Skip to main content

The wind

  • Chapter
  • First Online:
  • 6854 Accesses

Abstract

The global atmosphere can be considered as a thermal engine in which the air masses are transported due to different thermal potentials. This thermal engine is powered by the sun. Water is the most important energy carrier in the atmosphere since it exists in the atmosphere in all the three states: vapour, droplets and ice. So, its latent heat when changing the state of aggregate from one phase to another is the dominant influence on the weather. The earth is a sphere, so getting from the equator closer to the poles the total irradiation by the sun declines more and more. Consequently, there is excess energy in the atmosphere in the equatorial zones and a deficit in the area of the poles. To equalize this imbalance, heat is transported by the air flow from the equator to the southern and northern hemisphere. This is done by the air mass exchange of the global wind systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Petersen E.L., Mortensen N.G., Landberg L., Højstrup J., Frank H.P.: Wind Power Meteorology, Risø-I-1206, 1997

    Google Scholar 

  2. Meteorological Aspects of The Utilisation of Wind as an Energy Resource, WMO Rep. No. 575, Geneva, 1981

    Google Scholar 

  3. IEA: Recommended Practices for Wind Turbine Testing, Part 11. Wind Speed Measurement and Use of Cup Anemometry, 1999

    Google Scholar 

  4. IEC 61400-12-1: Wind Turbine Generator Systems – Part 12: Wind Turbine Performance Testing, 2005

    Google Scholar 

  5. Troen I., Petersen E.L.: European Wind Atlas, Risø National Laboratory, 1989

    Google Scholar 

  6. Mortensen N.G., Petersen E.L.: Influence of Topographical Input Data on the Accuracy of Wind Flow Modeling in Complex Terrain, Proceedings of the European Wind Energy Conference, Dublin, Ireland, 1997

    Google Scholar 

  7. Hübner H., Otte J.: Windenergienutzung im Mittelgebirgsraum (Wind energy application in the low mountain range)), University of Kassel, Germany, 1990

    Google Scholar 

  8. Antoniou I. et al: On the Theory of SODAR Measurement Techniques, Risø-R- 1410(EN), 2003, Risø National Laboratory, Roskilde Denmark

    Google Scholar 

  9. Energia Eolica: Le Gouriérès, Masson, 1982

    Google Scholar 

  10. Meyers kleines Lexikon der Meteorologie (Meyer’s small encyclopaedia on meteorology), Meyers Lexikon-Verlag, Mannheim, 1987

    Google Scholar 

  11. Courtney M.S.: An atmospheric turbulence data set for wind turbine research, Proceedings of the 10th British Wind Energy Association Conference, London 22–24 March 1988

    Google Scholar 

  12. Burton T., Sharpe D., Jenkins N., Bossanyi E.: Wind Energy Handbook, John Wiley & Sons, 2001

    Google Scholar 

  13. Kristensen L., Hansen O.F.: Distance Constant of Risø Cup Anemometer, Risø-R- 1320(EN), 2002, Risø National Laboratory, Roskilde Denmark

    Google Scholar 

  14. Mann J., Ott S., Jørgensen B.H., Frank H.P.: WAsP Engineering 2000, Risø-R- 1356(EN), 2002, Risø National Laboratory, Roskilde Denmark

    Google Scholar 

  15. Lange B.: Modelling the Marine Boundary Layer for Offshore Wind Power Utilisation, PhD thesis, University of Oldenburg, Germany 2002

    Google Scholar 

  16. Stull R.B.: An Introduction to Boundary Layer Meteorology, 1988, Kluwer Acad. Publ. Dordrecht, 666pp

    Google Scholar 

  17. Petersen T.F., Gjerding S., Ingham P., Enevoldsen P., Hansen J.K., Jørgensen H.K.: Wind Turbine Power Performance Verification in Complex Terrain and Wind Farms, Risø-R-1330(EN), 2002, Risø National Laboratory, Roskilde Denmark

    Google Scholar 

  18. FGW (Federation of German Windpower): Technische Richtlinien für Windenergieanlagen, Teil 2: Bestimmung von Leistungskurve und standardisierten Energieerträgen (Technical Guidelines for Wind Energy Converters, Part2: Determining the Power Performance and Standardised Energy Yields), Rev. 13, 2000

    Google Scholar 

  19. IEC 61400–1, Ed.3: Wind Turbine Generator Systems – Part 1: Safety Requirements, 2005

    Google Scholar 

  20. Germanischer Lloyd: Richtlinie für die Zertifizierung von Windenergieanlagen (Guideline for the Certification of Wind Turbines), Hamburg 2003

    Google Scholar 

  21. DIBt (Center of competence in civil engineering): Richtlinie für Wind turbinen

    Google Scholar 

  22. (Guideline for Wind Energy Plants), 1993, 1996, 2004 [22] Kaiser K., Langreder W.: Site Specific Wind Parameter and their Effect on Mechanical Loads, Proceedings EWEC, Copenhagen, 2001

    Google Scholar 

  23. Frandsen S., Thøgersen L.: Integrated Fatigue Loading for Wind Turbines in Wind Farms by Combining Ambient Turbulence and Wakes; Wind Engineering, Vol. 23 No. 6, 1999

    Google Scholar 

  24. Katic I., Højstrup J., Jensen N.O.: A Simple Model for Cluster Effeciency, European Wind Energy Association Conference and Exhibition, 7–9 October 1986, Rome, Italy

    Google Scholar 

  25. Högström U.: Non-dimensional wind and temperature profiles, Bound. Layer Meteor. 42 (1988), 55–78

    Article  Google Scholar 

  26. Barthelmie R., Hansen O.F., Enevoldsen K., Motta M., Pryor S., Højstrup J., Frandsen S., Larsen S., Sanderhoff P.: Ten years of Measurements of offshore Wind farms – what have we learnt and where are Uncertainties?, Proceedings The Art of making Torque of Wind EAWE, Delft, 2004

    Google Scholar 

  27. Kaiser K., Langreder W., Hohlen H.: Turbulence Correction for Power Curves, Proceedings EWEC 2003, Madrid 2003

    Google Scholar 

  28. Riedel V., Strack M.: Entwicklung verbesserter MCP-Algorithmen mit Parameteroptimierung durch Verteilungsanpassung (Development of improved MCP algorithms with parameter optimization by distribution fitting), Deutsche Windenergie- Konferenz, Wilhelmshaven, 2002

    Google Scholar 

  29. Thomsen K., Madsen H.A.: A new simulation method for turbines in wake – applied to extreme response during operation, Proceedings: The Art of making Torque of Wind, EAWE, Delft, 2004

    Google Scholar 

  30. IEC 61400–121,88/163/CDV: Wind Turbine Generator Systems – Part 121: Power Performance Measurements of Grid Connected Wind Turbines

    Google Scholar 

  31. Obukhow A.M.: Turbulence in an Atmosphere with non-uniform temperature. Transl. in Boundary Layer Meteor., 1946

    Google Scholar 

  32. TA-Luft: Technische Anleitung zur Reinhaltung der Luft (German Technical Instructions on Air Quality), Bundesministerium für Umweltschutz, Raumordnung und Reaktorsicherheit (German Federal Ministry of the environment, Nature Conservation and Nuclear Safety, Bonn, Juli 2002

    Google Scholar 

  33. Molly, J.P.: Windenergie (Windenergy), C.F. Müller-Verlag, Karlsruhe, 1990

    Google Scholar 

  34. Manwell, J.F., u.a.: Windenergy explained – Theory, Design and Application, John Wiley & Sons Ltd., USA/UK, 2002

    Google Scholar 

  35. Thomsen, W.T.: Theory of vibration, 4th edition, Chapter 13: Random vibration, Prentice Hall, New Jersey, USA, 1993

    Google Scholar 

  36. Christoffer, J., Ulbricht-Eissing , M.: Die bodennahen Windverhältnisse in der BR Deutschland (The surface wind regimes in Germany), Offenbach, Deutscher Wetterdienst (German Weather Service), Bericht Nr. 147, 1989

    Google Scholar 

  37. Hoffmann, R.: Signalanalyse und –erkennung (signal analysis and recognition), Springer-Verlag, Berlin, 1998

    Google Scholar 

  38. Ammonit: Messtechnik für Klimaforschung und Windenergie (Measuring equipment for climatic research and wind energy) 2006/07), Ammonit Gesellschaft für Messtechnik mbH, 2006

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Gasch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gasch, R., Twele, J. (2012). The wind. In: Gasch, R., Twele, J. (eds) Wind Power Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22938-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22938-1_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22937-4

  • Online ISBN: 978-3-642-22938-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics