Skip to main content

Sugary Exudates in Plant Pollination

  • Chapter
  • First Online:
Secretions and Exudates in Biological Systems

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 12))

Abstract

Sugary secretions are present in many plants and frequently they are linked with reproductive processes. Most of the gymnosperms, both extant and extinct, possess a pollination drop, a diluted sugary secretion protruding from the micropyle, which serves for pollen capture, hydration, and transport in the ovule. It is most probable that this secretion attracted insects giving origin to a plant–insect relationship for pollination based on a sugary solution well before the raise of angiosperm. Floral nectar, a new type of sugary exudate produced by a specific secreting tissue (the nectary), evolved rapidly when the transition from naked ovule to closed carpel was completed and the pollination drops were no longer available as a food resource for insects. Floral nectar is widely distributed and very diverse in the extant angiosperms where it represents the more common reward for a large variety of pollinators. In this chapter, we highlight the evolutionary relationship between nectar and pollination drops in terms of morphology, physiology, ecology, and biochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler LS (2000) The ecological significance of toxic nectar. Oikos 91:409–420

    Article  Google Scholar 

  • Akazawa T, Okamoto K (1980) Biosynthesis and metabolism of sucrose. In: Stumpf PK, Conn EE (eds) The biochemistry of plants, a comprehensive treatise. Academic, New York, pp 199–220

    Google Scholar 

  • Alm J, Ohnmeiss TE, Lanza J, Vriesenga L (1990) Preference of cabbage white butterflies and honey bees for nectar that contains amino acids. Oecologia 84:53–57

    Article  Google Scholar 

  • Aloni R, Aloni E, Langhans M, Ullrich CI (2005) Role of auxin in regulating Arabidopsis flower development. Planta 223:315–328

    Article  PubMed  CAS  Google Scholar 

  • Baker HG, Baker I (1983a) Floral nectar sugar constituents in relation to pollinator type. In: Little RJ, Jones CE (eds) Handbook of pollination biology. Scientific and Academic Editions, New York, pp 117–141

    Google Scholar 

  • Baker HG, Baker I (1983b) A brief historical review of the chemistry of floral nectar. In: Bentley B, Elias T (eds) The biology of nectaries. Columbia University Press, New York, pp 126–151

    Google Scholar 

  • Baum SF, Eshed Y, Bowman JL (2001) The Arabidopsis nectary is an ABC-independent floral structure. Development 128:4657–4667

    PubMed  CAS  Google Scholar 

  • Bernardello G (2007) A systematic survey of floral nectaries. In: Nicolson SW, Nepi M, Pacini E (eds) Nectaries and nectar. Springer, Dordrecht, pp 19–128

    Chapter  Google Scholar 

  • Beutler R (1935) Nectar. Bee World 24:106–162

    Google Scholar 

  • Bino RJ, Dafni A, Meeuse ADJ (1984) Entomophily in the dioecious gymnosperm Ephedra aphylla Fork. (= E. alte A. Mey.), with some notes on E. campylopoda C. A. Mey. I. Verh Koning Ned Akad Wet Amst Ser C 87:1–13

    Google Scholar 

  • Borrell BJ, Krenn HW (2006) Nectar feeding in long-proboscid insects. In: Harrel A, Speck T, Rowe NP (eds) Ecology and biomechanics. Taylor and Francis, Boca Raton, FL, pp 185–212

    Google Scholar 

  • Brown WH (1938) The bearing of nectaries on the phylogeny of flowering plants. Proc Am Philosoph Soc 79:549–595

    Google Scholar 

  • Buchmann SL, O’Rourke MK, Niklas KJ (1989) Aerodynamics of Ephedra trifurca. III. Selective pollen capture by pollination droplets. Bot Gaz 150:122–131

    Article  Google Scholar 

  • Carafa AM, Carratù G, Pizzolongo P (1992) Anatomical observations on the nucellar apex of Welwitschia mirabilis and the chemical composition of the micropylar drop. Sex Plant Reprod 5:275–279

    Article  Google Scholar 

  • Carter C, Healy R, O’Tool NM, Naqvi SMS, Ren G, Park S, Beattie GA, Horner HT, Thornburg RW (2007) Tobacco nectaries express a novel NADPH oxidase implicated in the defence of floral reproductive tissues against microorganisms. Plant Physiol 143:389–399

    Article  PubMed  CAS  Google Scholar 

  • Carter C, Thornburg RW (2000) Tobacco nectarin I: Purification and characterization as a germin-like, manganese superoxide dismutase implicated in the defence of floral reproductive tissues. J Biol Chem 275:36726–36733

    Article  PubMed  CAS  Google Scholar 

  • Carter C, Thornburg RW (2004) Is the nectar redox cycle a floral defence against microbial attack? Trends Plant Sci 9:320–324

    Article  PubMed  CAS  Google Scholar 

  • Carter C, Sharoni S, Yehonatan L, Palmer RG, Thornburg R (2005) A novel role for proline in plant floral nectars. Naturwissenschaften 93:72–79

    Article  CAS  Google Scholar 

  • Chandler LM, Owens JN (2003) The pollination mechanism of Abies amabilis. Can J For Res 34:1071–1080

    Article  Google Scholar 

  • Colangeli AM, Owens JN (1990) The relationship between time of pollination, pollination efficiency and cone size in western redcedar (Thuja plicata). Can J For Res 25:439–443

    Google Scholar 

  • Corbet SA, Willmer PG, Beament JWL, Unwin DM, Prys-Jones OE (1979) Post-secretory determinants of sugar concentration in nectar. Plant Cell Environ 2:293–308

    Article  Google Scholar 

  • Crepet WL (1974) Investigations of North American cycadeoids: the reproductive biology of Cycadeoidea. Paleontographica 148B:144–169

    Google Scholar 

  • Crepet WL, Friis EM (1987) The evolution of insect pollination mechanisms in angiosperms. In: Friis EM, Chaloner WG, Crane PR (eds) The origin of angiosperms and their biological consequences. Cambridge University Press, Cambridge, pp 181–201

    Google Scholar 

  • Dafni A (1992) Pollination ecology – a practical approach. Oxford University Press, Oxford

    Google Scholar 

  • Doyle J (1945) Developmental lines in pollination mechanisms in the Coniferales. Scientific Proc Royal Dublin Soc 24:43–62

    Google Scholar 

  • Doyle J, O’Leary M (1935) Pollination in Pinus. Sci Proc Roy Dublin Soc 21:181–190

    Google Scholar 

  • Dupont YL, Hansen DM, Rasmussen JT, Olesen JM (2004) Evolutionary changes in nectar sugar composition associated with switches between bird and insect pollination: the Canarian bird-flower element revisited. Funct Ecol 18:670–676

    Article  Google Scholar 

  • Edlund AF, Swanson R, Preuss D (2004) Pollen and stigma structure and function: the role of diversity in pollination. Plant Cell 16:S84–S97

    Article  PubMed  CAS  Google Scholar 

  • Endress PK (1994) Floral structure and evolution of primitive angiosperms: recent advances. Pl Syst Evol 192:79–97

    Article  Google Scholar 

  • Endress PK (2010) The evolution of floral biology in basal angiosperms. Philos Trans R Soc B 365:411–421

    Article  Google Scholar 

  • Fahn A (1979) Secretory tissues in plants. Academic, London

    Google Scholar 

  • Fortescue JA, Turner DW (2005) The occurrence of a micropylar exudate in Musa and Ensete (Musaceae). Sci Hort 104:445–461

    Article  CAS  Google Scholar 

  • Franssen-Verheijen MAW, Willemse MTM (1993) Micropylar exudate in Gasteria (Aloaceae) and its possible function in pollen tube growth. Am J Bot 80:253–262

    Article  Google Scholar 

  • Friis EM, Endress PK (1990) Origin and evolution of angiosperm flowers. Adv Bot Res 17:99–162

    Article  Google Scholar 

  • Fujii K (1903) Über die Besäubungstropfen der Gymnospermen. Ber Deut Bot Ges 21:211–217

    Google Scholar 

  • Gelbart G, von Aderkas P (2002) Ovular secretions as part of pollination mechanisms in conifers. Ann For Sci 59:345–357

    Article  Google Scholar 

  • Gilbert FS, Haines N, Dickson K (1991) Empty flowers. Funct Ecol 5:29–39

    Article  Google Scholar 

  • Gonzalez-Teuber M, Eilmus S, Muck A, Svatos A, Heil M (2009) Pathogenesis-related proteins protect extrafloral nectar from microbial infestation. Plant J 58:464–473

    Article  PubMed  CAS  Google Scholar 

  • Greenwood MS (1986) Gene exchange in loblolly pine: the relation between pollination mechanism, female receptivity and pollen availability. Am J Bot 73:1443–1451

    Article  Google Scholar 

  • Hansen DM, Olesen JM, Mione T, Johnson SD, Müller CB (2007) Coloured nectar: distribution, ecology, and evolution of an enigmatic floral trait. Biol Rev 82:83–111

    Article  PubMed  Google Scholar 

  • Hansen K, Wacht S, Seebauer H, Schnuch M (1998) New aspects of chemoreception in flies. Ann NY Acad Sci 855:143–147

    Google Scholar 

  • Harder L (1986) Effects of nectar concentration and flower depth on flower handling efficiency of bumble bees. Oecologia 69:309–315

    Article  Google Scholar 

  • Herrera CM, de Vega C, Canto A, Pozo MI (2009) Yeasts in floral nectar: a quantitative survey. Ann Bot 103:1415–1423

    Article  PubMed  Google Scholar 

  • Herrera CM, García IM, Pérez R (2008) Invisible floral larcenies: microbial communities degrade floral nectar of bumble bee-pollinated plants. Ecology 89:2369–2376

    Article  PubMed  Google Scholar 

  • Heslop-Harrison J, Shivanna KR (1977) The receptive surface of the angiosperm stigma. Ann Bot 50:831–842

    Google Scholar 

  • Heyneman A (1983) Optimal sugar concentrations of floral nectars – dependence on sugar intake efficiency and foraging costs. Oecologia 60:198–213

    Article  Google Scholar 

  • Hillwig MS, Liu X, Liu G, Thornburg RW, MacIntosh GC (2010) Petunia nectar proteins have ribonuclease activity. J Exp Bot 61:2951–2965

    Article  PubMed  CAS  Google Scholar 

  • Ho RJ (1985) Effect of repeated pollination upon filled seed in white spruce. Can J For Res 15:1195–1197

    Article  Google Scholar 

  • Jackson S, Nicolson SW (2002) Xylose as nectar sugar: from biochemistry to ecology. Comp Biochem Physiol 131:613–620

    Article  Google Scholar 

  • Janson J, Reinders MC, Valkering AGM, Van Tuyl JM, Keijzer CJ (1994) Pistil exudate production and pollen tube growth in Lilium longiflorum Thunb. Ann Bot 73:437–446

    Article  Google Scholar 

  • Johnson SD, Hargreaves AL, Brown M (2007) Dark, bitter-tasting nectar functions as a filter of flower visitors in a bird-pollinated plant. Ecology 87:2709–2716

    Article  Google Scholar 

  • Kato M, Inoue T, Nagamitsu T (1995) Pollination biology of Gnetum (Gnetaceae) in a lowland mixed dipterocarp forest in Sarawak. Am J Bot 82:862–868

    Article  Google Scholar 

  • Kessler D, Baldwin T (2007) Making sense of nectar scents: the effects of nectar secondary metabolites on floral visitors to Nicotiana attenuata. Plant J 49:840–854

    Article  PubMed  CAS  Google Scholar 

  • Kessler D, Gasse K, Baldwin IT (2008) Field experiments with transformed plants reveal the sense of floral scents. Science 321:1200–1202

    Article  PubMed  CAS  Google Scholar 

  • Kevan PG, Eisikowitch D, Rathwell B (1989) The role of nectar in the germination of pollen in Asclepias syriaca L. Bot Gaz 150:266–270

    Article  Google Scholar 

  • Kram B, Bainbridge E, Perera M, Carter C (2008) Identification, cloning and characterization of a GDSL lipase secreted into the nectar of Jacaranda mimosifolia. Plant Mol Biol 68:173–183

    Article  PubMed  CAS  Google Scholar 

  • Krömer T, Kessler M, Lohaus G, Schmidt-Lebuhn AN (2008) Nectar sugar composition and concentration in relation to pollination syndromes in Bromeliaceae. Plant Biol 10:502–511

    Article  PubMed  CAS  Google Scholar 

  • Labandeira CC, Kvaçek J, Mostovski MB (2007) Pollination drops, pollen, and insect pollination in Mesozoic gymnosperms. Taxon 56:663–695

    Article  Google Scholar 

  • Langenberger MW, Davis AR (2002) Temporal changes in floral nectar production, reabsorption and composition associated with dichogamy in annual caraway (Carum carvi; Apiaceae). Am J Bot 89:1588–1598

    Article  PubMed  Google Scholar 

  • Leslie AB (2010) Flotation preferentially selects saccate pollen during conifer pollination. New Phytol 188:273–279

    Article  PubMed  Google Scholar 

  • Lill BS, Sweet GB (1977) Pollination in Pinus radiata. N Z J For Sci 7:21–34

    Google Scholar 

  • McWilliam JR (1958) The role of the micropyle in the pollination of Pinus. Bot Gaz 120:109–117

    Article  CAS  Google Scholar 

  • Lloyd DG, Wells MS (1992) Reproductive biology of a primitive angiosperm, Pseudowintera colorata (Winteraceae), and the evolution of pollination systems in the Anthophyta. Plant Syst Evol 181:77–95

    Article  Google Scholar 

  • Manson JS, Otterstatter MC, Thomson JD (2010) Consumption of a nectar alkaloid reduces pathogen load in bumble bees. Oecologia 162:81–89

    Article  PubMed  Google Scholar 

  • Meeuse ADJ (1978) Nectarial secretion, floral evolution, and the pollination syndrome in early angiosperm. Proc Kon Ned Akad Wetensch Amst, Series C 81:300–326

    Google Scholar 

  • Meeuse ADJ, de Meijer AH, Mohr OWP, Wellinga SM (1990) Entomophily in the dioecious gymnosperm Ephedra aphylla Forsk. Israel J Bot 39:113–123

    Google Scholar 

  • Mevi-Schütz J, Erhardt A (1997) Amino acids in nectar enhance butterfly fecundity: a long-awaited link. Am Nat 105:411–419

    Google Scholar 

  • Mugnaini S, Nepi M, Guarnieri M, Piotto B, Pacini E (2007a) Pollination drop in Juniperus communis: response to deposited material. Ann Bot 100:1475–1481

    Article  PubMed  Google Scholar 

  • Mugnaini S, Nepi M, Guarnieri M, Piotto B, Pacini E (2007b) Pollination drop withdrawal in Juniperus communis: response to biotic and abiotic particles. Caryologia 60:182–184

    Google Scholar 

  • Naqvi S, Harper A, Carter C, Ren G, Guirgis A, York WS, Thornburg RW (2005) Tobacco Nectarin IV is a specific inhibitor of fungal xylosidases secreted into the nectar of ornamental tobacco plants. Plant Physiol 139:1389–1400

    Article  PubMed  CAS  Google Scholar 

  • Narbona E, Dirzo R (2010) A reassesment of the function of floral nectar in Croton suberosus (Euphorbiaceae): a renard for plant defenders and pollinators. Am J Bot 97:672–679

    Article  PubMed  Google Scholar 

  • Nepi M (2007) Nectary structure and ultrastructure. In: Nicolson SW, Nepi M, Pacini E (eds) Nectaries and nectar. Springer, Dordrecht, pp 129–166

    Chapter  Google Scholar 

  • Nepi M, Ciampolini F, Pacini E (1996) Development and ultrastructure of Cucurbita pepo nectaries of male flowers. Ann Bot 78:95–104

    Article  Google Scholar 

  • Nepi M, Franchi GG, Pacini E (2001) Pollen hydration status at dispersal: cytophysiological features and strategies. Protoplasma 216:171–180

    Article  PubMed  CAS  Google Scholar 

  • Nepi M, Human H, Nicolson SW, Cresti L, Pacini E (2006) Nectary structure and nectar presentation in Aloe castanea and A. greatheadii var. davyana (Asphodelaceae). Plant Syst Evol 257:45–55

    Article  Google Scholar 

  • Nepi M, Pacini E (2007) Nectar production and presentation. In: Nicolson SW, Nepi M, Pacini E (eds) Nectaries and nectar. Springer, Dordrecht, pp 215–264

    Google Scholar 

  • Nepi M, Stpiczynska M (2008) The complexity of nectar: secretion and resorption dynamically regulate nectar features. Naturwissenshaften 95:177–184

    Article  CAS  Google Scholar 

  • Nepi M, von Aderkas P, Wagner R, Mugnaini S, Coulter A, Pacini E (2009) Nectar and pollination drops: how different are they? Ann Bot 104:205–219

    Article  PubMed  CAS  Google Scholar 

  • Nicolson SW (2007) Nectar consumers. In: Nicolson S, Nepi M, Pacini E (eds) Nectaries and nectar. Springer, Dordrecht, pp 289–342

    Chapter  Google Scholar 

  • Nicolson SW (1998) The importance of osmosis in nectar secretion and its consumption by insects. Am Zool 38:418–425

    Google Scholar 

  • Nicolson SW, Nepi M (2005) Dilute nectar in dry atmospheres: nectar secretion patterns in Aloe castanea (Asphodelaceae). Int J Plant Sci 166:227–233

    Article  Google Scholar 

  • Nicolson SW, Thorburg RW (2007) Nectar chemistry. In: Nicolson SW, Nepi M, Pacini E (eds) Nectaries and nectar. Springer, Dordrecht, pp 215–264

    Chapter  Google Scholar 

  • Niklas KJ, Buchmann SL (1987) The aerodynamics of pollen capture in two sympatric species of Ephedra trifurca. Evolution 42:104–123

    Article  Google Scholar 

  • Niklas KJ, Kerchner V (1986) Aerodynamics of Ephedra trifurca. II. Computer modelling of pollination efficiencies. J Math Biol 24:1–24

    Article  Google Scholar 

  • Niklas KJ, Buchmann SL, Kerchner V (1986) Aerodynamics of Ephedra trifurca. I. Pollen grain velocity fields around stems bearing ovules. Am J Bot 73:966–979

    Article  Google Scholar 

  • Nocentini D (2010) Produzione di nettare e impollinazione in Cerinthe major L. (Boraginaceae). MSc Thesis, University of Siena

    Google Scholar 

  • O’Leary SJB (2004) Proteins in the ovular secretion of conifers. PhD Thesis, University of Victoria, Canada

    Google Scholar 

  • O’Leary SJB, von Aderkas P (2006) Postpollination drop production in hybrid larch is not related to the diurnal pattern of xylem water potential. Trees 20:61–66

    Article  Google Scholar 

  • O’Leary SJB, Joseph C, von Aderkas P (2004) Origin of arabinogalactan proteins in the pollination drop of Taxus x media. Aust J For Sci 121:35–46

    Google Scholar 

  • O’Leary SJB, Poulis BAD, von Aderkas P (2007) The identification of two thaumatin-like proteins (TLPs) in the pollination drop of hybrid yew that may play a role in pathogen defence during pollen collection. Tree Physiol 27:1649–1659

    Article  PubMed  Google Scholar 

  • Opler PA (1983) Nectar production in tropical ecosystem. In: Bentley B, Elias T (eds) The biology of nectaries. Columbia University Press, New York, pp 30–79

    Google Scholar 

  • Owens JN, Molder M (1979) Sexual reproduction of white spruce (Picea glauca). Can J Bot 57:152–169

    Article  Google Scholar 

  • Owens JN, Simpson SJ, Molder M (1980) The pollination mechanism in yellow cypress (Chamaecyparis nootkatensis). Can J For Res 10:564–572

    Article  Google Scholar 

  • Owens JN, Simpson SJ, Molder M (1981) Sexual reproduction of Pinus contorta. I. Pollen development, the pollination mechanism and early ovule development. Can J Bot 59:1828–1843

    Article  Google Scholar 

  • Owens JN, Simpson SJ, Caron GE (1987) The pollination mechanism of Engelmann spruce (Picea engelmannii). Can J Bot 65:1439–1450

    Article  Google Scholar 

  • Pacini E (2009) Pollination. In: Jørgensen SE, Fath BD (eds) Encyclopedia of ecology, vol 5. Elsevier, Oxford, pp 2857–2861

    Google Scholar 

  • Pacini E, Nepi M, Vesprini JL (2003) Nectary biodiversity: a short review. Plant Syst Evol 238:7–21

    CAS  Google Scholar 

  • Park S, Thornburg RW (2009) Biochemistry of nectar proteins. J Plant Biol 52:27–34

    Article  CAS  Google Scholar 

  • Pearson HHW (1909) Further observations on Welwitschia. Philos Trans Roy Soc Lond Ser B 200:331–402

    Article  Google Scholar 

  • Petanidou T (2007) Floral nectars in Mediterranean habitats. In: Nicolson SW, Nepi M, Pacini E (eds) Nectaries and nectar. Springer, Dordrecht, pp 343–375

    Chapter  Google Scholar 

  • Porsch O (1910) Ephedra campylopoda CA Mey., eine entomophile Gymnosperme. Ber Dtsch Bot Ges 28:404–412

    Google Scholar 

  • Poulis BAD, O’Leary SJB, Haddow JD, von Aderkas P (2005) Identification of proteins present in the Douglas fir ovular secretion: an insight into conifer pollen selection and development. Int J Plant Sci 166:733–739

    Article  CAS  Google Scholar 

  • Radhika V, Kost C, Boland W, Heil M (2010) The role of Jasmonates in floral nectar secretion. PlosOne 5:e9265

    Google Scholar 

  • Raguso RA (2004) Why are some floral nectars scented? Ecology 85:1486–1494

    Article  Google Scholar 

  • Raguso RA (2009) Floral scent in a whole-plant context: moving beyond pollinator attraction. Funct Ecol 23:837–840

    Article  Google Scholar 

  • Ren D, Labandeira CC, Santiago-Blay JA, Rasnitsyn A, Shih CK, Bashkuev A, Logan MAV, Hotton CL, Dilcher D (2009) A probable pollination mode before angiosperms: Eurasian, long-proboscid scorpionflies. Science 326:840–847

    Article  PubMed  CAS  Google Scholar 

  • Ren G, Healy RA, Klyne AM, Horner HT, James MG, Thornburg RW (2007) Transient starch metabolism in ornamental tobacco floral nectaries regulates nectar composition and release. Plant Sci 173:277–290

    Article  CAS  Google Scholar 

  • Rothwell G (1977) Evidence for a pollination-drop mechanism in Paleozoic pteridosperms. Science 198:1251–1252

    Article  PubMed  CAS  Google Scholar 

  • Rudall PJ (2002) Homologies of inferior ovaries and septal nectaries in monocotyledons. Int J Plant Sci 163:261–276

    Article  Google Scholar 

  • Ruhlmann JM, Kram BW, Carter CJ (2010) Cell wall invertase 4 is required for nectar production in Arabidopsis. J Exp Bot 61:395–404

    Article  PubMed  CAS  Google Scholar 

  • Runions CJ, Owens JN (1996) Pollen scavenging and rain involvement in the pollination mechanism of interior spruce. Can J Bot 74:115–124

    Article  Google Scholar 

  • Runions CJ, Catalano GL, Owens JN (1995) Pollination mechanisms of seed orchard interior spruce. Can J For Res 25:1434–1444

    Article  Google Scholar 

  • Rydin C, Khodabandeh A, Endress PK (2010) The female reproductive unit of Ephedra (Gnetales): comparative morphology and evolutionary perspectives. Bot J Linn Soc 163:387–430

    Article  PubMed  Google Scholar 

  • Sangaravelan N, Nee’man G, Inbar M, Izhaki I (2005) Feeding responses of free-flying honeybees, to secondary compounds mimicking floral nectars. J Chem Ecol 31:2791–2804

    Article  CAS  Google Scholar 

  • Schmid R (1988) Reproductive versus extra-reproductive nectaries - historical perspective and terminological recommendations. Bot Rev 54:179–232

    Google Scholar 

  • Schumann K (1902) Über dei weibliche Blüte der Coniferen. Verh Bot Ver Prov Brand 44:23–42

    Google Scholar 

  • Seridi-Benkaddour R, Chesnoy L (1988) Secretion and composition of the pollination drop of Cephalotaxus drupacea (Gymnosperm, Cephalotaxaceae). In: Cresti M, Gore P, Pacini E (eds) Sexual reproduction in higher plants. Springer, Berlin, pp 345–350

    Chapter  Google Scholar 

  • Shuel R (1978) Nectar secretion in excised flowers. V. Effects of indoleacetic acid and sugar supply on distribution of [14C]-sucrose in flower tissues and nectar. Can J Bot 56:564–571

    Google Scholar 

  • Shivanna KR (2003) Pollen biology and biotechnology. Science Publishers Inc., Enfield (USA)

    Google Scholar 

  • Singh H (1978) Embryology of Gymnosperms. Gebrüder Borntraegerm, Stuttgart

    Google Scholar 

  • Smets EF, Cresens EM (1988) Types of floral nectaries and the concept of ‘character’ and ‘character state’ – a reconsideration. Acta Bot Neerl 37:121–128

    Google Scholar 

  • Smets EF, Ronse Decraene LP, Caris P, Rudall PJ (2000) Floral nectaries in monocotyledons: distribution and evolution. In: Wilson KL, Morrison DA (eds) Monocots: systematics and evolution. CSIRO, Melbourne, pp 230–240

    Google Scholar 

  • Sweet GB, Lewis PN (1969) A diffusible auxin from Pinus radiata pollen and its possible role in stimulating ovule development. Planta 89:380–384

    Article  CAS  Google Scholar 

  • Takaso T, Owens JN (1995) Pollination drop and microdrop secretions in Cedrus. Int J Plant Sci 156:640–649

    Article  Google Scholar 

  • Takaso T, Owens JN (1996) Postpollination-prezygotic ovular secretions into the micropylar canal in Pseudotsuga menziesii. J Plant Res 109:147–160

    Article  Google Scholar 

  • Tang W (1987) Insect pollination in the cycad Zamia pumila (Zamiaceae). Am J Bot 74:90–99

    Article  Google Scholar 

  • Tison A (1911) Remarques sur les gouttelettes collectrices des ovules des conifères. Mem Soc Linn Norm 23:51–64

    Google Scholar 

  • Tomlinson PB, Braggins JE, Rattenbury JA (1997) Contrasted pollen capture mechanisms in Phyllocladaceae and certain Podocarpaceae (Coniferales). Am J Bot 84:214–223

    Article  PubMed  CAS  Google Scholar 

  • van Wyk B-E, Whitehead CS, Glen HF, Hardy DS, van Jaarsveld EJ, Smiths GF (1993) Nectar sugar composition in the subfamily Alooideae (Asphodelaceae). Biochem Syst Ecol 21:249–253

    Article  Google Scholar 

  • Vassilyev AE (2010) On the mechanism of nectar secretion: revisited. Ann Bot 105:349–354

    Article  PubMed  CAS  Google Scholar 

  • Vaucher JP (1841) Histoire physiologique des plantes d’Europe, vol 4. Marc Aurel Frères, Paris

    Google Scholar 

  • Vogel S (1998) Remarkable nectaries: structure, ecology, organophyletic perspectives III. Nectar ducts. Flora 193:113–131

    Google Scholar 

  • von Aderkas P, Leary C (1999a) Micropylar exudates in Douglas fir – timing and volume of production. Sex Plant Reprod 11:354–536

    Article  Google Scholar 

  • von Aderkas P, Leary C (1999b) Ovular secretions in the micropylar canal of larches (Larix kaempferi, L. x eurolepis). Can J Bot 77:531–536

    Google Scholar 

  • Wagner R, Mugnaini S, Sniezko R, Hardie D, Poulis B, Nepi M, Pacini E, von Aderkas P (2007) Proteomic evaluation of gymnosperm pollination drop proteins indicates highly conserved and complex biological functions. Sex Plant Reprod 20:181–189

    Article  CAS  Google Scholar 

  • Wenzler M, Holscher D, Oerther T, Schneide B (2008) Nectar formation and floral nectary anatomy of Anigozanthos flavidus: a combined magnetic resonance imaging and spectroscopy study. J Exp Bot 59:3425–3434

    Article  PubMed  CAS  Google Scholar 

  • Wetschnig W, Depisch B (1999) Pollination biology of Welwitschia mirabilis Hook. Phyton 39:167–183

    Google Scholar 

  • Willis KJ, McElwain JC (2002) The evolution of plants. Oxford University Press, Oxford

    Book  Google Scholar 

  • Wist TJ, Davis AR (2006) Floral nectar production and nectary anatomy and ultrastructure of Echinacea purpurea (Asteraceae). Ann Bot 97:177–193

    Article  PubMed  Google Scholar 

  • Ziegler H (1959) Über die Zusammensetzung des “Bestäubungstropfens” und Mechanismus seiner Secretion. Planta 52:587–599

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Nepi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nepi, M., von Aderkas, P., Pacini, E. (2012). Sugary Exudates in Plant Pollination. In: Vivanco, J., Baluška, F. (eds) Secretions and Exudates in Biological Systems. Signaling and Communication in Plants, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23047-9_8

Download citation

Publish with us

Policies and ethics