson BM (2009) Minerals and mine drainage. Water Environ Res 81:1615–1663

    Article  CAS  Google Scholar 

  • Mejáre M, Bülow L (2001) Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol 19:67–73

    Article  PubMed  Google Scholar 

  • Merroun ML, Selenska-Pobell S (2008) Bacterial interactions with uranium: an environmental perspective. J Contam Hydrol 102:285–295

    Article  PubMed  CAS  Google Scholar 

  • Miltner A, Kindler R, Knicker H, Richnow H-H, Kästner M (2009) Fate of microbial biomass-derived amino acids in soil and their contribution to soil organic matter. Org Geochem 40:978–985

    Article  CAS  Google Scholar 

  • Morales DK, Ocampo W, Zambiano MM (2007) Efficient removal of hexavalent chromium by a tolerant Streptomyces sp affected by the toxic effect of metal exposure. J Appl Microbiol 103:2704–2712

    Article  PubMed  CAS  Google Scholar 

  • Nedelkova M, Merroun ML, Rossberg A, Hennig C, Selenska-Pobell S (2007) Microbacterium isolates from the vicinity of a radioactive waste depository and their interactions with uranium. FEMS Microbiol Ecol 59:694–705

    Article  PubMed  CAS  Google Scholar 

  • Nogueira MA, Nehls U, Hampp R, Poralla K, Cardoso E (2007) Mycorrhiza and soil bacteria influence extractable iron and manganese in soil and uptake by soybean. Plant Soil 298:273–284

    Article  CAS  Google Scholar 

  • Onaka H, Nakagawa T, Horinouchi S (1998) Involvement of two A-factor receptor homologues in Streptomyces coelicolor A3(2) in the regulation of secondary metabolism and morphogenesis. Mol Microbiol 28:743–53

    Article  PubMed  CAS  Google Scholar 

  • Paciolla MD, Davies G, Jansen SA (1999) Generation of hydroxyl radicals from metal-loaded humic acids. Environ Sci Technol 33:1814–1818

    Article  CAS  Google Scholar 

  • Pal R, Rai JPN (2010) Phytochelatins: peptides involved in heavy metal detoxification. Appl Biochem Biotechnol 160:945–963

    Article  PubMed  CAS  Google Scholar 

  • Polti MA, Amoroso MJ, Abate CM (2010) Intracellular chromium accumulation by Streptomyces sp. MC1. Water Air Soil Pollut 214:49–57

    Article  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Article  PubMed  CAS  Google Scholar 

  • Ramírez-Díaz MI, Diaz-Perez C, Vargas E, Riveros-Rosas H, Campos-Garcia J, Cervantes C (2008) Mechanisms of bacterial resistance to chromium compounds. Biometals 21:321–332

    Article  PubMed  Google Scholar 

  • Rawlings DE (2002) Heavy metal mining using microbes. Ann Rev Microbiol 56:65–91

    Article  CAS  Google Scholar 

  • Riccardi G, Milano A, Pasca MR, Nies DH (2008) Genomic analysis of zinc homeostasis in Mycobacterium tuberculosis. FEMS Microbiol Lett 287:1–7

    Article  PubMed  CAS  Google Scholar 

  • Saidijam M, Benedetti G, Ren QH, Xu ZQ, Hoyle CJ, Palmer SL, Ward A, Bettaney KE, Szakonyi G, Meuller J, Morrison S, Pos MK, Butaye P, Walraven K, Langton K, Herbert RB, Skurray RA, Paulsen IT, O’Reilly J, Rutherford NG, Brown MH, Bill RM, Henderson PJF (2006) Microbial drug efflux proteins of the major facilitator superfamily. Curr Drug Targets 7:793–811

    Article  PubMed  CAS  Google Scholar 

  • Salomé C, Nunan N, Pouteau V, Lerch TZ, Chenu C (2010) Carbon dynamics in topsoil and in subsoil may be controlled by different regulatory mechanisms. Global Change Biol 16:416–426

    Article  Google Scholar 

  • Sar P, Kazy SK, Singh SP (2001) Intracellular nickel accumulation by Pseudomonas aeruginosa and its chemical nature. Lett Appl Microbiol 32:257–261

    Article  PubMed  CAS  Google Scholar 

  • Scherr N, Nguyen L (2009) Mycobacterium versus Streptomyces – we are different, we are the same. Curr Opinion Microbiol 12:699–707

    Article  CAS  Google Scholar 

  • Schmidt A, Haferburg G, Sineriz M, Merten D, Büchel G, Kothe E (2005) Heavy metal resistance mechanisms in actinobacteria for survival in AMD contaminated soils. Chem Erde-Geochem 65:131–144

    Article  CAS  Google Scholar 

  • Schmidt A, Schmidt A, Haferburg G, Kothe E (2007) Superoxide dismutases of heavy metal resistant streptomycetes. J Basic Microbiol 47:56–62

    Article  PubMed  CAS  Google Scholar 

  • Schmidt A, Gube M, Schmidt A, Kothe E (2009a) In silico analysis of nickel containing superoxide dismutase evolution and regulation. J Basic Microbiol 49:109–118

    Article  PubMed  CAS  Google Scholar 

  • Schmidt A, Haferburg G, Schmidt A, Lischke U, Merten D, Ghergel F, Büchel G, Kothe E (2009b) Heavy metal resistance to the extreme: Streptomyces strains from a former uranium mining area. Chem Erde-Geochem 69:35–44

    Article  CAS  Google Scholar 

  • Schmidt A, Hagen M, Schütze E, Schmidt A, Kothe E (2010) In silico prediction of potential metallothioneins and metallohistins in actinobacteria. J Basic Microbiol 50:562–569

    Article  PubMed  CAS  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  PubMed  Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753

    Article  PubMed  CAS  Google Scholar 

  • Shao ZZ, Sun FQ (2007) Intracellular sequestration of manganese and phosphorus in a metal-resistant fungus Cladosporium cladosporioides from deep-sea sediment. Extremophiles 11:435–443

    Article  PubMed  CAS  Google Scholar 

  • Shao HB, Chu LY, Ruan CJ, Li H, Guo GD, Li WX (2010) Understanding molecular mechanisms for improving phytoremediation of heavy metal-contaminated soils. Crit Rev Biotechnol 30:23–30

    Article  CAS  Google Scholar 

  • Shi JG, Lindsay WP, Huckle JW, Morby AP, Robinson NJ (1992) Cyanobacterial metallothionein gene expressed in Escherichia-coli – metal-binding properties of the expressed protein. FEBS Lett 303:159–163

    Article  PubMed  CAS  Google Scholar 

  • Sigel A, Sigel H, Sigel RKO (2008) Metal ions in life sciences. In: Biomineralization: from nature to application. Wiley, Chichester

    Google Scholar 

  • So NW, Rho JY, Lee SY, Hancock IC, Kim JH (2001) A lead-absorbing protein with superoxide dismutase activity from Streptomyces subrutilus. FEMS Microbiol Lett 194:93–98

    Article  PubMed  CAS  Google Scholar 

  • Tarhan C, Pekmez M, Karaer S, Arda N, Sarikaya AT (2007) The effect of superoxide dismutase deficiency on zinc toxicity in Schizosaccharomyces pombe. J Basic Microbiol 47:506–512

    Article  PubMed  CAS  Google Scholar 

  • van de Weghe JG, Ow DW (2001) Accumulation of metal-binding peptides in fission yeast requires hmt2 (+). Mol Microbiol 42:29–36

    Article  Google Scholar 

  • Xu J, Tian YS, Peng RH, Xiong AS, Zhu B, Hou XL, Yao QH (2010) Cyanobacteria MT gene SmtA enhance zinc tolerance in Arabidopsis. Mol Biol Reports 37:1105–1110

    Article  CAS  Google Scholar 

  • Yang X, Feng Y, He ZL, Stoffella PJ (2005) Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J Trace Elements Med Biol 18:339–353

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the Helmholtz Interdisciplinary Graduate School for Environmental Research (HIGRADE) for scholarship funding, André Schmidt, René Phieler, Michael Klose and Jens Schumacher for their help and support, Sandor Nietzsche for scanning electron microscopy, as well as Dirk Merten for sequential extraction and metal analyses. Petra Mitscherlich is thanked for technical assistance and DFG-GRK1257 and JSMC for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erika Kothe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schütze, E., Kothe, E. (2012). Heavy Metal-Resistant Streptomycetes in Soil. In: Kothe, E., Varma, A. (eds) Bio-Geo Interactions in Metal-Contaminated Soils. Soil Biology, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23327-2_9

Download citation

Publish with us

Policies and ethics