Skip to main content

A Primer of Collagen Biology: Synthesis, Degradation, Subtypes, and Role in Dupuytren’s Disease

  • Chapter
  • First Online:
Dupuytren’s Disease and Related Hyperproliferative Disorders

Abstract

Collagen is the primary structural protein of the extracellular matrix. To date, 28 distinct types of collagen have been identified which serve not only as structural components of the interstitial matrix but also function as adhesive and occlusive components of basement membranes, as anchoring fibrils between cells and the interstitium, and as integrative transmembrane proteins. In addition to their structural functions, collagens have a number of physiologically important roles as well. Collagens can serve as an extracellular “sink” for a number of growth factors and cytokines that are released in active form during the process of collagen degradation; additionally, the degradation products of collagen have a number of physiologic activities that are important to the process of wound healing.

Despite their broad structural and functional diversity, all collagens have some features in common. They are the only proteins which contain hydroxyproline and are also characterized by an unusually high content of the amino acids glycine and proline. Furthermore, all collagen subtypes contain within their structure at least one domain composed of a cross-linked triple-helical motif. The triple-helical structure renders collagen impervious to enzymatic degradation by most proteases as long as it is intact; only a few proteases (known as collagenases) have the ability to recognize and digest this triple-helical motif.

The extracellular matrix collagens are not static but are constantly being remodeled in response to the local environment. Collagen remodeling is tightly regulated in vivo, resulting in a balance between synthesis and degradation which allows the quantity and quality of the extracellular matrix to be adapted precisely to physiologic need. Disregulation of the balance between these two processes has been shown to have a role in the pathogenesis of a number of fibrotic conditions, notably in Dupuytren’s contracture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alman BA, Greel DA, Ruby LK, Goldberg MJ, Wolfe HJ (1996) Regulation of proliferation and platelet-derived growth factor expression in palmar fibromatosis (Dupuytren contracture) by mechanical strain. J Orthop Res 14:722–728

    Article  PubMed  CAS  Google Scholar 

  • Al-Qattan MM (2006) Factors in the pathogenesis of Dupuytren’s contracture. J Hand Surg 31A:1527–1534

    Google Scholar 

  • Arora PD, Manolson MF, Downey GP, Sodek J, McCulloch CAG (2000) A novel model system for characterization of phagosomal maturation, acidification, and intracellular collagen degradation in fibroblasts. J Biol Chem 275:35432–35441

    Article  PubMed  CAS  Google Scholar 

  • Baker AH, Edwards DR, Murphy G (2002) Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J Cell Sci 115:3719–3727

    Article  PubMed  CAS  Google Scholar 

  • Balestrini JL, Billiar KL (2009) Magnitude and duration of stretch modulate fibroblast remodeling. J Biomech Eng 131:051005-1–051005-8

    Article  Google Scholar 

  • Barbolina MV, Stack MS (2008) Membrane type 1-matrix metalloproteinase: substrate diversity in pericellular proteolysis. Semin Cell Dev Biol 19:24–33

    Article  PubMed  CAS  Google Scholar 

  • Brickley-Parsons D, Glimcher MJ, Smith RJ, Albin R, Adams JP (1981) Biochemical changes in the collagen of the palmar fascia in patients with Dupuytren’s disease. J Bone Joint Surg Am 63:787–797

    PubMed  CAS  Google Scholar 

  • Canty EG, Kadler KE (2005) Procollagen trafficking, processing and fibrillogenesis. J Cell Sci 118:1341–1353

    Article  PubMed  CAS  Google Scholar 

  • Canty EG, Lu Y, Meadows RS, Shaw MK, Holmes DF, Kadler KE (2004) Coalignment of plasma membrane channels and protrusions (fibripositors) specifies the parallelism of tendon. J Cell Biol 165:553–563

    Article  PubMed  CAS  Google Scholar 

  • Canty EG, Starborg T, Lu Y, Humphries SM, Holmes DF, Meadows RS, Huffman A, O’Toole ET, Kadler KE (2006) Actin filaments are required for fibripositor-mediated collagen fibril alignment in tendon. J Biol Chem 281:38592–38598

    Article  PubMed  CAS  Google Scholar 

  • Cawston TE, Mercer E (1986) Preferential binding of collagenase to α2-macroglobulin in the presence of the tissue inhibitor of metalloproteinases. FEBS Lett 209:9–12

    Article  PubMed  CAS  Google Scholar 

  • Chiquet M, Renedo AS, Huber F, Flück M (2003) How do fibroblasts translate mechanical signals into changes in extracellular matrix production? Matrix Biol 22:73–80

    Article  PubMed  CAS  Google Scholar 

  • Chiquet M, Tunç-Civelek V, Sarasa-Renedo A (2007) Gene regulation by mechanotransduction in fibroblasts. Appl Physiol Nutr Metab 32:967–973

    Article  PubMed  CAS  Google Scholar 

  • Cordova A, Tripoli M, Corradino B, Napoli P, Moschella F (2005) Dupuytren’s contracture: an update of biomolecular aspects and therapeutic perspectives. J Hand Surg 30B:557–562

    Google Scholar 

  • Daley WP, Peters SB, Larsen M (2007) Extracellular matrix dynamics in development and regenerative medicine. J Cell Sci 121:255–264

    Article  Google Scholar 

  • Evanson J, Jeffrey JJ, Krane SM (1968) Studies on collagenase from rheumatoid synovium in tissue culture. J Clin Invest 47:2639–2651

    Article  PubMed  CAS  Google Scholar 

  • Everts V, van der Zee E, Creemers L, Beertsen W (1996) Phagocytosis and intracellular digestion of collagen, its role in turnover and remodeling. Histochem J 28:229–245

    Article  PubMed  CAS  Google Scholar 

  • Fesus L, Jeleliska MM, Kope M (1981) Degradation by thrombin of denatured collagen and of collagenase digestion products. Thromb Res 22:367–373

    Article  PubMed  CAS  Google Scholar 

  • Fluck J, Querfeld C, Cremer A, Niland S, Krieg T, Sollberg S (1998) Normal human primary fibroblasts undergo apoptosis in three-dimensional contractile collagen gels. J Invest Dermatol 110:153–157

    Article  PubMed  CAS  Google Scholar 

  • Flynn BP, Bhole AP, Saeidi N, Liles M, DiMarzio CA et al (2010) Mechanical strain stabilizes reconstituted collagen fibrils against enzymatic degradation by mammalian collagenase matrix metalloproteinase 8 (MMP-8). PLoS One 5:e12337. doi:10.1371/journal.pone.0012337

    Article  PubMed  Google Scholar 

  • Gabbiani G (2003) The myofibroblast in wound healing and fibrocontractive diseases. J Pathol 200:500–503

    Article  PubMed  CAS  Google Scholar 

  • Gelse K, Pöschl E, Aigner T (2003) Collagens – structure, function, and biosynthesis. Adv Drug Deliv Rev 55:1531–1546

    Article  PubMed  CAS  Google Scholar 

  • Grinnell F, Zhu M, Carlson MA, Abrams JM (1999) Release of mechanical tension triggers apoptosis of human fibroblasts in a model of regressing granulation tissue. Exp Cell Res 248:608–619

    Article  PubMed  CAS  Google Scholar 

  • Gutiérrez-Fernández A, Inada M, Balbín M, Fueyo A, Pitiot AS, Astudillo A, Hirose K, Hirata M, Shapiro SD, Noël A, Werb Z, Krane SM, López-Otín C, Puente XS (2007) Increased inflammation delays wound healing in mice deficient in collagenase-2 (MMP-8). FASEB J 21:2580–2591

    Article  PubMed  Google Scholar 

  • Hamilton DW (2008) Functional role of periostin in development and wound repair: implications for connective tissue disease. J Cell Commun Signal 2:9–17

    Article  PubMed  Google Scholar 

  • Hanyu T, Tajima T, Tagaki T, Sasaki S, Fujimoto D, Isemora M, Yosizawa Z (1984) Biochemical studies on the collagen of the palmar aponeurosis affected with Dupuytren’s disease. Tohoku J Exp Med 142:437–443

    Article  PubMed  CAS  Google Scholar 

  • Hinz B, Mastrangelo D, Iselin CE, Chaponnier C, Gabbiani G (2001) Mechanical tension controls granulation tissue contractile activity and myofibroblast differentiation. Am J Pathol 159:1009–1020

    Article  PubMed  CAS  Google Scholar 

  • Johnston P, Chojnowski AJ, Davidson RK, Riley GP, Donell ST, Clark IM (2007) A complete expression profile of matrix-degrading metalloproteinases in Dupuytren’s disease. J Hand Surg 32A:343–351

    Google Scholar 

  • Kadler KE, Holmes DF, Trotter JA, Chapman JA (1996). Collagen fibril formation. Biochem J. 316(Pt 1):1–11

    Google Scholar 

  • Kadler KE, Hill A, Canty-Laird EG (2008). Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators. Curr Opin Cell Biol 20(5):495–501

    Google Scholar 

  • Kalamajski S, Oldberg Å (2010) The role of small leucine-rich proteoglycans in collagen fibrillogenesis. Matrix Biol 29:248–253

    Article  PubMed  CAS  Google Scholar 

  • Kaneko D, Sasazaki Y, Kikuchi T, Ono T, Nemoto K, Matsumoto H, Toyama Y (2009) Temporal effects of cyclic stretching on distribution and gene expression of integrin and cytoskeleton by ligament fibroblasts in vitro. Connect Tissue Res 50:263–269

    Article  PubMed  CAS  Google Scholar 

  • Khoshnoodi J, Cartailler J-P, Alvares K, Veis A, Hudson BG (2006) Molecular recognition in the assembly of collagens: terminal noncollagenous domains are key recognition modules in the formation of triple helical protomers. J Biol Chem 281:38117–38121

    Article  PubMed  CAS  Google Scholar 

  • Kuo H-J, Maslen CL, Keene DR, Glanville RW (1997) Type VI collagen anchors endothelial basement membranes by interacting with Type IV collagen. J Biol Chem 272:26522–26529

    Article  PubMed  CAS  Google Scholar 

  • Lambert CA, Soudant EP, Nusgens BV, Lapière CM (1992) Pretranslational regulation of extracellular matrix macromolecules and collagenase expression in fibroblasts by mechanical forces. Lab Invest 66:444–451

    PubMed  CAS  Google Scholar 

  • Lambert CA, Colige AC, Lapière CM, Nusgens BV (2001) Coordinated regulation of procollagens I and III and their post-translational enzymes by dissipation of mechanical tension in human dermal fibroblasts. Eur J Cell Biol 80:479–485

    Article  PubMed  CAS  Google Scholar 

  • Lauer-Fields JL, Juska D, Fields GB (2002) Matrix metalloproteinases and collagen catabolism. Biopolymers (Pept Sci) 66:19–32

    Article  CAS  Google Scholar 

  • Lee LC, Zhang AY, Chong AK, Pham H, Longaker MT, Chang J (2006) Expression of a novel gene, MafB, in Dupuytren’s disease. J Hand Surg 31A:211–218

    Google Scholar 

  • Leikina E, Mertts MV, Kuznetsova N, Leikin S (2002) Type I collagen is thermally unstable at body temperature. Proc Natl Acad Sci 99:1314–1318

    Article  PubMed  CAS  Google Scholar 

  • Mansell JP, Bailey AJ (2004) Collagen metabolism disorders. Encyclopedia Endo Dis 1:530–537

    Article  CAS  Google Scholar 

  • McAlinden A, Smith TA, Sandell LJ, Ficheux D, Parry DAD, Hulmes DJS (2003) Alpha-helical coiled-coil oligomerization domains are almost ubiquitous in the collagen superfamily. J Biol Chem 278:42200–42207

    Article  PubMed  CAS  Google Scholar 

  • Melling M, Reihsner R, Pfeiler W, Schnallinger M, Karimian-Teherani D, Behnam M, Mostler S, Menzel EJ (1999) Comparison of palmar aponeuroses from individuals with diabetes mellitus and Dupuytren’s contracture. Anat Rec 255:401–406

    Article  PubMed  CAS  Google Scholar 

  • Melling M, Karimian-Teherani D, Mostler S, Behnam M, Sobal G, Menzel EJ (2000) Changes of biochemical and biomechanical properties in Dupuytren disease. Arch Pathol Lab Med 124:1275–1281

    PubMed  CAS  Google Scholar 

  • Merryman WD, Lukoff HD, Long RA, Engelmayr GC Jr, Hopkins RA, Sacks MS (2007) Synergistic effects of cyclic tension and transforming growth factor-beta1 on the aortic valve myofibroblast. Cardiovasc Pathol 16:268–276

    Article  PubMed  CAS  Google Scholar 

  • Minond D, Lauer-Fields JL, Cudic M, Overall CM, Pei D, Brew K, Visse R, Nagase H, Fields GB (2006) The roles of substrate thermal stability and P2 and P1′ subsite identity on matrix metalloproteinase triple-helical peptidase activity and collagen specificity. J Biol Chem 281:38302–38313

    Article  PubMed  CAS  Google Scholar 

  • Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69:562–573

    Article  PubMed  CAS  Google Scholar 

  • Norris RA, Damon B, Mironov V, Kasyanov V, Ramamurthi A, Moreno-Rodriguez R, Trusk T, Potts JD, Goodwin RL, Davis J, Hoffman S, Wen X, Sugi Y, Kern CB, Mjaatvedt CH, Turner DK, Oka T, Conway ST, Molkentin JD, Forgacs G, Markwald RR (2007) Periostin regulates collagen fibrillogenesis and the biomechanical properties of connective tissues. J Cell Biochem 101:695–711

    Article  PubMed  CAS  Google Scholar 

  • Notbohm H, Bigi A, Roveri N, Hoch J, Acil Y, Koch HJ (1995) Ultrastructural and biochemical modifications of collagen from tissue of morbus Dupuytren patients. J Biochem 118:405–410

    PubMed  CAS  Google Scholar 

  • Ortega N, Werb Z (2002) New functional roles for non-collagenous domains of basement membrane collagens. J Cell Sci 115:4201–4214

    Article  PubMed  CAS  Google Scholar 

  • Pasternak B, Aspenberg P (2009) Metalloproteinases and their inhibitors – diagnostic and therapeutic opportunities in orthopedics. Acta Orthop 80:693–703

    Article  PubMed  Google Scholar 

  • Persikov AV, Brodsky B (2002) Unstable molecules form stable tissues. Proc Natl Acad Sci 99:1101–1103

    Article  PubMed  CAS  Google Scholar 

  • Perumal S, Antipova O, Orgel JPRO (2008) Collagen fibril architecture, domain organization, and triple-helical conformation govern its proteolysis. Proc Natl Acad Sci 105:2824–2829

    Article  PubMed  CAS  Google Scholar 

  • Prockop DJ, Kivirikko KI (1995) Collagens: molecular biology, diseases, and potentials for therapy. Annu Rev Biochem 64:403–434

    Article  PubMed  CAS  Google Scholar 

  • Qian A, Meals RA, Rajfer J, Gonzalez-Cavidad NF (2004) Comparison of gene expression profiles between Peyronie’s disease and Dupuytren’s contracture. Urology 64:399–404

    Article  PubMed  CAS  Google Scholar 

  • Ra H-J, Parks WC (2007) Control of matrix metalloproteinase catalytic activity. Matrix Biol 26:587–596

    Article  PubMed  CAS  Google Scholar 

  • Rayan GM (2007) Dupuytren disease: anatomy, pathology, presentation, and treatment. J Bone Joint Surg Am 89:189–198

    Article  PubMed  Google Scholar 

  • Rehman S, Salway F, Stanley JK, Ollier WER, Day P, Bayat A (2008) Molecular phenotypic descriptors of Dupuytren’s disease defined using informatics analysis of the transcriptome. J Hand Surg 33A:359–372

    Google Scholar 

  • Ricard-Blum S, Ruggerio F (2005) The collagen superfamily: from the extracellular matrix to the cell membrane. Pathol Biol 53:430–442

    Article  PubMed  CAS  Google Scholar 

  • Roeder BA, Kokini K, Voytik-Harbin SL (2009) Fibril microstructure affects strain transmission within collagen extracellular matrices. J Biomech Eng 131:031004-1–031004-11

    Article  Google Scholar 

  • Sabeh F, Li X-Y, Saunders TL, Rowe RG, Weiss SJ (2009) Secreted versus membrane-anchored collagenases: relative roles in fibroblast-dependent collageanolysis and invasion. J Biol Chem 284:23001–23011

    Article  PubMed  CAS  Google Scholar 

  • Shoulders MD, Raines RT (2009) Collagen structure and stability. Annu Rev Biochem 78:929–958

    Article  PubMed  CAS  Google Scholar 

  • Somerville RPT, Oblander SA, Apte SS (2003) Matrix metalloproteinases: old dogs with new tricks. Genome Biol 4:216

    Article  PubMed  Google Scholar 

  • Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516

    Article  PubMed  CAS  Google Scholar 

  • Stetler-Stevenson WG (1996) Dynamics of matrix turnover during pathologic remodeling of the extracellular matrix. Am J Pathol 148:1345–1350

    PubMed  CAS  Google Scholar 

  • Stultz CM (2002) Localized unfolding of collagen explains collagenase cleavage near imino-poor sites. J Mol Biol 319:997–1003

    Article  PubMed  CAS  Google Scholar 

  • Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002) Myofibroblasts and mechanoregulation of connective tissue remodeling. Nat Rev Mol Cell Biol 3:349–363

    Article  PubMed  CAS  Google Scholar 

  • Turk V, Turk B, Turk D (2001) Lysosomal cysteine proteases: facts and opportunities. EMBO J 20:4629–4633

    Article  PubMed  CAS  Google Scholar 

  • Van der Rest M, Garrone R (1991) Collagen family of proteins. FASEB J 5:2814–2823

    PubMed  Google Scholar 

  • Veit G, Kobbe B, Keene DR, Paulsson M, Koch M, Wagener R (2006) Collagen XXVIII, a novel von Willebrand factor A domain containing protein with many imperfections in the collagenous domain. J Biol Chem 281:3494–3504

    Article  PubMed  CAS  Google Scholar 

  • Vi L, Fenga L, Zhu RB, Wu Y, Satish L, Gan BS, O’Gorman DB (2009) Periostin differentially induces proliferation, contraction and apoptosis of primary Dupuytren’s disease and adjacent palmar fascia cells. Exp Cell Res 315:3574–3586

    Article  PubMed  CAS  Google Scholar 

  • Visse R and Nagase H (2003). Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ. Res 92(8): 827–839.

    Google Scholar 

  • Wang JH, Thampatty BP, Lin JS, Im HJ (2007) Mechanoregulation of gene expression in fibroblasts. Gene 391:1–15

    Article  PubMed  CAS  Google Scholar 

  • Wang N, Tytell JD, Ingber DE (2009) Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol 10:75–82

    Article  PubMed  CAS  Google Scholar 

  • Webb K, Hitchcock RW, Smeal RM, Li W, Gray SD, Tresco PA (2006) Cyclic strain increases fibroblast proliferation, matrix accumulation, and elastic modulus of fibroblast-seeded polyurethane constructs. J Biomech 39:1136–1144

    Article  PubMed  Google Scholar 

  • Wenstrup RJ, Florer JB, Brunskill EW, Bell SM, Chervoneva I, Birk DE (2004) Type V collagen controls the initiation of collagen fibril assembly. J Biol Chem 279:53331–53337

    Article  PubMed  CAS  Google Scholar 

  • Wilde J, Yokozeki M, Terai K, Kudo A, Moriyama K (2003) The divergent expression of periostin mRNA in the periodontal ligament during experimental tooth movement. Cell Tissue Res 312:345–351

    Article  PubMed  CAS  Google Scholar 

  • Zeichen J, van Griensven M, Albers I, Lobenhoffer P, Bosch U (1999) Immunohistochemical localization of collagen VI in arthrofibrosis. Arch Orthop Trauma Surg 119:315–318

    Article  PubMed  CAS  Google Scholar 

  • Ziegler N, Alonso A, Steinberg T, Woodnutt D, Kohl A, Müssig E, Schulz S, Tomakidi P (2010) Mechano-transduction in periodontal ligament cells identifies activated states of MAP-kinases p42/44 and p38-stress kinase as a mechanism for MMP-13 expression. BMC Cell Biol 11:10

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Emeigh Hart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hart, S.E. (2012). A Primer of Collagen Biology: Synthesis, Degradation, Subtypes, and Role in Dupuytren’s Disease. In: Eaton, C., Seegenschmiedt, M., Bayat, A., Gabbiani, G., Werker, P., Wach, W. (eds) Dupuytren’s Disease and Related Hyperproliferative Disorders. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22697-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22697-7_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22696-0

  • Online ISBN: 978-3-642-22697-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics