Skip to main content

Differential K-Theory: A Survey

  • Conference paper
  • First Online:
Global Differential Geometry

Part of the book series: Springer Proceedings in Mathematics ((PROM,volume 17))

Abstract

Generalized differential cohomology theories, in particular differential K-theory (often called “smooth K-theory”), are becoming an important tool in differential geometry and in mathematical physics.In this survey, we describe the developments of the recent decades in this area. In particular, we discuss axiomatic characterizations of differential K-theory (and that these uniquely characterize differential K-theory). We describe several explicit constructions, based on vector bundles, on families of differential operators, or using homotopy theory and classifying spaces. We explain the most important properties, in particular about the multiplicative structure and push-forward maps and will state versions of the Riemann–Roch theorem and of Atiyah–Singer family index theorem for differential K-theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ando, M., Blumberg, A.J., Gepner, D.J., Hopkins, M.J., Rezk, C.: Units of ring spectra and Thom spectra. ArXiv e-prints (2008)

    Google Scholar 

  2. Atiyah, M., Segal, G.: Ukr. Mat. Visn. 1(3), 287–330 (2004)

    MATH  MathSciNet  Google Scholar 

  3. Atiyah, M., Segal, G.: Twisted K-theory and cohomology. In: Inspired by S.S. Chern, Nankai Tracts in Mathematics, vol. 11, pp. 5–43. World Scientific Publishing, Hackensack, NJ (2006)

    Google Scholar 

  4. Atiyah, M.F.: Global theory of elliptic operators. In: Proceedings of International Conference on Functional Analysis and Related Topics, Tokyo, 1969, pp. 21–30. University of Tokyo Press, Tokyo (1970)

    Google Scholar 

  5. Atiyah, M.F., Singer, I.M.: The index of elliptic operators. I. Ann. Math. (2) 87, 484–530 (1968)

    Google Scholar 

  6. Atiyah, M.F., Singer, I.M.: The index of elliptic operators. IV. Ann. Math. (2) 93, 119–138 (1971)

    Google Scholar 

  7. Baum, P., Douglas, R.G.: K-homology and index theory. In: Operator Algebras and Applications, Part I, Kingston, Ontario, 1980, Proceedings of Symposia in Pure Mathematics, vol. 38, pp. 117–173. American Mathematical Society, Providence, R.I. (1982)

    Google Scholar 

  8. Baum, P., Higson, N., Schick, T.: On the equivalence of geometric and analytic K-homology. Pure Appl. Math. Q. 3(1, part 3), 1–24 (2007)

    Google Scholar 

  9. Becker, K., Bergman, A.: Geometric aspects of D-branes and T-duality. J. High Energ Phys. (11), 067, 22 pp (2009). doi: 10.1088/1126-6708/2009/11/067. URL http://dx.doi.org/10.1088/1126-6708/2009/11/067

  10. Benameur, M.T., Maghfoul, M.: Differential characters in K-theory. Differ. Geom. Appl. 24(4), 417–432 (2006). doi: 10.1016/j.difgeo.2005.12.008. URL http://dx.doi.org/10.1016/j.difgeo.2005.12.008

    Google Scholar 

  11. Berline, N., Getzler, E., Vergne, M.: Heat kernels and Dirac operators, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 298. Springer, Berlin (1992)

    Google Scholar 

  12. Bismut, J.M.: The Atiyah–Singer index theorem for families of Dirac operators: two heat equation proofs. Invent. Math. 83(1), 91–151 (1985). doi: 10.1007/BF01388755. URL http://dx.doi.org/10.1007/BF01388755

    Google Scholar 

  13. Bismut, J.M., Zhang, W.: Real embeddings and eta invariants. Math. Ann. 295, 661–684 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Bott, R., Tu, L.W.: Differential forms in algebraic topology, Graduate Texts in Mathematics, vol. 82. Springer, New York (1982)

    Google Scholar 

  15. Bouwknegt, P., Carey, A.L., Mathai, V., Murray, M.K., Stevenson, D.: Twisted K-theory and K-theory of bundle gerbes. Comm. Math. Phys. 218, 17–45 (2002)

    Article  MathSciNet  Google Scholar 

  16. Bouwknegt, P., Evslin, J., Mathai, V.: T-duality: topology change from H-flux. Comm. Math. Phys. 249(2), 383–415 (2004). doi: 10.1007/s00220-004-1115-6. URL http://dx.doi.org/10.1007/s00220-004-1115-6

  17. Bouwknegt, P., Mathai, V.: D-branes, B-fields and twisted K-theory. J. High Energ. Phys. 3, 7, 11 pp (2000). doi: 10.1088/1126-6708/2000/03/007. URL http://dx.doi.org/10.1088/1126-6708/2000/03/007

  18. Brylinski, J.L.: Loop Spaces, Characteristic Classes and Geometric Quantization, Progress in Mathematics, vol. 107. Birkhäuser Boston Inc., Boston, MA (1993)

    Google Scholar 

  19. Bunke, U.: Index theory, eta forms, and Deligne cohomology. Memoir. Am. Math. Soc. 198(928), vi+120 (2009)

    Google Scholar 

  20. Bunke, U., Kreck, M., Schick, T.: A geometric description of smooth cohomology. Ann. Math. Blaise Pascal 17(1), 1–16 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. Bunke, U., Naumann, N.: Secondary Invariants for String Bordism and tmf. ArXiv e-prints (2009)

    Google Scholar 

  22. Bunke, U., Rumpf, P., Schick, T.: The topology of T-duality for T n-bundles. Rev. Math. Phys. 18(10), 1103–1154 (2006). doi: 10.1142/S0129055X06002875. URL http://dx.doi.org/10.1142/S0129055X06002875

  23. Bunke, U., Schick, T.: On the topology of T-duality. Rev. Math. Phys. 17(1), 77–112 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Bunke, U., Schick, T.: Real secondary index theory. Algebr. Geomet. Topology 8(2), 1093–1139 (2008). doi: 10.2140/agt.2008.8.1093. URL http://dx.doi.org/10.2140/agt.2008.8.1093

  25. Bunke, U., Schick, T.: Differential orbifold K-theory (2009). ArXiv:0905.4181

    Google Scholar 

  26. Bunke, U., Schick, T.: Smooth K-theory. Astérisque (328), 45–135 (2007)

    Google Scholar 

  27. Bunke, U., Schick, T.: Uniqueness of smooth extensions of generalized cohomology theories. J. Topology 3(1), 110–156 (2010). doi: 10.1112/jtopol/jtq002. URL http://dx.doi.org/10.1112/jtopol/jtq002

  28. Bunke, U., Schick, T., Schröder, I., Wiethaup, M.: Landweber exact formal group laws and smooth cohomology theories. Algebr. Geomet. Topology 9(3), 1751–1790 (2009). doi: 10.2140/agt.2009.9.1751. URL http://dx.doi.org/10.2140/agt.2009.9.1751

    Google Scholar 

  29. Bunke, U., Schick, T., Spitzweck, M., Thom, A.: Duality for topological abelian group stacks and T-duality. In: K-Theory and Noncommutative Geometry, EMS Series of Congress Reports, pp. 227–347. European Mathematical Society, Zürich (2008). doi: 10.4171/060-1/10. URL http://dx.doi.org/10.4171/060-1/10

  30. Bunke, U., Spitzweck, M., Schick, T.: Periodic twisted cohomology and T-duality. Astérisque (337), vi+134 (2011)

    Google Scholar 

  31. Carey, A.L., Mickelsson, J., Wang, B.L.: Differential twisted K-theory and applications. J. Geomet. Phys. 59(5), 632–653 (2009). doi: 10.1016/j.geomphys.2009.02.002. URL http://dx.doi.org/10.1016/j.geomphys.2009.02.002

    Google Scholar 

  32. Cheeger, J., Simons, J.: Differential characters and geometric invariants. In: Geometry and Topology (College Park, Md., 1983/84), Lecture Notes in Mathematics, vol. 1167, pp. 50–80. Springer, Berlin (1985). doi: 10.1007/BFb0075216. URL http://dx.doi.org/10.1007/BFb0075216

  33. Connes, A., Karoubi, M.: Caractère multiplicatif d’un module de Fredholm. K-Theory 2(3), 431–463 (1988). doi: 10.1007/BF00533391. URL http://dx.doi.org/10.1007/BF00533391

  34. Donovan, P., Karoubi, M.: Graded Brauer groups and K-theory with local coefficients. Publ. Math. IHES 38, 5–25 (1970)

    MATH  MathSciNet  Google Scholar 

  35. Dupont, J.L., Ljungmann, R.: Integration of simplicial forms and Deligne cohomology. Math. Scand. 97(1), 11–39 (2005)

    MATH  MathSciNet  Google Scholar 

  36. Freed, D.S.: Dirac charge quantization and generalized differential cohomology. In: Surveys in Differential Geometry, vol. VII, pp. 129–194. International Press, Somerville, MA (2000)

    Google Scholar 

  37. Freed, D.S., Hopkins, M.: On Ramond–Ramond fields and K-theory. J. High Energ. Phys. 5, 44 (2000)

    Article  MathSciNet  Google Scholar 

  38. Freed, D.S., Hopkins, M.J., Teleman, C.: Loop groups and twisted K-theory I (2007). ArXiv.org:0711.1906

    Google Scholar 

  39. Freed, D.S., Lott, J.: An index theorem in differential K-theory. Geomet. Topology 14, 903–966 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  40. Freed, D.S., Melrose, R.B.: A mod kindex theorem. Invent. Math. 107(2), 283–299 (1992). doi: 10.1007/BF01231891. URL http://dx.doi.org/10.1007/BF01231891

  41. Gillet, H., Soulé, C.: Characteristic classes for algebraic vector bundles with Hermitian metric. II. Ann. Math. (2) 131(2), 205–238 (1990). doi: 10.2307/1971493. URL http://dx.doi.org/10.2307/1971493

  42. Gomi, K., Terashima, Y.: A fiber integration formula for the smooth Deligne cohomology. Int. Math. Res. Not. 13, 699–708 (2000). doi: 10.1155/S1073792800000386. URL http://dx.doi.org/10.1155/S1073792800000386

    Google Scholar 

  43. Higson, N., Roe, J.: Analytic K-Homology. Oxford Mathematical Monographs. Oxford University Press, Oxford (2000)

    Google Scholar 

  44. Hopkins, M.J., Singer, I.M.: Quadratic functions in geometry, topology, and M-theory. J. Differ. Geom. 70(3), 329–452 (2005). URL http://projecteuclid.org/getRecord?id=euclid.jdg/1143642908

  45. Kahle, A., Valentino, A.: T-duality and differential K-theory (2009). URL http://www.citebase.org/abstract?id=oai:arXiv.org:0912.2516. ArXiv:0912.2516

  46. Karoubi, M.: Homologie cyclique et K-théorie. Astérisque 149, 147 (1987)

    MathSciNet  Google Scholar 

  47. Karoubi, M.: Théorie générale des classes caractéristiques secondaires. K-Theory 4(1), 55–87 (1990). doi: 10.1007/BF00534193. URL http://dx.doi.org/10.1007/BF00534193

  48. Karoubi, M.: Classes caractéristiques de fibrés feuilletés, holomorphes ou algébriques. In: Proceedings of Conference on Algebraic Geometry and Ring Theory in honor of Michael Artin, Part II, Antwerp, 1992, vol. 8, pp. 153–211 (1994). doi: 10.1007/BF00961455. URL http://dx.doi.org/10.1007/BF00961455

  49. Kasparov, G.G.: Topological invariants of elliptic operators. I. K-homology. Izv. Akad. Nauk SSSR Ser. Mat. 39(4), 796–838 (1975)

    Google Scholar 

  50. Kelnhofer, G.: Functional integration and gauge ambiguities in generalized abelian gauge theories. J. Geomet. Phys. 59(7), 1017–1035 (2009). doi: 10.1016/j.geomphys.2009.04.007. URL http://dx.doi.org/10.1016/j.geomphys.2009.04.007

    Google Scholar 

  51. Klonoff, K.R.: An index theorem in differential k-theory. Ph.D. Thesis, University of Texas at Austin (2008)

    Google Scholar 

  52. Landweber, P.S.: Homological properties of comodules over mu  ∗ (mu) and bp  ∗ (bp). Am. J. Math. (1976)

    Google Scholar 

  53. Lawson Jr., H.B., Michelsohn, M.L.: Spin Geometry, Princeton Mathematical Series, vol. 38. Princeton University Press, Princeton, NJ (1989)

    Google Scholar 

  54. Lott, J.: R ∕ Zindex theory. Comm. Anal. Geom. 2(2), 279–311 (1994)

    MATH  MathSciNet  Google Scholar 

  55. Mathai, V., Rosenberg, J.: T-duality for torus bundles with H-fluxes via noncommutative topology. Comm. Math. Phys. 253(3), 705–721 (2005). doi: 10.1007/s00220-004-1159-7. URL http://dx.doi.org/10.1007/s00220-004-1159-7

  56. May, J.P., Sigurdsson, J.: Parametrized Homotopy Theory, Mathematical Surveys and Monographs, vol. 132. American Mathematical Society, Providence, RI (2006)

    Google Scholar 

  57. Moore, G., Witten, E.: Self-duality, Ramond–Ramond fields, and K-theory. J. High Energ. Phys. 0005, 032 (2000)

    Article  MathSciNet  Google Scholar 

  58. Narasimhan, M.S., Ramanan, S.: Existence of universal connections. Am. J. Math. 83, 563–572 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  59. Ortiz, M.L.: Differential equivariant K-theory (2009). ArXiv:0905.0476

    Google Scholar 

  60. Raeburn, I., Rosenberg, J.: Crossed products of continuous-trace C  ∗ -algebras by smooth actions. Trans. Am. Math. Soc. 305(1), 1–45 (1988). doi: 10.2307/2001039. URL http://dx.doi.org/10.2307/2001039

    Google Scholar 

  61. Raeburn, I., Williams, D.P.: Morita Equivalence and Continuous-Trace C  ∗ -Algebras, Mathematical Surveys and Monographs, vol. 60. American Mathematical Society, Providence, RI (1998)

    Google Scholar 

  62. Simons, J., Sullivan, D.: Axiomatic characterization of ordinary differential cohomology. J. Topology 1(1), 45–56 (2008). doi: 10.1112/jtopol/jtm006. URL http://dx.doi.org/10.1112/jtopol/jtm006

  63. Szabo, R.J., Valentino, A.: Ramond–Ramond fields, fractional branes and orbifold differential K-theory. Comm. Math. Phys. 294(3), 647–702 (2010). doi: 10.1007/s00220-009-0975-1. URL http://dx.doi.org/10.1007/s00220-009-0975-1

  64. Tu, J.L., Xu, P.: The ring structure for equivariant twisted K-theory. J. Reine Angew. Math. 635, 97–148 (2009). doi: 10.1515/CRELLE.2009.077. URL http://dx.doi.org/10.1515/CRELLE.2009.077

    Google Scholar 

  65. Tu, J.L., Xu, P., Laurent-Gengoux, C.: Twisted K-theory of differentiable stacks. Ann. Sci. École Norm. Sup. (4) 37(6), 841–910 (2004). doi: 10.1016/j.ansens.2004.10.002. URL http://dx.doi.org/10.1016/j.ansens.2004.10.002

  66. Waldmüller, R.: Products and push-forwards in twisted cohomology theories. Ph.D. Thesis, Georg-August-Universität Göttingen (2006)

    Google Scholar 

  67. Witten, E.: D-branes and K-theory. J. High Energ. Phys. (12), Paper 19, 41 pp. (electronic) (1998). doi: 10.1088/1126-6708/1998/12/019. URL http://dx.doi.org/10.1088/1126-6708/1998/12/019

Download references

Acknowledgements

Partially funded by the Courant Research Center “Higher order structures in Mathematics” within the German initiative of excellence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Bunke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bunke, U., Schick, T. (2012). Differential K-Theory: A Survey. In: Bär, C., Lohkamp, J., Schwarz, M. (eds) Global Differential Geometry. Springer Proceedings in Mathematics, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22842-1_11

Download citation

Publish with us

Policies and ethics