Skip to main content

Boundedness in Probability and Stability of Stochastic Processes Defined by Differential Equations

  • Chapter
Stochastic Stability of Differential Equations

Part of the book series: Stochastic Modelling and Applied Probability ((SMAP,volume 66))

Abstract

Conditions for non-explosion, boundedness in probability and stability in probability of stochastic processes defined by the system of ODE with random coefficients are proven in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Sometimes (see Chap. 3), but only when this is explicitly mentioned, we shall find it convenient to consider random variables which can take on the values ±∞ with positive probability.

  2. 2.

    General conditions for every solution to be unboundedly continuable have been obtained by Okamura and are described in [178]. These results imply Theorem 1.3.

  3. 3.

    See [285].

  4. 4.

    The author’s exposition of this example in [121] contains an error. The following corrected version is due to Nevelson.

  5. 5.

    Throughout this chapter we shall consider stability and asymptotic stability in the weak sense (compare Chap. 5, where stability in the strong sense will be discussed).

  6. 6.

    We denote (see Sect. 1.1)

    $$K(s,t)=((K^{ij}(s,t)))=\operatorname{cov}(\xi(s),\xi(t)).$$
  7. 7.

    Theorem 1.16 generalizes a result of Shur [259].

  8. 8.

    It is clear that when α=α ∗ the argument of the exponential function in (1.106) attains its minimum.

References

  1. Bellman, R.E.: Stability of Differential Equations. McGraw-Hill, New York (1953). Russian transl.: IL, Moscow (1954)

    MATH  Google Scholar 

  2. Bertram, J.E., Sarachik, P.E.: Stability of circuits with randomly time-varying parameters. In: Proc. Internat. Sympos. on Circuit and Information Theory, Los Angeles, Calif. IRE Trans., vol. CT-6, pp. 809–823 (1959)

    Google Scholar 

  3. Caughey, T.K., Gray, A.H. Jr.: On the almost sure stability of linear dynamic systems with stochastic coefficients. Trans. ASME Ser. E J. Appl. Mech. 32, 365–372 (1965)

    MathSciNet  MATH  Google Scholar 

  4. Demidovich, B.P.: On the dissipativity of a certain non-linear system of differential equations. I. Vestnik Moskov. Univ. Ser. I Mat. Meh. 6, 19–27 (1961) (Russian)

    Google Scholar 

  5. Demidovich, B.P.: On the dissipativity of a certain non-linear system of differential equations. II. Vestnik Moskov. Univ. Ser. I Mat. Meh. 1, 3–8 (1962) (Russian)

    Google Scholar 

  6. Doob, J.L.: Stochastic Processes. Wiley/Chapman & Hall, New York (1953). Russian transl.: IL, Moscow (1956)

    MATH  Google Scholar 

  7. Dynkin, E.B.: Markov Processes. Fizmatgiz, Moscow (1963). English transl.: Die Grundlehren der Math. Wissenschaften, Bände 121, 122. Academic Press, New York. Springer, Berlin (1965)

    MATH  Google Scholar 

  8. Gikhman, I.I., Skorokhod, A.V.: Introduction to the Theory of Random Processes. Nauka, Moscow (1965). English transl.: Saunders, Philadelphia (1969)

    MATH  Google Scholar 

  9. Gnedenko, B.V.: A Course in the Theory of Probability, 3rd edn. Fizmatgiz, Moscow (1961). English transl.: Chelsea, New York (1962)

    Google Scholar 

  10. Khasminskii, R.Z.: On the dissipativeness of random processes defined by differential equations. Problemy Peredachi Informatsii 1(1), 88–104 (1965). English transl.: Problems of Information Transmission 1(1), 63–77 (1965)

    MathSciNet  Google Scholar 

  11. Khasminskii, R.Z.: On the stability of nonlinear stochastic systems. Prikl. Mat. Meh. 30, 915–921 (1966). English transl.: J. Appl. Math. Mech. 30, 1082–1089 ({1966})

    MathSciNet  Google Scholar 

  12. Kozin, F.: On almost sure stability of linear systems with random coefficients. J. Math. Phys. 42, 59–67 (1963)

    MathSciNet  MATH  Google Scholar 

  13. Krasovskii, N.N.: Certain Problems in the Theory of Stability of Motion. Fizmatgiz, Moscow (1959). English transl.: Stanford University Press, Stanford (1963)

    Google Scholar 

  14. LaSalle, J.P., Lefschetz, S.: Stability by Lyapunov’s Direct Methods with Applications. Academic Press, New York (1961). Russian transl.: Mir, Moscow (1964)

    Google Scholar 

  15. Loève, M.: Probability Theory. Foundations. Random sequences. Van Nostrand, Princeton (1960). Russian transl.: IL, Moscow (1962)

    Google Scholar 

  16. Lyapunov, A.M.: Problème général de la stabilité du mouvement, Kharkov, 1892. Reprint. GITTL, Moscow (1950)

    Google Scholar 

  17. Malakhov, A.N.: Statistical stability of motion. Izv. Vyssh. Uchebn. Zaved. Radiofizika 6(1), 42–53 (1963) (Russian)

    MATH  Google Scholar 

  18. Malkin, I.G.: Theory of Stability of Motion, 2nd rev. edn. Nauka, Moscow (1966). English transl.: Atomic Energy Commission Transl. 3352

    MATH  Google Scholar 

  19. Pugachev, V.S.: The Theory of Random Functions and Its Application to Control Problems. Fizmatgiz, Moscow (1960). English transl.: Internat. Series of Monographs on Automation and Automatic Control, vol. 5. Pergamon Press, Oxford. Addison-Wesley, Reading ({1965})

    Google Scholar 

  20. Rosenbloom, A.: Analysis of linear systems with randomly tune-varying parameters. In: Proc. Sympos. on Information Networks, New York, 1954, pp. 145–153. Polytechnic Institute of Brooklyn, Brooklyn (1955)

    Google Scholar 

  21. Rozanov, Yu.A.: Stationary Random Processes. Fizmatgiz, Moscow (1963). English transl.: Holden-Day, San Francisco (1967)

    Google Scholar 

  22. Shur, M.G.: Linear differential equations with randomly perturbed parameters. Izv. Akad. Nauk USSR Ser. Mat. 29, 783–806 (1965). English transl.: Amer. Math. Soc. Transl. (2) 72, 251–276 ({1968})

    MATH  Google Scholar 

  23. Tikhonov, V.I.: Effect of fluctuation action on the simplest parametric systems. Avtom. i Telemekh. 19, 717–724 (1958). English transl.: Automat. Remote Control 19, 705–711 ({1958})

    Google Scholar 

  24. Yoshizawa, T.: Lyapunov’s function and boundedness of solutions. Funkcial. Ekvac. 2, 95–142 (1959)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafail Khasminskii .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Khasminskii, R. (2012). Boundedness in Probability and Stability of Stochastic Processes Defined by Differential Equations. In: Stochastic Stability of Differential Equations. Stochastic Modelling and Applied Probability, vol 66. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23280-0_1

Download citation

Publish with us

Policies and ethics