Skip to main content

Filtering of FTLE for Visualizing Spatial Separation in Unsteady 3D Flow

  • Chapter
  • First Online:
Topological Methods in Data Analysis and Visualization II

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

In many cases, feature detection for flow visualization is structured in two phases: first candidate identification, and then filtering. With this paper, we propose to use the directional information contained in the finite-time Lyapunov exponents (FTLE) computation, in order to filter the FTLE field. In this way we focus on those separation structures that delineate flow compartments which develop into different spatial locations, as compared to those that separate parallel flows of different speed. We provide a discussion of the underlying theory and our related considerations. We derive a new filtering scheme and demonstrate its effect in the context of several selected fluid flow cases, especially in comparison with unfiltered FTLE visualization. Since previous work has provided insight with respect to the studied flow patterns, we are able to provide a discussion of the resulting visible separation structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asimov, D.: Notes on the topology of vector fields and flows. Tech. rep., NASA Ames Research Center (1993). RNR-93-003

    Google Scholar 

  2. Bürger, R., Muigg, P., Doleisch, H., Hauser, H.: Interactive cross-detector analysis of vortical flow data. In: Proceedings of the 5th International Conference on Coordinated and Multiple Views in Exploratory Visualization (CMV 2007). IEEE Computer Society, Zurich, Switzerland, pp. 98–110 (2007)

    Google Scholar 

  3. Bürger, R., Muigg, P., Ilčík, M., Doleisch, H., Hauser, H.: Integrating local feature detectors in the interactive visual analysis of flow simulation data. In: Museth, K., Möller, T., Ynnerman A. (eds.) Data Visualization 2007: Proceedings of the 9th Joint Eurographics – IEEE vgtc Symposium on Visualization (EuroVis 2007). Eurographics Association, Norrköping, Sweden, pp. 171–178. A K Peters (2007)

    Google Scholar 

  4. Doleisch, H.: SimVis: Interactive visual analysis of large and time-dependent 3D simulation data. In: Proceedings of the 2007 Winter Conference on Simulation (WSC 2007), pp. 712–720 (2007)

    Google Scholar 

  5. Doleisch, H., Hauser, H.: Smooth brushing for focus+context visualization of simulation data in 3D. J. WSCG 11(1–2), 147–154 (2001)

    Google Scholar 

  6. Fuchs, R., Kemmler, J., Schindler, B., Waser, J., Sadlo, F., Hauser, H., Peikert, R.: Toward a lagrangian vector field topology. Comput. Graph. Forum 29(3), 1163–1172 (2010)

    Article  Google Scholar 

  7. Garth, C., Gerhardt, F., Tricoche, X., Hagen, H.: Efficient computation and visualization of coherent structures in fluid flow applications. IEEE Trans. Vis. Comput. Graph. 13(6), 1464–1471 (2007)

    Article  Google Scholar 

  8. Garth, C., Li, G.S., Tricoche, X., Hansen, C.D., Hagen, H.: Visualization of coherent structures in transient 2D flows. In: Hege, H.C., Polthier, K., Scheuermann G. (eds.) Topology-Based Methods in Visualization II: Proceedings of the 2nd TopoInVis Workshop (TopoInVis 2007), pp. 1–13 (2009)

    Google Scholar 

  9. Gill, P.E., Murray, W., Wright, M.: Numerical Linear Algebra and Optimization, 1st edn. Addison Wesley Publishing Company, Boston MA, USA (1991)

    MATH  Google Scholar 

  10. Globus, A., Levit, C., Lasinski, T.: A tool for visualizing the topology of three-dimensional vector fields. In: Proceedings of IEEE Visualization ’91. IEEE Computer Society, San Diego, California USA, pp. 33–40 (1991)

    Google Scholar 

  11. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins Studies in Mathematical Sciences. The Johns Hopkins University Press (1996)

    MATH  Google Scholar 

  12. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I, 2nd edn. Springer Series in Computational Mathematics. Berlin Heidelberg, Germany, Springer (1993)

    MATH  Google Scholar 

  13. Haller, G.: Distinguished material surfaces and coherent structures in three-dimensional fluid flows. Physica D 149, 248–277 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Haller, G.: Lagrangian coherent structures from approximate velocity data. Phys. Fluids 14, 1851–1861 (2002)

    Article  MathSciNet  Google Scholar 

  15. Haller, G., Sapsis, T.: Lagrangian coherent structures and the smallest finite-time lyapunov exponent. Chaos 21(21), pp. 1–7, (2010)

    Google Scholar 

  16. Hayes, M.: On strain and straining. Arch. Rational Mech. Anal. 100(3), 265–273 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  17. Helman, J., Hesselink, L.: Representation and display of vector field topology in fluid flow data sets. IEEE Computer 22(8), 27–36 (1989)

    Article  Google Scholar 

  18. Helman, J., Hesselink, L.: Visualizing vector field topology in fluid flows. IEEE Comput. Graph. Appl. 11, 36–46 (1991)

    Article  Google Scholar 

  19. Jordan, D.W., Smith, P.: Nonlinear ordinary differential equations : an introduction for scientists and engineers, 4th edn. Oxford Applied and Engineering Mathematics. Oxford University Press, Oxford, UK (2007)

    Google Scholar 

  20. Kasten, J., Petz, C., Hotz, I., Noack, B., Hege, H.C.: Localized finite-time Lyapunov exponent for unsteady flow analysis. In proceedings of VMV’09 Braunschwag, Germany, pp. 265–274 (2009)

    Google Scholar 

  21. Lipinski, D., Mohseni, K.: A ridge tracking algorithm and error estimate for efficient computation of Lagrangian coherent structures. Chaos 20(1), 017,504 (2010)

    Google Scholar 

  22. Mase, G.E.: Continuum Mechanics, 1st edn. Schaum’s Outline Series. McGraw-Hill, New York NY, USA (1969)

    Google Scholar 

  23. Obermaier, H., Hering-Bertram, M., Kuhnert, J., Hagen, H.: Volume deformations in grid-less flow simulations. Comput. Graph. Forum 28(3), 879–886 (2009)

    Article  Google Scholar 

  24. Perry, A., Chong, M.: Topology of flow patterns in vortex motions and turbulence. Appl. Sci. Res. 53, 357–374 (1994)

    Article  MATH  Google Scholar 

  25. Pobitzer, A., Peikert, R., Fuchs, R., Schindler, B., Kuhn, A., Theisel, H., Matković, K., Hauser, H.: On the way towards topology-based visualization of unsteady flow – the state of the art. In: Eurographics 2010 – State of the Art Reports. Eurographics Association, Norrköping, Sweden (2010)

    Google Scholar 

  26. Sadlo, F., Peikert, R.: Efficient visualization of Lagrangian coherent structures by filtered AMR ridge extraction. IEEE Trans. Vis. Comput. Graph. 13(6), 1456–1463 (2007)

    Article  Google Scholar 

  27. Sadlo, F., Peikert, R.: Visualizing Lagrangian coherent structures: a comparison to vector field topology. In: Hege, H.C., Polthier, K., Scheuermann G. (eds.) Topology-Based Methods in Visualization II: Proceedings of the 2nd TopoInVis Workshop (TopoInVis 2007), pp. 15–29, Grimma, Germany (2009)

    Google Scholar 

  28. Sadlo, F., Peikert, R.: Time-dependent visualization of Lagrangian coherent structures by grid advection. In: Pascucci, V., Tricoche, X., Hagen, H., Tierny J. (eds.) Topological Methods in Data Analysis and Visualization: Theory, Algorithms and Applications. Berlin Heidelberg, Germany, Springer (2011)

    Google Scholar 

  29. Shadden, S., Lekien, F., Marsden, J.: Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D 212, 271–304 (2005). DOI 10.1016/j.physd.2005.10.007

    Article  MATH  MathSciNet  Google Scholar 

  30. Shi, K., Theisel, H., Weinkauf, T., Hege, H.C., Seidel, H.P.: Visualizing transport structures of time-dependent flow fields. Comput. Graph. Appl. 28(5), 24–36 (2008)

    Article  Google Scholar 

  31. Theisel, H., Weinkauf, T., Hege, H.C., Seidel, H.P.: Topological methods for 2D time-dependent vector fields based on stream lines and path lines. IEEE Trans. Vis. Comput. Graph. 11(4), 383–394 (2005)

    Article  Google Scholar 

  32. Wasberg, C.E.: Post-processing of marginally resolved spectral element data. In: Rønquist E.M. (ed.) ICOSAHOM Conference Proceedings. Berlin Heidelberg, Germany, Springer (2011)

    Google Scholar 

  33. Wiebel, A., Chan, R., Wolf, C., Robitzki, A., Stevens, A., Scheuermann, G.: Topological flow structures in a mathematical model for rotation-mediated cell aggregation. In: Pascucci, V., Tricoche, X., Hagen, H., Tierny J. (eds.) Topological Methods in Data Analysis and Visualization: Theory, Algorithms and Applications. Berlin Heidelberg, Germany, Springer (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armin Pobitzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pobitzer, A., Peikert, R., Fuchs, R., Theisel, H., Hauser, H. (2012). Filtering of FTLE for Visualizing Spatial Separation in Unsteady 3D Flow. In: Peikert, R., Hauser, H., Carr, H., Fuchs, R. (eds) Topological Methods in Data Analysis and Visualization II. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23175-9_16

Download citation

Publish with us

Policies and ethics