Skip to main content

Plant–Microbe Interaction in Heavy-Metal-Contaminated Soils

  • Chapter
  • First Online:
Bio-Geo Interactions in Metal-Contaminated Soils

Part of the book series: Soil Biology ((SOILBIOL,volume 31))

Abstract

Heavy metals are the most important inorganic pollutants, which are not degraded and progressively accumulate in the environment. The use of plants for rehabilitation of heavy-metal-contaminated soils is an emerging area of interest, because it provides an ecologically and environmentally sound and safe method for restoration and remediation. Although a number of plant species are capable of hyperaccumulation of heavy metals, however, this approach is not applicable for remediating sites with multiple contaminants. The biogeochemical capacities of microorganisms seem almost limitless and they can adsorb and accumulate metals in their cells and are being used in microbial leaching and also as agents of cleaning the environment. To overcome the metal stress, numbers of mechanisms have been evolved by microorganisms of agronomic importance by which they tolerate and promote the uptake of heavy metal ions. Such mechanisms include: the pumping of metal ions exterior to the cell, accumulation and sequestration of the metal ions inside the cell, transformation of toxic metal to less toxic forms, and adsorption/desorption of metals. The best approach would be to combine the advantages of plant–microbe interactions within the plant rhizosphere into an effective cleanup technology. The activities of plants and plant/microbial associations may offer viable means of accomplishing the in situ remediation of contaminated soils. This chapter examines the potential role of plant–microbe interactions in heavy-metal-contaminated soils toward phyto-bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott L, Murphy D (2003) Soil biology fertility: a key to sustainable land use in agriculture. Kluwer, Dordrecht, pp 187–203

    Google Scholar 

  • Adonizio AL, Downum K, Bennett BC, Mathee K (2006) Anti-quorum sensing activity of medicinal plants in southern Florida. J Ethnopharmacol 105(3):427–435

    Article  PubMed  Google Scholar 

  • Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307–319

    Article  PubMed  CAS  Google Scholar 

  • Bais HP, Tiffony L, Weir LT, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plant and other organisms. Annu Rev Plant Biol 57:233–266

    Article  PubMed  CAS  Google Scholar 

  • Barber SA (1984) Soil nutrient bioavailability. Wiley, New York

    Google Scholar 

  • Barber SA, Lee RB (1974) The effect of microorganisms on the absorption of manganese by plants. New Phytol 73:97–106

    Article  CAS  Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    Article  PubMed  CAS  Google Scholar 

  • Bashan Y, Holguin G, de Bashan LE (2004) Azospirillum plant relationship: physiological, molecular, agricultural and environmental advances (1997–2003). Can J Microbiol 50:521–577

    Article  PubMed  CAS  Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth promoting rhizobacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37:241–250

    Article  CAS  Google Scholar 

  • Biró B, Köves-Péchy K, Tsimilli-Michael M, Strasser RJ (2006) Role of beneficial microsymbionts on the plant performance and plant fitness. In: Mukerji KG, Manoharachary C, Singh J (eds) Microbial activity in the rhizosphere, vol 7, Soil biology. Springer, Berlin, pp 265–296

    Chapter  Google Scholar 

  • Blake RC, Choate DM, Bardhan S, Revis N, Barton LL, Zocco TG (1993) Chemical transformation of toxic metals by a Pseudomonas strain from a toxic waste site. Environ Toxicol Chem 12:1365–1376

    CAS  Google Scholar 

  • Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31:860–865

    Article  Google Scholar 

  • Bottomley PJ, Dughri MH (1989) Population size and distribution of Rhizobium leguminosarum biovar trifolii in relation to total soil bacteria and soil depth. Appl Environ Microbiol 55:959–964

    PubMed  CAS  Google Scholar 

  • Bottomley PJ, Maggard SP (1990) Determination of viability within serotypes of a soil population of Rhizobium leguminosarum biovar trifolii. Appl Environ Microbiol 56:533–540

    PubMed  CAS  Google Scholar 

  • Brooks RR (1998) Geobotany and hyperaccumulators. In: Brook RR (ed) Plants that hyperaccumulate heavy metals. CAB International, Wallingford, CT, pp 55–94

    Google Scholar 

  • Cakmak I, Ozturk L, Karanlik S, Marschner H, Ekiz H (1996a) Zinc-efficient wild grasses enhance release of phytosiderophores under Zn deficiency. J Plant Nutr 19:551–563

    Article  CAS  Google Scholar 

  • Cakmak I, Sari N, Marschner H, Ekiz H, Kalayci M (1996b) Phytosiderophore release in bread and durum what genotypes differing in zinc efficiency. Plant Soil 180:183–189

    Article  CAS  Google Scholar 

  • Çakmakçi R, Dönmez F, Aydın A, Şahin F (2006) Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol Biochem 38:482–1487

    Article  Google Scholar 

  • Cardoso PF, Priscila LG, Rui AG, Leonardo OM, Ricardo AA (2005) Response of Crotalaria junceae to nickel exposure. Braz J Plant Physiol 17:267–272

    Article  CAS  Google Scholar 

  • Chander K, Goyal S, Mundra MC, Kapoor KK (1997) Organic matter, microbial biomass and enzyme activity of soils under different crop rotations in the tropics. Biol Fertil Soils 24:306–310

    Article  CAS  Google Scholar 

  • Cindy HWu, Wood TK, Mulchandani A, Chen W (2006) Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. Appl Environ Microbiol 72(2):1129–1134

    Article  Google Scholar 

  • Corticeiro CS, Lima AIG, Figueira EMAP (2006) The importance of glutathione in oxidative status of Rhizobium leguminosarum biovar viciae under cadmium stress. Environ Microbiol Technol 40:132–137

    Article  CAS  Google Scholar 

  • Crowley DE, Wang YC, Reid CPP, Szansiszlo PJ (1991) Mechanism of iron acquisition from siderophores by microorganisms and plants. Plant Soil 130:179–198

    Article  CAS  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    Article  CAS  Google Scholar 

  • Ehrlich HL (1990) Geomicrobiology, 2nd edn. Dekker, New York, p 646

    Google Scholar 

  • Faraldo-Gomez JD, Sansom MSP (2003) Acquisition of siderophores in gram-negative bacteria. Nat Rev Mol Cell Biol 4:105–116

    Article  PubMed  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR (2001) Phytoremediation: synergistic use of plants and bacteria to cleanup the environment. Biotechnol Adv 21(3):83–93

    Google Scholar 

  • Glick BR, Penrose DM, Li JA (2002) Model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J Theor Biol 190:63–68

    Article  Google Scholar 

  • Gunatilaka AAL (2006) Natural products for plant associated microorganisms: distribution, structural diversity, bioactivity and implication of their occurrence. J Nat Prod 69:509–526

    Article  PubMed  CAS  Google Scholar 

  • Gupta DK, Rai UN, Sinha S, Tripathi RD, Nautiyal BD, Rai P, Inouhe M (2004) Role of Rhizobium (CA-1) inoculation in increasing growth and metal accumulation in Cicer arietinum L. growing under fly-ash stress condition. Bull Environ Contam Toxicol 73:424–431

    Article  PubMed  CAS  Google Scholar 

  • Huang JW, Cunningham SD (1996) Lead phytoextraction: species variation in lead uptake and translocation. New Phytol 134:75–84

    Article  CAS  Google Scholar 

  • Kamnev AA (2008) Metals in soil verses plant-microbe interactions: biotic and chemical interferences. In: Barka EA, Clément C (eds) Plant-microbe interactions. Research Signpost, Trivandrum, Kerala, pp 291–318

    Google Scholar 

  • Kamnev AA, Kovács K, Shchelochkov AG, Kulikov LA, Perfiliev YuD, Kuzmann E, Vértes A (2006) Bioleaching and chemical transformations of heavy metals and radionuclides mediated by soil microorganisms. In: Alpoim MC, Morais PV, Santos MA, Cristóvão AJ, Centeno JA, Collery Ph (eds) Metal ions in biology and medicine, vol. 9. John Libbey Eurotext, Paris, p 220–225

    Google Scholar 

  • Kanazawa K, Higuchi K, Nishizawa NK, Fushiya S, Chino M, Mori S (1994) Nicotianamine aminotransferase activities are correlated to the phytosiderophore secretion under Fe-deficient conditions in Gramineae. J Exp Bot 45:1903–1906

    Article  CAS  Google Scholar 

  • Karthikeyan R, Kulakow PA (2003) Soil plant microbe interactions in phytoremediation. Adv Biochem Eng Biotechnol 78:51–74

    PubMed  CAS  Google Scholar 

  • Keating MH, Mahaffey KR, Schoney R, Rice GE, Bullock OR, Ambrose RB, Swartout J, Nichols JW (1997) Mercury study report to congress. EPA-452/R-97-003, Vol I, Sec 3, Washington, DC, pp 6–7

    Google Scholar 

  • Khan AG (2005a) Role of soil microbes in the rhizospheres of plant grown in trace metals contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    Article  PubMed  CAS  Google Scholar 

  • Khan AG (2005b) Mycorrhizas and phytoremediation. In: Willey N (ed) Method in biotechnology-phytoremediation: methods and reviews. Humana, Totowa, NJ

    Google Scholar 

  • Khan MS, Zaidi A, Zaidi PA, Mohammad O (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Article  Google Scholar 

  • Kingsley MT, Metting FB Jr, Fredrickson JK, Seidler RJ (1993) In situ stimulation vs. bioaugmentation: can plant inoculation enhance biodegradation of organic compounds. Paper 93-WA-89.04, Proceedings of the 86th annual meeting and exhibition, air and waste management association, Pittsburgh, PA

    Google Scholar 

  • Kirchhof G, Schloter M, Asmus B, Hartmann A (1997) Molecular microbial ecology approaches applied to diazotrophs associated with non-legumes. Soil Biol Biochem 29:853–860

    Article  CAS  Google Scholar 

  • Kovacs K, Kamnev AA, Mink J, Nemeth CS, Kuzmann E, Megyes T, Grosz T, Medzihradszky-Schweiger H, Vertes A (2006) Mössbauer, vibrational spectroscopic and solution X-ray diffraction studies of the structure of iron (III) complexes formed with indole-3-alkanoic acids in acidic aqueous solutions. Struct Chem 17:105–120

    Article  CAS  Google Scholar 

  • Kumar R, Bhatia R, Kukreja K, Behl RK, Dudeja SS, Narula N (2007) Establishment of Azotobacter on plant roots: chemotactic response, development and analysis of root exudates of cotton (G. hirsutum L) and wheat (T. aestivum L). J Basic Microbiol 47:436–439

    Article  PubMed  CAS  Google Scholar 

  • Langley S, Beveridge TJ (1999) Effect of O-side-chain-lipopolysaccharide chemistry on metal binding. Appl Environ Microbiol 65:489–498

    PubMed  CAS  Google Scholar 

  • Larsen PB, Degenhardt J, Tai CY, Stenzler LM, Howell SH, Kochian LV (1998) Aluminum-resistant Arabidopsis mutants that exhibit altered patterns of aluminum accumulation and organic acid release from roots. Plant Physiol 117:19–27

    Article  PubMed  Google Scholar 

  • Lasat MM (2000) Phytoextraction of metals from contaminated soil: a review of plant-soil-metal interaction and assessment of pertinent agronomic issues. J Hazard Sub Res 2:5–25

    Google Scholar 

  • Lima AIG, Pereira SAI, Figueira EMAP, Caldeira GCN, Caldeira HDQM (2006) Cadmium detoxification in roots of Pisum sativum seedlings: relationship between toxicity levels, thiol pool alterations and growth. Environ Exp Bot 55:149–162

    Article  CAS  Google Scholar 

  • Lippmann B, Leinhos V, Bergmann H (1995) Influence of auxin producing rhizobacteria on root morphology and nutrient accumulation of crops. 1. Changes in root morphology and nutrient accumulation in maize (Zea mays L.) caused by inoculation with indole-3-acetic acid (IAA) producing Pseudomonas and Acinetobacter strains or IAA applied exogenously. Angew Bot 69:31–36

    CAS  Google Scholar 

  • Lloyd JR (2003) Microbial reduction of metals and radionuclides. FEMS Microb Rev 27:411–425

    Article  CAS  Google Scholar 

  • Lovley DR, Coates JD (2000) Novel forms of an aerobic respiration of environmental relevance. Curr Opin Microbiol 3:252–256

    Article  PubMed  CAS  Google Scholar 

  • Lucy M, Reed E, Glick B (2004) Applications of free living plant growth promoting rhizobacteria. Antonie Van Leeuwenhoek 86:1–25

    Article  PubMed  CAS  Google Scholar 

  • Lynch JM (1983) Soil biotechnology. Blackwell, Oxford

    Google Scholar 

  • Lynch JM (1990) Beneficial interactions between microorganisms and roots. Biotechnol Adv 8:335–346

    Article  PubMed  CAS  Google Scholar 

  • Mamaril JC, Paner ET, Alpante BM (1997) Biosorption and desorption studies of chromium (iii) by free and immobilized Rhizobium (BJVr 12) cell biomass. Biodegradation 8:275–285

    Article  CAS  Google Scholar 

  • Mukerji KG, Manoharachary C, Singh J (eds) (2006) Soil biology, vol 7, Microbial activity in the rhizosphere. Springer, Berlin

    Google Scholar 

  • Narula N, Kumar V, Saharan BS, Bhatia R, Lakshminarayana K (2005a) Impact of the use of biofertilizers on grain yield of wheat under varying soil fertility conditions and wheat-cotton rotation. Arch Agron Soil Sci (Germany) 51(1):79–89

    Article  Google Scholar 

  • Narula N, Saharan BS, Kumar V, Bhatia R, Bishnoi LK, Lather BPS, Lakshminarayana K (2005b) Impact of the use of biofertilizers on cotton (Gossypium hirusetum) crop under irrigated agro-ecosystem. Arch Agron Soil Sci (Germany) 51(2):69–77

    Article  Google Scholar 

  • Narula N, Deubel A, Gans W, Behl RK, Merbach W (2006) Colonization and induction of Para nodules of wheat roots by phytohormone producing soil bacteria. Plant Soil Environ (Czech Republic) 52(3):119–129

    CAS  Google Scholar 

  • Narula N, Kothe K, Behl RK (2009) Role of root exudates in plant-microbe interactions. J Appl Bot Food Qual 82:122–130

    CAS  Google Scholar 

  • Narula N, Bhatia R, Anand RC, Gera R, Behl RK (2011a) Interaction of A. chroococcum with wheat germ agglutinin (WGA). Icfai Univ J Life Sci (India) IV(1):15–20

    Google Scholar 

  • Narula N, Kothe E, Behl RK (2011b) Heavy metal resistance among Azotobacter spp.: survival in garden and heavy metal contaminated soil using Indian Mustard. Icfai Univ J Life Sci (India) IV (2):55–62

    Google Scholar 

  • Nies DH (1999) Microbial heavy metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  PubMed  CAS  Google Scholar 

  • Okon Y (1985) Azospirillum as a potential inoculants for agriculture. Trends Biotechnol 3:223–228

    Article  Google Scholar 

  • Pal MKI, Panwar BS, Goyal SI, Attila A, Laszlo M (2010) Effect of lead (Pb) and mercury (Hg) on plant growth promoting rhizobacterias (PGPB) as Azotobacter chroococcum and Pseudomonas spp. using Indian Mustard (Brassica juncea L.) test crop. Proceedings of the international seminar on crop science for sustain and food security, Szeged, Hungary, 1–3 June

    Google Scholar 

  • Panwar BS, Ahmed KS, Mittal SB (2002) Phytoremediation of nickel contaminated soils by Brassica species. J Environ Dev Sustain 1:1–6

    Article  Google Scholar 

  • Park CH, Keyhan M, Matin A (1999) Purification and characterization of chromate reductase in Pseudomonas putida. Abs Gen Meet Am Soc Microbiol 99:536–548

    Google Scholar 

  • Pellet MD, Grunes DL, Kochian LV (1995) Organic acid exudation as an aluminum tolerance mechanism in maize (Zea mays L.). Planta 196:788–795

    Article  CAS  Google Scholar 

  • Peters NK, Frost JW, Long SR (1986) A plant flavones, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233:977–980

    Article  PubMed  CAS  Google Scholar 

  • Raskin I (1996) Plant genetic engineering may help with environmental cleanup. Proc Natl Acad Sci USA 93:3164–3166

    Article  PubMed  CAS  Google Scholar 

  • Renella G, Mench M, Landi L, Nannipieri P (2005) Microbial activity and hydrolase synthesis in long-term Cd-contaminated soils. Soil Biol Biochem 37:133–137

    Article  CAS  Google Scholar 

  • Roane TM, Pepper IL (2000) Microbial responses to environmentally toxic cadmium. Microb Ecol 38:358–364

    Article  Google Scholar 

  • Römheld V, Marschner H (1986) Mobilization of iron in the rhizosphere of different plant species. Adv Plant Nutr 2:155–204

    Google Scholar 

  • Rosenblueth M, Martinez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19:827–837

    Article  PubMed  CAS  Google Scholar 

  • Rovira AD, Foster R, Martyin JK (1979) Origin, nature and nomenclature of the organic materials in the rhizosphere. In: Harley JL, Russel RS (eds) The soil interface. Academic, London, pp 1–4

    Google Scholar 

  • Ruggiero CE, Boukhalfa H, Forsythe JH, Lack JG, Hersman LE, Neu MP (2005) Actinide and metal toxicity to prospective bioremediation bacteria. Environ Microbiol 7(1):88–97

    Article  PubMed  CAS  Google Scholar 

  • Ruml T, Kotrba P (2003) Recent advances in marine biotechnology. In: Fingerman M, Nagabhushanam R (eds) Bioremediation, vol 8. Science, Enfield, NH, pp 81–155

    Google Scholar 

  • Saitia S, Narula N (1989) Heavy metal resistance and hydrocarbon utilization in Azotobacter chroococcum. Indian J Microbiol 29(3):213–215

    Google Scholar 

  • Saitia S, Narula N, Lakshminarayana K (1989) Nature and role of plasmids in Azotobacter chroococcum. Biotechnol Lett 11:713–716

    Article  CAS  Google Scholar 

  • Salt DE, Blaylock M, Kumar PBAN, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–475

    Article  PubMed  CAS  Google Scholar 

  • Shakolnik MY (1984) Trace elements in plants. Elsevier, New York, pp 140–171

    Google Scholar 

  • Shann JR (1995) The role of plants and plant/microbial systems in the reduction of exposure. Environ Health Perspect 103(5):13–15

    Article  PubMed  Google Scholar 

  • Shoebitz M, Ribaudo CM, Pardo MA, Cantore ML, Ciampi L, Curá JA (2009) Plant growth promoting properties of a strain of Enterobacter ludwigii isolated from Lolium perenne rhizosphere. Soil Biol Biochem 41(9):1768–1774

    Article  CAS  Google Scholar 

  • Sigel H, Sigel A (eds) (1996) Metal ions in biological systems, vol 32, Interaction of metal ions with nucleotides nucleic acids, and their constituents. Dekker, New York

    Google Scholar 

  • Sigel A, Sigel H (eds) (1998) Metal ions in biological systems, vol 35, Iron transport and storage in microorganisms, plants, and animals. Dekker, New York

    Google Scholar 

  • Simon L, Széles É, Balázsy S, Biró B (2007) Selenium phytoextraction, speciation and microbial groups in Se contaminated soils. Proceedings of the ICOBTE, 9–2007

    Google Scholar 

  • Simon L, Biró B, Balázsy S (2008) Impact of pseudomonads and ethylene on the cadmium and nickel rhizofiltration of sunflower, squash and Indian mustard. Comm Soil Sci Plant Anal 36(15–16):2440–2455

    Article  Google Scholar 

  • Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30:205–240

    Article  PubMed  CAS  Google Scholar 

  • Stresty EV, Madhava Rao KV (1999) Ultrastructural alterations in response to zinc and nickel stress in the root cells of pigeonpea. Environ Exp Bot 41:3–13

    Article  Google Scholar 

  • Sugawara M, Okazaki S, Nukui N, Ezura H, Mitsui H, Minamisawa K (2006) Rhizobitoxine modulates plant–microbe interactions by ethylene inhibition. Biotechnol Adv 24:382–388

    Article  PubMed  CAS  Google Scholar 

  • Teplitski M, Chen H, Rajamani S, Gao M, Merighi M, Sayre RT, Robinson JB, Rolfe BG, Bauer WD (2004) Chlamydomonas reinhardtii secretes compounds that mimic bacterial signals and interfere with quorum sensing regulation in bacteria. Plant Physiol 134:137–146

    Article  PubMed  CAS  Google Scholar 

  • Tugarova AV, Kamnev AA, Antonyuk LP, Gardiner PHE (2006) Metal ions in biology and medicine, vol 9. John Libbey Eurotext, Paris, 242

    Google Scholar 

  • Vassilev A, Schwitzguébel J-P, Thewys T, van der Lelie D, Vangronsveld J (2004) The use of plants for remediation of metal contaminated soils. Sci World J 4:9–34

    CAS  Google Scholar 

  • Von Uexkull HR, Mutert E (1995) Global extent, development and economic impact of acid soils. Plant Soil 171:1–15

    Article  Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51

    Article  PubMed  CAS  Google Scholar 

  • Wang PC, Mori T, Komori K, Sasatsu M, Toda K, Ohtake H (1989) Isolation and characterization of an Enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions. Appl Environ Microbiol 55:1665–1669

    PubMed  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007a) Cadmium, chromium and copper in green gram plants. Agron Sustain Dev 27:145–153

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007b) Impact of heavy metal toxicity on plant growth, symbiosis, seed yield and nitrogen and metal uptake in chickpea. Aust J Exp Agr 47:712–720

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007c) Effect of metal tolerant plant growth promoting Rhizobium on the performance of pea grown in metal amended soil. Arch Environ Contam Toxicol. doi:10.1007/00244-9097-y

  • Wani PA, Khan MS, Zaidi A (2008a) Effect of heavy metal toxicity on growth, symbiosis, seed yield and metal uptake in pea grown in metal amended soil. Bull Environ Contam Toxicol. doi:10.1007/s00128-008-9383-z

  • Wani PA, Khan MS, Zaidi A (2008b) Chromium reducing and plant growth promoting Mesorhizobium improves chickpea growth in chromium amended soil. Biotechnol Lett 30:159–163

    Article  PubMed  CAS  Google Scholar 

  • White PJ (2003) Ion transport. In: Thomas B, Murphy DJ, Murray DJ (eds) Encyclopedia of plant sciences. Academic, London, pp 625–634

    Google Scholar 

  • Wu CH, Wood TK, Mulchandani A, Chen W (2006a) Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. Appl Environ Microbiol 72:1129–1134

    Article  PubMed  CAS  Google Scholar 

  • Wu SC, Cheung KC, Luo YM, Wong MH (2006b) Effects of an inoculum of plant growth promoting rhizobacteria on metal uptake by Brassica juncea. Environ Pollut 140:124–135

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Feng Y, He Z, Stoffella PJ (2005) Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J Trace Elem Med Biol 18(4):339–353

    Article  PubMed  CAS  Google Scholar 

  • Yasmin S, Bakar MAR, Malik KA, Hafeez FY (2004) Isolation, characterization and beneficial effects of rice associated PGPB from Zanzibar soils. J Basic Microbiol 44:241–252

    Article  PubMed  CAS  Google Scholar 

  • Zachara JM, Fredrickson JK, Smith SC, Gassman PL (2001) Solubilization of Fe(III) oxide-bound trace metals by a dissimilatory Fe(III) reducing bacterium. Geochim Cosmochim Acta 65:75–93

    Article  CAS  Google Scholar 

  • Zaidi A, Khan MS (2006) Co-inoculation effects of phosphate solubilizing microorganisms and Glomus fasciculatum on green gram-Bradyrhizobium symbiosis. Turk J Agr Forest 30:223–230

    CAS  Google Scholar 

  • Zaidi S, Usmani S, Singh BR, Musarrat J (2008) Significance of Bacillus subtilis strains SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeru Narula .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Narula, N., Reinicke, M., Haferburg, G., Kothe, E., Behl, R.K. (2012). Plant–Microbe Interaction in Heavy-Metal-Contaminated Soils. In: Kothe, E., Varma, A. (eds) Bio-Geo Interactions in Metal-Contaminated Soils. Soil Biology, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23327-2_8

Download citation

Publish with us

Policies and ethics