Skip to main content

Muscarinic Receptor Agonists and Antagonists: Effects on Keratinocyte Functions

  • Chapter
  • First Online:
Muscarinic Receptors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 208))

Abstract

The stratified epithelium enveloping the skin and lining the surfaces of oral and vaginal mucosa is comprised by keratinocytes that synthesize, secrete, degrade, and respond to acetylcholine via muscarinic and nicotinic receptors. The two pathways may compete or synergize with one another, so that net biologic effect represents the biologic sum of the effects of distinct acetylcholine receptors expressed by a keratinocyte at a particular stage of its development. Keratinocytes express a unique combination of muscarinic receptor subtypes at each stage of their development. Experimental results indicate that muscarinic receptors expressed in human keratinocytes regulate their viability, proliferation, migration, adhesion, and terminal differentiation, hair follicle cycling, and secretion of humectants, cytokines, and growth factors. Learning the muscarinic pharmacology of keratinocyte development and functions has salient clinical implications for patients with nonhealing wounds, mucocutaneous cancers, and various autoimmune and inflammatory diseases. Successful therapy of pemphigus lesions with topical pilocarpine and disappearance of psoriatic lesions due to systemic atropine therapy illustrate that such therapeutic approach is feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arredondo J, Hall LL, Ndoye A, Chernyavsky AI, Jolkovsky DL, Grando SA (2003) Muscarinic acetylcholine receptors regulating cell cycle progression are expressed in human gingival keratinocytes. J Periodontal Res 38:79–89

    Article  PubMed  CAS  Google Scholar 

  • Arredondo J, Chernyavsky AI, Marubio LM, Beaudet AL, Jolkovsky DL, Pinkerton KE, Grando SA (2005) Receptor-mediated tobacco toxicity: regulation of gene expression through α3β2 nicotinic receptor in oral epithelial cells. Am J Pathol 166:597–613

    Article  PubMed  CAS  Google Scholar 

  • Beutner EH, Chorzelski TP, Jablonska S (1985) Immunofluorescence tests. Clinical significance of sera and skin in bullous diseases. Int J Dermatol 24:405–421

    PubMed  CAS  Google Scholar 

  • Carsi-Gabrenas JM, Van Der Zee EA, Luiten PGM, Potter LT (1997) Non-selectivity of the monoclonal antibody M35 for subtypes of muscarinic acetylcholine receptors. Brain Res Bull 44:25–31

    Article  PubMed  CAS  Google Scholar 

  • Chaffins ML, Collison D, Fivenson DP (1993) Treatment of pemphigus and linear IgA dermatosis with nicotinamide and tetracycline: a review of 13 cases. J Am Acad Dermatol 28:998–1000

    Article  PubMed  CAS  Google Scholar 

  • Chang MC, Ho YS, Lee PH, Chan CP, Lee JJ, Hahn LJ, Wang YJ, Jeng JH (2001) Areca nut extract and arecoline induced the cell cycle arrest but not apoptosis of cultured oral KB epithelial cells: association of glutathione, reactive oxygen species and mitochondrial membrane potential. Carcinogenesis 22:1527–1535

    Article  PubMed  CAS  Google Scholar 

  • Cheng YA, Shiue LF, Yu HS, Hsieh TY, Tsai CC (2000) Interleukin-8 secretion by cultured oral epidermoid carcinoma cells induced with nicotine and/or arecoline treatments. Kaohsiung J Med Sci 16:126–133

    PubMed  CAS  Google Scholar 

  • Chernyavsky AI, Arredondo J, Marubio LM, Grando SA (2004a) Differential regulation of keratinocyte chemokinesis and chemotaxis through distinct nicotinic receptor subtypes. J Cell Sci 117:5665–5679

    Article  PubMed  CAS  Google Scholar 

  • Chernyavsky AI, Arredondo J, Wess J, Karlsson E, Grando SA (2004b) Novel signaling pathways mediating reciprocal control of keratinocyte migration and wound epithelialization by M3 and M4 muscarinic receptors. J Cell Biol 166:261–272

    Article  PubMed  CAS  Google Scholar 

  • Chernyavsky AI, Arredondo J, Karlsson E, Wessler I, Grando SA (2005) The Ras/Raf-1/MEK1/ERK signaling pathway coupled to integrin expression mediates cholinergic regulation of keratinocyte directional migration. J Biol Chem 280:39220–39228

    Article  PubMed  CAS  Google Scholar 

  • Chernyavsky AI, Arredondo J, Vetter DE, Grando SA (2007) Central role of alpha9 acetylcholine receptor in coordinating keratinocyte adhesion and motility at the initiation of epithelialization. Exp Cell Res 313:3542–3555

    Article  PubMed  CAS  Google Scholar 

  • Chernyavsky AI, Arredondo J, Piser T, Karlsson E, Grando SA (2008) Differential coupling of M1 muscarinic and α7 nicotinic receptors to inhibition of pemphigus acantholysis. J Biol Chem 283:3401–3408

    Article  PubMed  CAS  Google Scholar 

  • Colley AM, Cavanagh HD, Law ML (1987) Effects of topical carbamylcholine on corneal epithelial resurfacing. Metab Pediatr Syst Ophthalmol 10:71–72

    PubMed  CAS  Google Scholar 

  • Curtis CA, Wheatley M, Bansal S, Birdsall NJ, Eveleigh P, Pedder EK, Poyner D, Hulme EC (1989) Propylbenzilylcholine mustard labels an acidic residue in transmembrane helix 3 of the muscarinic receptor. J Biol Chem 264:489–495

    PubMed  CAS  Google Scholar 

  • Dillon RS (1991) Role of cholinergic nervous system in healing neuropathic lesions: preliminary studies and prospective, double-blinded, placebo-controlled studies. Angiology 42:767–778

    Article  PubMed  CAS  Google Scholar 

  • DiPalma JR (1994) Basic pharmacology in medicine, 4th edn. McGraw-Hill, New York

    Google Scholar 

  • Donaldson DJ, Mahan JT (1988) Keratinocyte migration and the extracellular matrix. J Invest Dermatol 90:623–628

    Article  PubMed  CAS  Google Scholar 

  • Elgoyhen AB, Johnson DS, Boulter J, Vetter DE, Heinemann S (1994) α9: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell 79:705–715

    Article  PubMed  CAS  Google Scholar 

  • Elwary SM, Hasse S, Schallreuter KU (2004) m2 muscarinic acetylcholine receptor (mAchR) subtype is present in human epidermal keratinocytes in situ and in vivo. J Invest Dermatol 123:1206–1207

    Article  PubMed  CAS  Google Scholar 

  • Er H (1997) The effect of topical parasympathomimetics on corneal epithelial healing in rabbits. Doc Ophthalmol 93:327–335

    Article  PubMed  CAS  Google Scholar 

  • Gajewski W (1970) Disappearance of psoriatic skin rashes in the course of atropine therapy. Pol Tyg Lek 25:1815–1816

    PubMed  CAS  Google Scholar 

  • Gao YJ, Ling TY, Yin XM, Li X, Huang Y (2007) Effects of arecoline and nicotine on the expression of hTERT in oral keratinocytes. Zhonghua Kou Qiang Yi Xue Za Zhi 42:26–30

    PubMed  CAS  Google Scholar 

  • Ghelardini C, Galeotti N, Lelli C, Bartolini A (2001) M1 receptor activation is a requirement for arecoline analgesia. Farmaco 56:383–385

    Article  PubMed  CAS  Google Scholar 

  • Grabovoi AN, Prosha MV, Shcherbak LF (1994) Effects of carbacholine and noradrenaline on tissue reactions in healing of skin wounds (in Russian). Klin Khir 6:54–56

    PubMed  Google Scholar 

  • Grando SA (1997) Biological functions of keratinocyte cholinergic receptors. J Investig Dermatol Symp Proc 2:41–48

    PubMed  CAS  Google Scholar 

  • Grando SA (2000) Autoimmunity to keratinocyte acetylcholine receptors in pemphigus. Dermatology (Basel) 201:290–295

    Article  CAS  Google Scholar 

  • Grando SA (2004) New approaches to the treatment of pemphigus. J Investig Dermatol Symp Proc 9:84–91

    Article  PubMed  Google Scholar 

  • Grando SA (2006) Cholinergic control of epidermal cohesion in norm and pathology. Exp Dermatol 15:265–282

    Article  PubMed  CAS  Google Scholar 

  • Grando SA, Dahl MV (1993) Activation of keratinocyte muscarinic acetylcholine receptors reverses pemphigus acantholysis. J Eur Acad Dermatol Venereol 2:72–86

    Article  Google Scholar 

  • Grando SA, Horton RM (1997) The keratinocyte cholinergic system with acetylcholine as an epidermal cytotransmitter. Curr Opin Dermatol 4:262–268

    Google Scholar 

  • Grando SA, Kurzen H (2009) Cholinergic control of keratinocyte cohesion. In: Cirillo N, Lanza A, Gombo F (eds) Pathophysiology of the desmosome. Research Signpost, Kerela, India, pp 87–104

    Google Scholar 

  • Grando SA, Lynch PJ (1993) Muscarinic antagonist scopolamine protects keratinocyte monolayers from morphological transformations induced by enalapril and thiol drugs. J Invest Dermatol 100:541

    Google Scholar 

  • Grando SA, Crosby AM, Zelickson BD, Dahl MV (1993a) Agarose gel keratinocyte outgrowth system as a model of skin re-epithelization: requirement of endogenous acetylcholine for outgrowth initiation. J Invest Dermatol 101:804–810

    Article  PubMed  CAS  Google Scholar 

  • Grando SA, Kist DA, Qi M, Dahl MV (1993b) Human keratinocytes synthesize, secrete and degrade acetylcholine. J Invest Dermatol 101:32–36

    Article  PubMed  CAS  Google Scholar 

  • Grando SA, Horton RM, Pereira EFR, Diethelm-Okita BM, George PM, Albuquerque EX, Conti-Fine BM (1995a) A nicotinic acetylcholine receptor regulating cell adhesion and motility is expressed in human keratinocytes. J Invest Dermatol 105:774–781

    Article  PubMed  CAS  Google Scholar 

  • Grando SA, Zelickson BD, Kist DA, Weinshenker D, Bigliardi PL, Wendelschafer-Crabb G, Kennedy WR, Dahl MV (1995b) Keratinocyte muscarinic acetylcholine receptors: immunolocalization and partial characterization. J Invest Dermatol 104:95–100

    Article  PubMed  CAS  Google Scholar 

  • Grando SA, Pittelkow MR, Schallreuter KU (2006) Adrenergic and cholinergic control in the biology of epidermis: physiological and clinical significance. J Invest Dermatol 126:1948–1965

    Article  PubMed  CAS  Google Scholar 

  • Haberberger RV, Bodenbenner M (2000) Immunohistochemical localization of muscarinic receptors (M2) in the rat skin. Cell Tissue Res 300:389–396

    Article  PubMed  CAS  Google Scholar 

  • Harris AK (1990) Protrusive activity of the cell surface and the movements of tissue cells. In: Akkas N (ed) Biomechanics of active movement and deformation of cells, vol 42, NATO ASI Series H. Springer, Heidelberg, pp 249–294

    Chapter  Google Scholar 

  • Hasse S, Chernyavsky AI, Grando SA, Paus R (2007) The M4 muscarinic acetylcholine receptor plays a key role in the control of murine hair follicle cycling and pigmentation. Life Sci 80:2248–2252

    Article  PubMed  CAS  Google Scholar 

  • Iraji F, Yoosefi A (2006) Healing effect of Pilocarpine gel 4% on skin lesions of pemphigus vulgaris. Int J Dermatol 45:743–746

    Article  PubMed  CAS  Google Scholar 

  • Jeng JH, Hahn LJ, Lin BR, Hsieh CC, Chan CP, Chang MC (1999) Effects of areca nut, inflorescence piper betle extracts and arecoline on cytotoxicity, total and unscheduled DNA synthesis in cultured gingival keratinocytes. J Oral Pathol Med 28:64–71

    Article  PubMed  CAS  Google Scholar 

  • Jeng JH, Wang YJ, Chiang BL, Lee PH, Chan CP, Ho YS, Wang TM, Lee JJ, Hahn LJ, Chang MC (2003) Roles of keratinocyte inflammation in oral cancer: regulating the prostaglandin E2, interleukin-6 and TNF-alpha production of oral epithelial cells by areca nut extract and arecoline. Carcinogenesis 24:1301–1315

    Article  PubMed  CAS  Google Scholar 

  • Kalantari M, Molina DM, Farhadieh M, Morrow WJ, Liang X, Felgner PL, Grando SA (2011) New targets of pemphigus vulgaris antibodies identified by protein array technology. Exp Dermatol 20(2):154–156

    Article  Google Scholar 

  • Kebabian JW, Neumeyer JL (1994) The RBI handbook of receptor classification. Research Biochemicals International, Natick, p 122

    Google Scholar 

  • Klapproth H, Reinheimer T, Metzen J, Munch M, Bittinger F, Kirkpatrick CJ, Hohle KD, Schemann M, Racke K, Wessler I (1997) Non-neuronal acetylcholine, a signalling molecule synthezised by surface cells of rat and man. Naunyn Schmiedebergs Arch Pharmacol 355:515–523

    Article  PubMed  CAS  Google Scholar 

  • Koeppen A, Klein J, Erb C, Loeffelholz K (1997) Acetylcholine release and choline availability in rat hippocampus: effects of exogenous choline and nicotinamide. J Pharmacol Exp Ther 282:1139–1145

    Google Scholar 

  • Kurzen H, Brenner S (2006) Significance of autoimmunity to non-desmoglein targets in pemphigus. Autoimmunity 39:549–556

    Article  PubMed  CAS  Google Scholar 

  • Kurzen H, Schallreuter KU (2004) Novel aspects in cutaneous biology of acetylcholine synthesis and acetylcholine receptors. Exp Dermatol 13(Suppl 4):27–30

    Article  PubMed  CAS  Google Scholar 

  • Kurzen H, Berger H, Jager C, Hartschuh W, Naher H, Gratchev A, Goerdt S, Deichmann M (2004) Phenotypical and molecular profiling of the extraneuronal cholinergic system of the skin. J Invest Dermatol 123:937–949

    Article  PubMed  CAS  Google Scholar 

  • Kurzen H, Henrich C, Booken D, Poenitz N, Gratchev A, Klemke CD, Engstner M, Goerdt S, Maas-Szabowski N (2006) Functional characterization of the epidermal cholinergic system in vitro. J Invest Dermatol 126:2458–2472

    Article  PubMed  CAS  Google Scholar 

  • Kurzen H, Wessler I, Kirkpatrick CJ, Kawashima K, Grando SA (2007) The non-neuronal cholinergic system of human skin. Horm Metab Res 39:125–135

    Article  PubMed  CAS  Google Scholar 

  • Lanza A, Stellavato A, Heulfe I, Landi C, Gombos F, Cirillo N (2009) Serum of patients with oral pemphigus vulgaris impairs keratinocyte wound repair in vitro: a time-lapse study on the efficacy of methylprednisolone and pyridostigmine bromide. Oral Dis 15:478–483

    Article  PubMed  CAS  Google Scholar 

  • Larjava H, Salo T, Haapasalmi K, Kramer RH, Heino J (1993) Expression of integrins and basement membrane components by wound keratinocytes. J Clin Invest 92:1425–1435

    Article  PubMed  CAS  Google Scholar 

  • Leiber D, Harbon S, Guillet JG, Andre C, Strosberg AD (1984) Monoclonal antibodies to purified muscarinic receptor display agonist-like activity. Proc Natl Acad Sci U S A 81:4331–4334

    Article  PubMed  CAS  Google Scholar 

  • MacCallum DE, Hall PA (1999) Biochemical characterization of pKi67 with the identification of a mitotic-specific form associated with hyperphosphorylation and altered DNA binding. Exp Cell Res 252:186–198

    Article  PubMed  CAS  Google Scholar 

  • Marchisio PC, Bondanza S, Cremona O, Cancedda R, De Luca M (1991) Polarized expression of integrin receptors (α6β4, α2β1, α3β1, and αVβ5) and their relationship with the cytoskeleton and basement membrane matrix in cultured human keratinocytes. J Cell Biol 112:761–773

    Article  PubMed  CAS  Google Scholar 

  • McKinney M, Miller JH, Gibson VA, Nickelson L, Aksoy S (1991) Interactions of agonists with M2 and M4 muscarinic receptor subtypes mediating cyclic AMP inhibition. Mol Pharmacol 40:1014–1022

    PubMed  CAS  Google Scholar 

  • Menon GK, Brown BE, Elias PM (1986) Avian epidermal differentiation: role of lipids in permeability barrier formation. Tissue & Cell 18:71–82

    Article  CAS  Google Scholar 

  • Metzger M, Just L, Boss A, Drews U (2005) Identification and functional characterization of the muscarinic receptor M3 in the human keratinocyte cell line HaCaT. Cells Tissues Organs 180:96–105

    Article  PubMed  CAS  Google Scholar 

  • Namazi MR (2004) Practice pearl: gargling with cholinergic ophthalmic drops for treating the oral lesions of pemphigus vulgaris. J Drugs Dermatol 3:484–485

    PubMed  CAS  Google Scholar 

  • Ndoye A, Buchli R, Greenberg B, Nguyen VT, Zia S, Rodriguez JG, Webber RJ, Lawry MA, Grando SA (1998) Identification and mapping of keratinocyte muscarinic acetylcholine receptor subtypes in human epidermis. J Invest Dermatol 111:410–416

    Article  PubMed  CAS  Google Scholar 

  • Nguyen VT, Lee TX, Ndoye A, Shultz LD, Pittelkow MR, Dahl MV, Lynch PJ, Grando SA (1998) The pathophysiological significance of non-desmoglein targets of pemphigus autoimmunity. Pemphigus vulgaris and foliaceus patients develop antibodies against keratinocyte cholinergic receptors. Arch Dermatol 134:971–980

    Article  CAS  Google Scholar 

  • Nguyen VT, Ndoye A, Grando SA (2000a) Novel human α9 acetylcholine receptor regulating keratinocyte adhesion is targeted by pemphigus vulgaris autoimmunity. Am J Pathol 157:1377–1391

    Article  PubMed  CAS  Google Scholar 

  • Nguyen VT, Ndoye A, Grando SA (2000b) Pemphigus vulgaris antibody identifies pemphaxin – a novel keratinocyte annexin-like molecule binding acetylcholine. J Biol Chem 275:29466–29476

    Article  PubMed  CAS  Google Scholar 

  • Nguyen VT, Ndoye A, Hall LL, Zia S, Arredondo J, Chernyavsky AI, Kist DA, Zelickson BD, Lawry MA, Grando SA (2001) Programmed cell death of keratinocytes culminates in apoptotic secretion of a humectant upon secretagogue action of acetylcholine. J Cell Sci 114:1189–1204

    PubMed  CAS  Google Scholar 

  • Nguyen VT, Arredondo J, Chernyavsky AI, Kitajima Y, Grando SA (2003) Keratinocyte acetylcholine receptors regulate cell adhesion. Life Sci 72:2081–2085

    Article  PubMed  CAS  Google Scholar 

  • Nguyen VT, Arredondo J, Chernyavsky AI, Pittelkow MR, Kitajima Y, Grando SA (2004a) Pemphigus vulgaris acantholysis ameliorated by cholinergic agonists. Arch Dermatol 140:327–334

    Article  PubMed  CAS  Google Scholar 

  • Nguyen VT, Chernyavsky AI, Arredondo J, Bercovich D, Orr-Urtreger A, Vetter DE, Wess J, Beaudet AL, Kitajima Y, Grando SA (2004b) Synergistic control of keratinocyte adhesion through muscarinic and nicotinic acetylcholine receptor subtypes. Exp Cell Res 294:534–549

    Article  PubMed  CAS  Google Scholar 

  • Nishimura KY, Isseroff RR, Nuccitelli R (1996) Human keratinocytes migrate to the negative pole in direct current electric fields comparable to those measured in mammalian wounds. J Cell Sci 109:199–207

    PubMed  CAS  Google Scholar 

  • O’Keefe EJ, Woodley D, Castillo G, Russell N, Payne RE Jr (1984) Production of soluble and cell-associated fibronectin by cultured keratinocytes. J Invest Dermatol 82:150–155

    Article  PubMed  Google Scholar 

  • Ozturk F, Kurt E, Inan UU, Emiroglu L, Ilker SS (1999) The effects of acetylcholine and propolis extract on corneal epithelial wound healing in rats. Cornea 18:466–471

    Article  PubMed  CAS  Google Scholar 

  • Paus R, Muller-Rover S, Van Der Veen C, Maurer M, Eichmuller S, Ling G, Hofmann U, Foitzik K, Mecklenburg L, Handjiski B (1999) A comprehensive guide for the recognition and classification of distinct stages of hair follicle morphogenesis. J Invest Dermatol 113:523–532

    Article  PubMed  CAS  Google Scholar 

  • Romanenko AV (1987) The action of nicotinamide on neuromuscular transmission. Fiziol Zh 33:51–56

    PubMed  CAS  Google Scholar 

  • Schafer IA, Kovach M, Price RL, Fratianne RB (1991) Human keratinocytes cultured on collagen gels form an epidermis which synthesizes bullous pemphigoid antigens and alpha 2 beta 1 integrins and secretes laminin, type IV collagen, and heparan sulfate proteoglycan at the basal cell surface. Exp Cell Res 195:443–457

    Article  PubMed  CAS  Google Scholar 

  • Schoenwaelder SM, Burridge K (1999) Bidirectional signaling between the cytoskeleton and integrins. Curr Opin Cell Biol 11:274–286

    Article  PubMed  CAS  Google Scholar 

  • Stoytcheva M, Zlatev R (1996) Bioelectrocatalytical studies of the effect of some pharmaceuticals on the acetylcholinesterase activity. Electroanalysis 8:676–679

    Article  CAS  Google Scholar 

  • Thangjam GS, Kondaiah P (2009) Regulation of oxidative-stress responsive genes by arecoline in human keratinocytes. J Periodontal Res 44:673–682

    Article  PubMed  CAS  Google Scholar 

  • Theriot JA, Mitchison TJ (1991) Actin microfilament dynamics in locomoting cells. Nature 352:126–131

    Article  PubMed  CAS  Google Scholar 

  • Tsurimoto T (1999) PCNA binding proteins. Front Biosci 4:849–858

    Article  Google Scholar 

  • Wessler I (1998) New use of active ingredients which affect non-neuronal acetylcholine functions PCT Gazette WO 98/00119. Boehringer Ingelheim KG, Germany

    Google Scholar 

  • Wessler I, Kirkpatrick CJ, Racke K (1999) The cholinergic ‘pitfall’: acetylcholine, a universal cell molecule in biological systems, including humans. Clin Exp Pharmacol Physiol 26:198–205

    Article  PubMed  CAS  Google Scholar 

  • Xia L, Tian-You L, Yi-Jun G, Dong-Sheng T, Wen-Hui L (2009) Arecoline and oral keratinocytes may affect the collagen metabolism of fibroblasts. J Oral Pathol Med 38:422–426

    Article  PubMed  CAS  Google Scholar 

  • Xie DP, Chen LB, Liu CY, Zhang CL, Liu KJ, Wang PS (2004) Arecoline excites the colonic smooth muscle motility via M3 receptor in rabbits. Chin J Physiol 47:89–94

    PubMed  CAS  Google Scholar 

  • Yang YR, Chang KC, Chen CL, Chiu TH (2000) Arecoline excites rat locus coeruleus neurons by activating the M2-muscarinic receptor. Chin J Physiol 43:23–28

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the NIH grants GM62136 and DE14173.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei A. Grando .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grando, S.A. (2012). Muscarinic Receptor Agonists and Antagonists: Effects on Keratinocyte Functions. In: Fryer, A., Christopoulos, A., Nathanson, N. (eds) Muscarinic Receptors. Handbook of Experimental Pharmacology, vol 208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23274-9_18

Download citation

Publish with us

Policies and ethics