Skip to main content

Contribution of Endocrine Disrupting Chemicals to the Obesity Epidemic: Consequences of Developmental Exposure

  • Chapter
  • First Online:
Book cover Multi-System Endocrine Disruption

Part of the book series: Research and Perspectives in Endocrine Interactions ((RPEI))

Abstract

Some environmental chemicals are known to disrupt the programming of endocrine signaling pathways that are established during development, resulting in adverse effects later in life. Initially, most endocrine disruptor studies focused on alterations in fertility and reproductive tract endpoints; however, recent evidence implicates developmental exposure to endocrine disrupting chemicals (EDCs) with a growing list of adverse health consequences, including an association with obesity and diabetes. These diseases and their related complications are quickly becoming significant public health problems worldwide and are fast reaching epidemic proportions in many countries. Herein, data from experimental animals are summarized that show an association of environmental estrogens – such as the synthetic estrogen diethylstilbestrol (DES), the high-volume production monomer bisphenol A (BPA) used in the production of polycarbonate plastics, and phytoestrogens found in foods such as soy products – with the development of obesity. In addition, the link to other EDCs with various hormone-disruption activities, such as organotins, phthalates, pesticides, and persistent organic pollutants, are discussed. These animal studies are supported by both experiments with cells in culture and epidemiology surveys that suggest that EDCs contribute to the obesity/diabetes epidemic. The association of EDCs with obesity and related diseases does not diminish the roles of diet and exercise; however, it does point out that exposures to EDCs during development are risk factors that should be avoided wherever possible. This idea shifts the focus on obesity from treatment to prevention.

The author is retired but the research was conducted while employed by NIEHS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso-Magdalena P, Laribi O, Ropero AB, Fuentes E, Ripoll C, Soria B, Nadal A (2005) Low doses of bisphenol A and diethylstilbestrol impair Ca2+ signals in pancreatic alpha-cells through a nonclassical membrane estrogen receptor within intact islets of Langerhans. Environ Health Perspect 113:969–977

    Article  PubMed  CAS  Google Scholar 

  • Alonso-Magdalena P, Morimoto S, Ripoll C, Fuentes E, Nadal A (2006) The estrogenic effect of bisphenol A disrupts pancreatic beta-cell function in vivo and induces insulin resistance. Environ Health Perspect 114:106–112

    Article  PubMed  CAS  Google Scholar 

  • Ashby J, Tinwell H, Haseman J (1999) Lack of effects for low dose levels of bisphenol A and diethylstilbestrol on the prostate gland of CF1 mice exposed in utero. Regul Toxicol Pharmacol 30:156–166

    Article  PubMed  CAS  Google Scholar 

  • Baillie-Hamilton PF (2002) Chemical toxins: a hypothesis to explain the global obesity epidemic. J Altern Complement Med 8:185–192

    Article  PubMed  Google Scholar 

  • Ben-Jonathan N, Hugo ER, Brandebourg TD (2009) Effects of bisphenol A on adipokine release from human adipose tissue: implications for the metabolic syndrome. Mol Cell Endocrinol 304:49–54

    Article  PubMed  CAS  Google Scholar 

  • Biles JE, McNeal TP, Begley TH, Hollifield HC (1997) Determination of bisphenol-A in reusable polycarbonate food-contact plastics and migration to food simulating liquids. J Agric Food Chem 45:3541–3544

    Article  CAS  Google Scholar 

  • Brotons JA, Olea-Serrano MF, Villalobos M, Olea N (1994) Xenoestrogens released from lacquer coating in food cans. Environ Health Perspect 103:608–612

    Article  Google Scholar 

  • Caballero B (2007) The global epidemic of obesity: an overview. Epidemiol Rev 29:1–5

    Article  PubMed  Google Scholar 

  • Calafat AM, Ye X, Wong LY, Reidy JA, Needham LL (2008) Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003–2004. Environ Health Perspect 116:39–44

    Article  PubMed  CAS  Google Scholar 

  • CDC (2008) Report on overweight and obesity. Centers for Disease Control and Prevention. http://www.cdc.gov/nccdphp/dnpa/obesity2011

  • Cowie CC, Rust KF, Ford ES, Eberhardt MS, Byrd-Holt DD, Li C, Williams DE, Gregg EW, Bainbridge KE, Saydah SH, Geiss LS (2009) Full accounting of diabetes and pre-diabetes in the U.S. population in 1988–1994 and 2005–2006. Diabetes Care 32:287–294

    Article  PubMed  Google Scholar 

  • Cunningham E (2010) Where can I find obesity statistics? J Am Diet Assoc 110:656

    Article  PubMed  Google Scholar 

  • European Union Updated European Risk Assessment Report (2008) 4,4′-isopropylidenediphenol (bisphenol A). Environment addendum of February 2008 (to be read in conjunction with EU RAR of BPA published in 2003). http:ecb.jrc.it/documents/Existing-Chemicals/RISKASSESSMENT/ADDENDUM/bisphenolaadd325.pdf2011

  • Flegal KM, Carroll MD, Ogden CL, Curtin LR (2010) Prevalence and trends in obesity among US adults, 1999–2008. JAMA 303:235–241

    Article  PubMed  CAS  Google Scholar 

  • Gesta S, Bluher M, Yamamoto Y, Norris AW, Berndt J, Kralisch S, Boucher J, Lewis C, Kahn CR (2006) Evidence for a role of developmental genes in the origin of obesity and body fat distribution. Proc Natl Acad Sci USA 103:6676–6681

    Article  PubMed  CAS  Google Scholar 

  • Grun F, Blumberg B (2006) Environmental obesogens: organotins and endocrine disruption via nuclear receptor signaling. Endocrinology 147:S50–S55

    Article  PubMed  CAS  Google Scholar 

  • Grun F, Watanabe H, Zamanian Z, Maeda L, Arima K, Cubacha R, Gardiner DM, Kanno J, Iguchi T, Blumberg B (2006) Endocrine-disrupting organotin compounds are potent inducers of adipogenesis in vertebrates. Mol Endocrinol 20:2141–2155

    Article  PubMed  CAS  Google Scholar 

  • Heindel JJ (2003) Endocrine disruptors and the obesity epidemic. Toxicol Sci 76:247–249

    Article  PubMed  CAS  Google Scholar 

  • Heindel JJ, Levin E (2005) Developmental origins and environmental influences – introduction. NIEHS symposium. Birth Defect Res A Clin Mol Teratol 73:469

    Article  CAS  Google Scholar 

  • Honma S, Suzuki A, Buchanan DL, Katsu Y, Watanabe H, Iguchi T (2002) Low dose effect of in utero exposure to bisphenol A and diethylstilbestrol on female mouse reproduction. Reprod Toxicol 16:117–122

    Article  PubMed  CAS  Google Scholar 

  • Howdeshell KL, Hotchkiss AK, Thayer KA, Vandenbergh JG, vom Saal FS (1999) Exposure to bisphenol A advances puberty. Nature 401:763–764

    Article  PubMed  CAS  Google Scholar 

  • Hugo ER, Brandebourg TD, Woo JG, Loftus J, Alexander JW, Ben-Jonathan N (2008) Bisphenol A at environmentally relevant doses inhibits adiponectin release from human adipose tissue explants and adipocytes. Environ Health Perspect 116:1642–1647

    Article  PubMed  CAS  Google Scholar 

  • Isganaitis E, Patti M (2011) Adipocyte development and experimental obesity. In: Lustig RH (ed) Obesity before birth. Springer, New York, pp 321–352

    Chapter  Google Scholar 

  • Janesick A, Blumberg B (2011) The role of environmental obesogens in the obesity epidemic. In: Lustig RH (ed) Obesity before birth. Springer, New York, pp 383–399

    Chapter  Google Scholar 

  • Masuno H, Kidani T, Sekiya K, Sakayama K, Shiosaka T, Yamamoto H, Honda K (2002) Bisphenol A in combination with insulin can accelerate the conversion of 3T3-L1 fibroblasts to adipocytes. J Lipid Res 43:676–684

    PubMed  CAS  Google Scholar 

  • Masuno H, Iwanami J, Kidani T, Sakayama K, Honda K (2005) Bisphenol a accelerates terminal differentiation of 3T3-L1 cells into adipocytes through the phosphatidylinositol 3-kinase pathway. Toxicol Sci 84:319–327

    Article  PubMed  CAS  Google Scholar 

  • McAllister EJ, Dhurandhar NV, Keith SW, Aronne LJ, Barger J, Baskin M, Benca RM, Biggio J, Boggiano MM, Eisenmann JC, Elobeid M, Fontaine KR, Gluckman P, Hanlon EC, Katzmarzyk P, Pietrobelli A, Redden DT, Ruden DM, Wang C, Waterland RA, Wright SM, Allison DB (2009) Ten putative contributors to the obesity epidemic. Crit Rev Food Sci Nutr 49:868–913

    Article  PubMed  Google Scholar 

  • Mozumdar A, Liguori G (2011) Persistent increase of prevalence of metabolic syndrome among U.S. adults: NHANES III to NHANES 1999–2006. Diabetes Care 34:216–219

    Article  PubMed  Google Scholar 

  • Newbold R (2004) Lessons learned from perinatal exposure to diethylstilbestrol (DES). Toxicol Appl Pharmacol 199:142–150

    Article  PubMed  CAS  Google Scholar 

  • Newbold R (2011) Perinatal exposure to endocrine disrupting chemicals with estrogenic activity and the development of obesity. In: Lustig RH (ed) Obesity before birth. Springer, New York, pp 367–382

    Chapter  Google Scholar 

  • Newbold RR, Padilla-Banks E, Snyder RJ, Jefferson WN (2005) Developmental exposure to estrogenic compounds and obesity. Birth Defect Res A Clin Mol Teratol 73:478–480

    Article  CAS  Google Scholar 

  • Newbold RR, Padilla-Banks E, Snyder RJ, Jefferson WN (2007a) Perinatal exposure to environmental estrogens and the development of obesity. Mol Nutr Food Res 51:912–917

    Article  PubMed  CAS  Google Scholar 

  • Newbold RR, Padilla-Banks E, Snyder RJ, Phillips TM, Jefferson WN (2007b) Developmental exposure to endocrine disruptors and the obesity epidemic. Reprod Toxicol 23:290–296

    Article  PubMed  CAS  Google Scholar 

  • Newbold RR, Jefferson WN, Grissom SF, Padilla-Banks E, Snyder RJ, Lobenhofer EK (2007c) Developmental exposure to diethylstilbestrol alters uterine gene expression that may be associated with uterine neoplasia later in life. Mol Carcinog 46:783–796

    Article  PubMed  CAS  Google Scholar 

  • Newbold RR, Padilla-Banks E, Jefferson WN, Heindel JJ (2008) Effects of endocrine disruptors on obesity. Int J Androl 31:201–208

    Article  PubMed  CAS  Google Scholar 

  • Nikaido Y, Yoshizawa K, Danbara N, Tsujita-Kyutoku M, Yuri T, Uehara N, Tsubura A (2004) Effects of maternal xenoestrogen exposure on development of the reproductive tract and mammary gland in female CD-1 mouse offspring. Reprod Toxicol 18:803–811

    Article  PubMed  CAS  Google Scholar 

  • Nikaido Y, Danbara N, Tsujita-Kyutoku M, Yuri T, Uehara N, Tsubura A (2005) Effects of prepubertal exposure to xenoestrogen on development of estrogen target organs in female CD-1 mice. In Vivo 19:487–494

    PubMed  CAS  Google Scholar 

  • NTP (2008) CEHR brief on bisphenol A. National Toxicology Program. Research Triangle Park, NC

    Google Scholar 

  • Ogden CL, Flegal KM, Carroll MD, Johnson CL (2002) Prevalence and trends in overweight among US children and adolescents, 1999–2000. JAMA 288:1728–1732

    Article  PubMed  Google Scholar 

  • Ogden CL, Yanovski SZ, Carroll MD, Flegal KM (2007) The epidemiology of obesity. Gastroenterology 132:2087–2102

    Article  PubMed  Google Scholar 

  • Oken E, Gillman MW (2003) Fetal origins of obesity. Obes Res 11:496–506

    Article  PubMed  Google Scholar 

  • Olea N, Pulgar R, Perez P, Olea-Serrano F, Rivas A, Novillo-Fertrell A, Pedraza V, Soto AM, Sonnenschein C (1996) Estrogenicity of resin-based composites and sealants used in dentistry. Environ Health Perspect 104:298–305

    Article  PubMed  CAS  Google Scholar 

  • Padmanabhan V, Siefert K, Ransom S, Johnson T, Pinkerton J, Anderson L, Tao L, Kannan K (2008) Maternal bisphenol-A levels at delivery: a looming problem? J Perinatol 28:258–263

    Article  PubMed  CAS  Google Scholar 

  • Penza M, Montani C, Romani A, Vignolini P, Pampaloni B, Tanini A, Brandi ML, Alonso-Magdalena P, Nadal A, Ottobrini L, Parolini O, Bignotti E, Calza S, Maggi A, Grigolato PG, Di Lorenzo D (2006) Genistein affects adipose tissue deposition in a dose-dependent and gender-specific manner. Endocrinology 147:5740–5751

    Article  PubMed  CAS  Google Scholar 

  • Richter CA, Birnbaum LS, Farabollini F, Newbold RR, Rubin BS, Talsness CE, Vandenbergh JG, Walser-Kuntz DR, vom Saal FS (2007) In vivo effects of bisphenol A in laboratory rodent studies. Reprod Toxicol 24:199–224

    Article  PubMed  CAS  Google Scholar 

  • Ropero AB, Alonso-Magdalena P, Garcia-Garcia E, Ripoll C, Fuentes E, Nadal A (2008) Bisphenol-A disruption of the endocrine pancreas and blood glucose homeostasis. Int J Androl 31:194–200

    Article  PubMed  CAS  Google Scholar 

  • Rozman KK, Bhatia J, Calafat AM, Chambers C, Culty M, Etzel RA, Flaws JA, Hansen DK, Hoyer PB, Jeffery EH, Kesner JS, Marty S, Thomas JA, Umbach D (2006) NTP-CERHR expert panel report on the reproductive and developmental toxicity of soy formula. Birth Defect Res B Dev Reprod Toxicol 77:280–397

    Article  CAS  Google Scholar 

  • Rubin BS, Murray MK, Damassa DA, King JC, Soto AM (2001) Perinatal exposure to low doses of bisphenol A affects body weight, patterns of estrous cyclicity, and plasma LH levels. Environ Health Perspect 109:675–680

    Article  PubMed  CAS  Google Scholar 

  • Ryan KK, Haller AM, Sorrell JE, Woods SC, Jandacek RJ, Seeley RJ (2010) Perinatal exposure to bisphenol-A and the development of metabolic syndrome in CD-1 mice. Endocrinology 151:2603–2612

    Article  PubMed  CAS  Google Scholar 

  • Sakurai K, Kawazuma M, Adachi T, Harigaya T, Saito Y, Hashimoto N, Mori C (2004) Bisphenol A affects glucose transport in mouse 3T3-F442A adipocytes. Br J Pharmacol 141:209–214

    Article  PubMed  CAS  Google Scholar 

  • Schonfelder G, Flick B, Mayr E, Talsness C, Paul M, Chahoud I (2002) In utero exposure to low doses of bisphenol A lead to long-term deleterious effects in the vagina. Neoplasia 4:98–102

    Article  PubMed  CAS  Google Scholar 

  • Somm E, Schwitzgebel VM, Toulotte A, Cederroth CR, Combescure C, Nef S, Aubert ML, Huppi PS (2009) Perinatal exposure to bisphenol a alters early adipogenesis in the rat. Environ Health Perspect 117:1549–1555

    PubMed  CAS  Google Scholar 

  • Stettler N, Stallings VA, Troxel AB, Zhao J, Schinnar R, Nelson SE, Ziegler EE, Strom BL (2005) Weight gain in the first week of life and overweight in adulthood: a cohort study of European American subjects fed infant formula. Circulation 111:1897–1903

    Article  PubMed  Google Scholar 

  • Takai Y, Tsutsumi O, Ikezuki Y, Kamei Y, Osuga Y, Yano T, Taketan Y (2001) Preimplantation exposure to bisphenol A advances postnatal development. Reprod Toxicol 15:71–74

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi T, Tsutsumi O (2002) Serum bisphenol a concentrations showed gender differences, possibly linked to androgen levels. Biochem Biophys Res Commun 291:76–78

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi T, Tsutsumi O, Ikezuki Y, Takai Y, Taketani Y (2004) Positive relationship between androgen and the endocrine disruptor, bisphenol A, in normal women and women with ovarian dysfunction. Endocr J 51:165–169

    Article  PubMed  CAS  Google Scholar 

  • Thomsen C, Lundanes E, Becher G (2002) Brominated flame retardants in archived serum samples from Norway: a study on temporal trends and the role of age. Environ Sci Technol 36:1414–1418

    Article  PubMed  CAS  Google Scholar 

  • Wetherill YB, Akingbemi BT, Kanno J, McLachlan JA, Nadal A, Sonnenschein C, Watson CS, Zoeller RT, Belcher SM (2007) In vitro molecular mechanisms of bisphenol A action. Reprod Toxicol 24:178–198

    Article  PubMed  CAS  Google Scholar 

  • WHO (1995) Tetrabromobisphenol A and derivatives, vol 172, Environmental health criteria. World Health Organization, Geneva

    Google Scholar 

  • Ye X, Kuklenyik Z, Needham LL, Calafat AM (2006) Measuring environmental phenols and chlorinated organic chemicals in breast milk using automated on-line column-switching-high performance liquid chromatography-isotope dilution tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 831:110–115

    Article  PubMed  CAS  Google Scholar 

  • Zoeller RT, Bansal R, Parris C (2005) Bisphenol-A, an environmental contaminant that acts as a thyroid hormone receptor antagonist in vitro, increases serum thyroxine, and alters RC3/neurogranin expression in the developing rat brain. Endocrinology 146:607–612

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Retha R. Newbold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Newbold, R.R. (2011). Contribution of Endocrine Disrupting Chemicals to the Obesity Epidemic: Consequences of Developmental Exposure. In: Bourguignon, JP., Jégou, B., Kerdelhué, B., Toppari, J., Christen, Y. (eds) Multi-System Endocrine Disruption. Research and Perspectives in Endocrine Interactions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22775-2_7

Download citation

Publish with us

Policies and ethics