Skip to main content

History of Heparin

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 207))

Abstract

The history of heparin is described from its initial discovery in 1916 to recent developments in knowledge of its mechanism of action and clinical use. Commercial production started soon after its discovery, in the 1920s, and improved purification methods led to animal studies and the first clinical trials in the 1930s. Research into heparin’s chemical structure proved difficult, with uncertainty about the uronic acid moiety and the N-acetyl content, but the structure of the basic disaccharide unit was established by the 1960s, though knowledge of the heterogeneity and fine structure of heparin chains continued to accumulate over the next 20 years. In 1976, it was found that only one third of heparin chains bound with high affinity to antithrombin, and subsequent studies identified a unique pentasaccharide sequence, which was essential for antithrombin binding and anticoagulant activity – this pentasaccharide was synthesised in 1983. Clinical usage of heparin continued to increase and two major developments were the use of low- dose heparin for prevention of deep vein thrombosis and pulmonary embolism, and the development of low-molecular-weight heparin as a separate drug.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abildgaard U (1968) Highly purified antithrombin 3 with heparin cofactor activity prepared by disc electrophoresis. Scand J Clin Lab Invest 21(1):89–91

    Article  PubMed  CAS  Google Scholar 

  • Abildgaard U (1975) Heparin cofactor and antithrombin. Thromb Diath Haemorrh 33(1):38–42

    PubMed  CAS  Google Scholar 

  • Adams SS, Smith KL (1950) The use of sulphated whole blood in the assay of heparin. J Pharm Pharmacol 2(11):836–846

    Article  PubMed  CAS  Google Scholar 

  • Alban S (2011) Adverse effects of heparin. In: Lever R, Mulloy B, Page CP (eds) Heparin – a century of progress. Springer, Heidelberg 211–263

    Google Scholar 

  • Anderson L-O, Barrowcliffe TW, Holmer E, Johnson EA, Sims GEC (1976) Anticoagulant properties of heparin fractionated by affinity chromatography on matrix-bound antithrombin III and by gel filtration. Thromb Res 9:575–583

    Article  Google Scholar 

  • Andersson L-O, Barrowcliffe TW, Holmer E, Söderström G (1979) Molecular weight dependency of the heparin potentiated inhibition of thrombin and activated Factor X. Effect of heparin neutralisation in plasma. Thromb Res 15:531–541

    Article  PubMed  CAS  Google Scholar 

  • Anonymous (1975) Prevention of fatal postoperative pulmonary embolism by low doses of heparin. An international multicentre trial. Lancet 2(7924):45–51

    Google Scholar 

  • Bangham DR, Woodward PM (1970) A collaborative study of heparins from different sources. Bull World Health Organ 42(1):129–149

    PubMed  CAS  Google Scholar 

  • Barritt D, Jordan S (1960) Anticoagulant drugs in the treatment of pulmonary embolism: a controlled trial. Lancet 1:1309–1312

    Article  PubMed  CAS  Google Scholar 

  • Barrowcliffe TW (1989) Heparin assays and standardisation. In: Lane DA, Lindahl U (eds) Heparin, chemical and biological properties, clinical applications. Edward Arnold, London

    Google Scholar 

  • Barrowcliffe TW (1995) Low molecular weight heparin(s). Br J Haematol 90(1):1–7

    Article  PubMed  CAS  Google Scholar 

  • Barrowcliffe TW, Gutteridge JMC, Dormandy TL (1975) The effect of fatty acid autoxidation products on blood coagulation. Thromb Diath Haemorrh 33:271–277

    PubMed  CAS  Google Scholar 

  • Barrowcliffe TW, Johnson EA, Eggleton CA, Thomas DP (1978) Anticoagulant activities of lung and mucosal heparins. Thromb Res 12:27–36

    Article  PubMed  CAS  Google Scholar 

  • Barrowcliffe TW, Curtis AD, Tomlinson TP, Hubbard AR, Johnson EA, Thomas DP (1985) Standardisation of low molecular weight heparins: a collaborative study. Thromb Haemost 54:675–679

    PubMed  CAS  Google Scholar 

  • Barrowcliffe TW, Curtis AD, Johnson EA, Thomas DP (1988) An International Standard for LMW heparin. Thromb Haemost 60:1–7

    PubMed  CAS  Google Scholar 

  • Best CH (1959) Preparation of heparin and its use in the first clinical cases. Circulation 19:79–86

    PubMed  CAS  Google Scholar 

  • Björk I, Olson ST, Shore JD (1989) Molecular mechanisms of the accelerating effect of heparin on the reactions between antithrombin and clotting preteinases. In: Lane DA, Lindahl U (eds) Heparin, chemical and biological properties, clinical applications. Edward Arnold, London

    Google Scholar 

  • Bratt G, Törnebohm E, Granqvist S, Aberg W, Lockner D (1985) A comparison between low molecular weight heparin (KABI 2165) and standard heparin in the intravenous treatment of deep venous thrombosis. Thromb Haemost 54(4):813–817

    PubMed  CAS  Google Scholar 

  • Brinkhous KM, Smith HP Jr, Warner ED, Seegers WH (1939) The inhibition of blood clotting: an unidentified substance which acts in conjunction with heparin to prevent the conversion of prothrombin into thrombin. Am J Physiol 125:683–687

    CAS  Google Scholar 

  • Carlström AS, Liedén K, Björk I (1977) Decreased binding of heparin to antithrombin following the interaction between antithrombin and thrombin. Thromb Res 11(6):785–797

    Article  PubMed  Google Scholar 

  • Carrell R, Skinner R, Warden M, Whisstock J (1995) Antithrombin and heparin. Mol Med Today 1(5):226–231

    Article  PubMed  CAS  Google Scholar 

  • Charles AF, Scott DA (1933a) Studies on heparin I: the preparation of heparin. J Biol Chem 102:425–429

    CAS  Google Scholar 

  • Charles AF, Scott DA (1933b) Studies on heparin II: heparin in various tissues. J Biol Chem 102:431–435

    CAS  Google Scholar 

  • Charles AF, Todd AR (1940) Observations on the structure of the barium salt of heparin. Biochem J 34(1):112–118

    PubMed  CAS  Google Scholar 

  • Choay J, Petitou M, Lormeau JC, Sinaÿ P, Casu B, Gatti G (1983) Structure-activity relationship in heparin: a synthetic pentasaccharide with high affinity for antithrombin III and eliciting high anti-factor Xa activity. Biochem Biophys Res Commun 116(2):492–499

    Article  PubMed  CAS  Google Scholar 

  • Cifonelli JA, Dorfman A (1962) The uronic acid of heparin. Biochem Biophys Res Commun 7:41–45

    Article  PubMed  CAS  Google Scholar 

  • Collins R, Scrimgeour A, Yusef S, Peto R (1988) Reductions in fatal pulmonary embolism and venous thrombosis by perioperative administration of subcutaneous heparin. Overview of results of randomized trials in general, orthopedic and urological surgery. N Engl J Med 318:1162–1173

    Article  PubMed  CAS  Google Scholar 

  • Coyne E (1981) Heparin – past, present and future. In: Lundblad RL, Brown WV, Mann KG, Roberts HR (eds) Chemistry and biology of heparin. Elsevier, New York

    Google Scholar 

  • Crafoord C (1939) Heparin and post-operative thrombosis. Acta Chir Scand 82:319–333

    Google Scholar 

  • Damus PS, Hicks M, Rosenberg RD (1973) Anticoagulant action of heparin. Nature 246(5432):355–357

    Article  PubMed  CAS  Google Scholar 

  • Danielsson A, Raub E, Lindahl U, Björk I (1986) Role of ternary complexes, in which heparin binds both antithrombin and proteinase, in the acceleration of the reactions between antithrombin and thrombin or factor Xa. J Biol Chem 261(33):15467–15473

    PubMed  CAS  Google Scholar 

  • Denson KW, Bonnar J (1973) The measurement of heparin. A method based on the potentiation of anti-factor Xa. Thromb Diath Haemorrh 30(3):471–479

    PubMed  CAS  Google Scholar 

  • Doyon M, Morel A, Policard A (1911) Estraition directe de l’antithrombine du foie. Influence de la congelation du sang. C R Soc Biol Paris 70:341–346

    CAS  Google Scholar 

  • Foster RHK, Nutley NJ (1942) The assay of heparin. J Lab Clin Med 27:820–827

    CAS  Google Scholar 

  • Gallus AS, Hirsh J, Tutle RJ, Trebilcock R, O'Brien SE, Carroll JJ, Minden JH, Hudecki SM (1973) Small subcutaneous doses of heparin in prevention of venous thrombosis. N Engl J Med 288(11):545–551

    Article  PubMed  CAS  Google Scholar 

  • Gomperts ED, Zucker ML (1978) Heparin, brain thromboplastin and the insensitivity of the prothrombin time to heparin activity. Thromb Res 12(1):105–117

    Article  PubMed  CAS  Google Scholar 

  • Gray E, Mulloy B, Barrowcliffe TW (2008) Heparin and low-molecular-weight heparin. Thromb Haemost 99:807–818

    PubMed  CAS  Google Scholar 

  • Gray E (2011) Standardisation of Unfractionated and Low-Molecular-Weight Heparin. In: Lever R, Mulloy B, Page CP (eds) Heparin – a century of progress. Springer, Heidelberg 65–76

    Google Scholar 

  • Griffith MJ (1979) Kinetic analysis of the heparin-enhanced antithrombin III/thrombin reaction. Reaction rate enhancement by heparin-thrombin association. J Biol Chem 254(23):12044–12049

    PubMed  CAS  Google Scholar 

  • Höök M, Björk I, Hopwood J, Lindahl U (1976) Anticoagulant activity of heparin: separation of high-activity and low-activity heparin species by affinity chromatography on immobilized antithrombin. FEBS Lett 66(1):90–93

    Article  PubMed  Google Scholar 

  • Howell WH (1925) The purification of heparin and its presence in blood. Am J Physiol 17:553–562

    Google Scholar 

  • Howell WH (1928) The purification of heparin and its chemical and physiological reactions. Bull John Hopkins Hosp 42:199–206

    CAS  Google Scholar 

  • Howell WH, Holt E (1918) Two new factors in blood coagulation – heparin and pro-antithrombin. Am J Physiol 47:328–341

    CAS  Google Scholar 

  • Hull RD, Pineo GF (2000) Low-molecular-weight heparin in the treatment of venous thromboembolism. Semin Thromb Hemost 26(Suppl 1):61–67

    Article  PubMed  CAS  Google Scholar 

  • Jaques LB (1940) The heparins of various mammalian species and their relative anti-coagulant potency. Science 92(2395):488–489

    Article  PubMed  CAS  Google Scholar 

  • Jaques LB (1978) Addendum: the discovery of heparin. Semin Thromb Hemost 4:350–353

    PubMed  CAS  Google Scholar 

  • Jaques LB, Charles AF (1941) The assay of heparin. Quart J Pharm Pharmacol 14:1–15

    CAS  Google Scholar 

  • Johnson EA (1992) Historical note. In: Barrowcliffe TW, Johnson EA, Thomas DP (eds) Low molecular weight heparin. Wiley, Chichester

    Google Scholar 

  • Johnson EA, Mulloy B (1976) The molecular-weight range of mucosal-heparin preparations. Carbohydr Res 51(1):119–127

    Article  PubMed  CAS  Google Scholar 

  • Johnson EA, Kirkwood TB, Stirling Y, Perez-Requejo JL, Ingram GI, Bangham DR, Brozović M (1976) Four heparin preparations: anti-Xa potentiating effect of heparin after subcutaneous injection. Thromb Haemost 35(3):586–591

    PubMed  CAS  Google Scholar 

  • Jorpes E (1935) The chemistry of heparin. Biochem J 29(8):1817–1830

    PubMed  CAS  Google Scholar 

  • Jorpes E, Bergström S (1936) Der aminozucker des heparins. Hoppe Seylers Z Physiol Chem 244:253–259

    Article  CAS  Google Scholar 

  • Kakkar VV, Corrigan T, Spindler J, Fossard DP, Flute PT, Crellin RQ, Wessler S, Yin ET (1972) Efficacy of low doses of heparin in prevention of deep-vein thrombosis after major surgery. A double-blind, randomised trial. Lancet 2(7768):101–106

    Article  PubMed  CAS  Google Scholar 

  • Kakkar VV, Djazaeri B, Fok J, Fletcher M, Scully MF, Westwick J (1982) Low-molecular-weight heparin and prevention of postoperative deep vein thrombosis. Br Med J 284:375–379

    Article  CAS  Google Scholar 

  • Kjems H, Wagner H (1948) A new method for the assay of heparin. Acta Pharmacol 4:155–163

    Article  CAS  Google Scholar 

  • Koller M, Schoch U, Buchmann P, Largiader F, von Felten A, Frick PG (1986) Low molecular weight heparin (KABI 2165) as thromboprophylaxis in elective visceral surgery. A randomized double-blind study versus unfractionated heparin. Thromb Haemost 56:243–246

    PubMed  CAS  Google Scholar 

  • Kuizenga MH, Nelson JW, Cartland GF (1943) The bioassay of heparin preparations. Am J Physiol 139:612–616

    CAS  Google Scholar 

  • Lam LH, Silbert JE, Rosenberg RD (1976) The separation of active and inactive forms of heparin. Biochem Biophys Res Commun 69(2):570–577

    Article  PubMed  CAS  Google Scholar 

  • Lane DA, Denton J, Flynn AM, Thunberg L, Lindahl U (1984) Anticoagulant activities of heparin oligosaccharides and their neutralization by platelet factor 4. Biochem J 218(3):725–732

    PubMed  CAS  Google Scholar 

  • League of Nations (1943/1944) Memorandum on a provisional International Standard for heparin. Bull Health Organ League Nations 10:51

    Google Scholar 

  • Lindahl U, Axelsson OJ (1971) Identification of iduronic acid as the major sulfated uronic acid of heparin. J Biol Chem 246(1):74–82

    PubMed  CAS  Google Scholar 

  • Lindahl U, Bäckström G, Höök M, Thunberg L, Fransson LA, Linker A (1979) Proc Natl Acad Sci USA 76(7):3198–3202

    Article  PubMed  CAS  Google Scholar 

  • Lindahl U, Bäckström G, Thunberg L, Leder IG (1980) Evidence for a 3-O-sulfated D-glucosamine residue in the antithrombin-binding sequence of heparin. Proc Natl Acad Sci USA 77(11):6551–6555

    Article  PubMed  CAS  Google Scholar 

  • Longas MO, Ferguson WS, Finlay TH (1980) Studies on the interaction of heparin with thrombin, antithrombin, and other plasma proteins. Arch Biochem Biophys 200(2):505–602

    Article  PubMed  CAS  Google Scholar 

  • Mason EC (1924) A note on the use of heparin in blood transfusion. J Lab Clin Med 10:203–206

    Google Scholar 

  • McIntosh FC (1941) A method for estimating the potency of heparin preparations. Biochem J 35:770–775

    Google Scholar 

  • McLean J (1916) The thromboplastic action of cephalin. Am J Physiol 41:250–257

    Google Scholar 

  • McLean J (1959) The discovery of heparin. Circulation 19(1):75–78

    PubMed  CAS  Google Scholar 

  • Nicolaides AN, Dupont PA, Desai S, Lewis JD, Douglas JN, Dodsworth H, Fourides G, Luck RJ, Jamieson CW (1972) Small doses of subcutaneous sodium heparin in preventing deep venous thrombosis after major surgery. Lancet 2(7783):890–893

    Article  PubMed  CAS  Google Scholar 

  • Perlin AS, Mackie DM, Dietrich CP (1971) Evidence for a (1→4)-linked 4-O-(-L-idopyranosyluronic acid 2-sulfate)-(2-deoxy-2-sulfoamino-D-glucopyranosyl 6-sulfate) sequence in heparin. Long-range H-H coupling in 4-deoxy-hex-4-enopyranosides. Carbohydr Res 18(2):185–194

    Article  PubMed  CAS  Google Scholar 

  • Quick AJ (1935) The prothrombin in haemophilia and in obstructive jaundice. J Biol Chem 109:Ixiii–Ixiv

    Google Scholar 

  • Quick AJ (1938a) On the action of heparin and its relation to thromboplastin. Am J Physiol 115:317–333

    Google Scholar 

  • Quick AJ (1938b) The normal antithrombin of the blood and its relation to heparin. Am J Physiol 123:712–719

    CAS  Google Scholar 

  • Reinert M, Winterstein A (1939) Contribution to the study of heparin. Arch Int Pharmacodyn Ther 62:47–48

    CAS  Google Scholar 

  • Roden L (1989) Highlights in the history of heparin. In: Lane DA, Lindahl U (eds) Heparin, chemical and biological properties, clinical applications. Edward Arnold, London

    Google Scholar 

  • Schmitz A, Fischer A (1933) Uber die chemische natur des heparins. III. Einige untersuchungen zur constitution des heparins. Hoppe Seylers Z Physiol Chem 216:274–280

    Article  CAS  Google Scholar 

  • Schmitz-Huebner U, Bünte H, Freise G, Reers B, Rüschemeyer C, Scherer R, Schulte H, van de Loo J (1984) Clinical efficacy of low molecular weight heparin in postoperative thrombosis prophylaxis. Klin Wochenschr 62(8):349–353

    Article  PubMed  CAS  Google Scholar 

  • Schutz F (1941) Biological standardisation of anticoagulants. Quart J Pharm Pharmacol 14:45–48

    CAS  Google Scholar 

  • Sharnoff JG, Kass HH, Mistica BA (1962) A plan of heparinization of the surgical patient to prevent postoperative thromboembolism. Surg Gynecol Obstet 115:75–79

    PubMed  CAS  Google Scholar 

  • Thomas DP (1992) Experimental studies in animals. In: Barrowcliffe TW, Johnson EA, Thomas DP (eds) Low molecular weight heparin. Wiley, Chichester

    Google Scholar 

  • Thomas DP, Merton RE, Lewis WE, Barrowcliffe TW (1981) Studies in man and experimental animals of a low molecular weight heparin fraction. Thromb Haemost 45(3):214–218

    PubMed  CAS  Google Scholar 

  • Thunberg L, Bäckström G, Lindahl U (1982) Further characterization of the antithrombin-binding sequence in heparin. Carbohydr Res 100:393–410

    Article  PubMed  CAS  Google Scholar 

  • WHO Expert Committee on Biological Standardisation (1947/1948) Bull World Health Organ 1:9

    Google Scholar 

  • Wolfrom ML, Rice FAH (1946) The uronic acid component of heparin. J Am Med Assoc 68:532–537

    CAS  Google Scholar 

  • Wolfrom ML, Wang PY, Honda S (1969) On the distribution of sulphate in heparin. Carbohydr Res 11:179–185

    Article  CAS  Google Scholar 

  • Yin ET, Wessler S, Butler JV (1973) Plasma heparin: a unique, practical, submicrogram-sensitive assay. J Lab Clin Med 81(2):298–310

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. W. Barrowcliffe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barrowcliffe, T.W. (2012). History of Heparin. In: Lever, R., Mulloy, B., Page, C. (eds) Heparin - A Century of Progress. Handbook of Experimental Pharmacology, vol 207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23056-1_1

Download citation

Publish with us

Policies and ethics